Table of Contents

    Topic review

    Mesenchymal Cells for RP Therapy

    View times: 62
    Submitted by: Paolo Limoli


    Retinitis pigmentosa (RP) is a complex inherited retinal dystrophy currently lacking effective therapies: this represents one of the greatest challenges in the field of ophthalmological research. Stem cells, especially mesenchymal cells represents a feasible therapeutic option in RP, limitating both oxidative stress and apoptotic processes triggered by the disease and promoting cell survival. 

    1. Introduction 

    Retinitis pigmentosa (RP) affects 1.5 million people around the world, representing the most widespread hereditary retinal dystrophy: globally, its prevalence is estimated at 1:4000.

    The term 'RP' comprises a series of clinical conditions caused by a high number of genetic alterations that, either alone or in association, cause damage to the molecular processes necessary for the creation, conservation, use, or recovery of rhodopsin. The direct consequence is the progressive and total loss of rod cells [1][2][3].

    The genetic etiology of RP underlies the damage and subsequent death of rod cells, while the central retina, which contains mainly cone cells, remains in relatively good condition until the advanced stage of the disease. This explains why RP patients are often diagnosed later on in life, after the second or third decade of life.

    However, the clinical manifestations of RP are caused not only by rod cell loss but also by the cone cell injury, albeit in later phases.

    The cone loss goes beyond genetics [4][5][6] and involves other biomolecular mechanisms, including alterations in hemodynamics [7], oxidative stress due to the higher availability of oxygen after rod loss [8][9], and the impaired response to oxidative stress [2][3][10][11][12].

    This sequence of events underlies the prevailing symptoms of RP: night blindness, tunnel vision, followed by progressive loss of central vision and complete or near complete blindness.

    Rod cells account for about 95% of all photoreceptors, and the oxidative metabolism of fatty acids is their main source of energy [13].

    More than 80 causative genes of RP responsible for rod damage have already been identified, although a significant number of them are still unknown [14].

    Genetic mutations responsible for RP in some cases also involve genes expressed not only in rods but also in the retinal pigment epithelium (RPE), such as MERTK [15], RLBP1 [16], and RPE65 [17].

    RPE plays many vital roles for photoreceptor cells, and the most fascinating is certainly its protective action against oxidative stress [18].

    Recent studies have confirmed a high level of reactive oxygen species (ROS) in RPE, and fatty acids are one of their molecular targets. If oxidized, they can compromise transduction pathways and gene expression [19].

    At this point, a cascade of molecular phenomena—such as para-inflammation, synaptic impairment, apoptosis, and cell death—which hugely impact visual function, is triggered.

    Therefore, oxidative damage is considered the leading cause of cone apoptosis and progressive vision loss [6][7][20][21].

    However, this chain of events, which is triggered after the rod death and leads to the cone loss, highlights a number of key points that can potentially be leveraged therapeutically to slow down or stop the disease progression towards its terminal stages, modulating the rod damage and preventing or delaying cone death [22][23][24].

    In order to stimulate neuronal survival, many research groups have worked on animal models of RP.

    New therapeutic approaches for RP include the restoration of defective genes and stem cell transplantation to replace or repair impaired or dead cells [25][26].

    2. Oxidative Stress and Retinitis Pigmentosa

    2.1. Animal Models of RP

    There are a complex variety of animal models that have allowed the molecular study of RP.

    The refinement of these genetic models offers a deeper comprehension of biological and etiopathogenetic mechanisms of the disease. Based on these studies, it is also possible to develop new treatments and prevention strategies.

    Examples of those models are Rd1 mices [27], Rd10 mices [28], P23H and S334ter Rhodopsin Transgenic Rats [29], Rd mices [30], Rds mices [31], Royal College of Surgeons rats [32], and RPE65 dog [33].

    Rd1/rd1 mouse has a mutation at the level of β subunit of phosphodiesterasis cGMP gene that leads to cGMP toxic accumulation, higher level of intracellular Ca2, and finally rod death [27][34][35][36][37]. The rod loss leads to a greater amount of oxygen available, that injures the cones, causing their death. In view of this, antioxidative therapy could prevent cone death in this RP murine model [34][35][36][37].

    A similar mutation has been found in a particular type of autosomal recessive RP, and therefore Rd1/rd1 mouse has become an ideal RP model [34].

    Rd10 mouse has allowed the study of ceramide in retinal degeneration. Ceramide is a proapoptotic sphingolipid and its level increases during the rod cell death.

    It has been shown that the photoreceptor loss can be blocked by hindering the ceramide proapoptotic pathway.

    Intraocular injection or continuous eye drops administration of myriocin, inhibitor of serin palmitoil-CoA transferase, can return ceramide to normal levels and stop the apoptotic death of photoreceptors. Therefore, this therapeutic approach can be applied to humans [28].

    P23H rat model has established that the photoreceptor loss triggers major changes in the number and morphology of glial cells affecting the inner retina.

    Both astrocytes and Müller cells promote retinal cell survival by releasing neurotrophic factors, providing anti-oxidative support, catabolizing neurotransmitters in the extraneural space, and supporting synapse formation. They also contribute to activating microglial cells and regulating vasal tone [38]. In addition to the photoreceptor loss in P23H rat model, the alteration of retinal vascular plexuses has been observed. The reduced capillary density may hinder the oxygen and nutrient supply to the retinal cells and foster the retinal degeneration. Thus, vascular injuries should be considered as an important therapeutic target in degenerative retinal diseases [39].

    In Rd [30], Rds [31], in Royal College of Surgeons rat [32], and in RPE65 dog [33], the identification of a single mutation has allowed to develop targeted gene therapy and to partially limit the retinal degeneration. However, there are only few types of RP with specific mutations, restricting the application of gene therapy.

    The use of trophic factors [40][41][42], calcium channel blockers [43], or MSCs [44] have been observed to slow down the disease progression in some RP animal models.

    2.2. Synoptic Aspects of Oxidation and Antioxidation

    Photoreceptors are particularly sensitive to oxidative damage exerted by the light, with which they constantly interact [45][46][47]. In fact, to phototransduce electromagnetic radiation into visual stimuli, retinal cells contain numerous photosensitive molecules, a considerable amount of polyunsaturated fatty acids (15% of photoreceptor's mass) and are characterized by an extremely high metabolism, from which unstable metabolic byproducts, called ROS, are continuously generated. ROS are represented by several unstable molecules, including superoxide anion (O2), ozone (O3), hydrogen peroxide (H2O2), hydroxyl radical (OH) derived from the decomposition of peroxides, peroxide radical (LOO·) which removes an atom of hydrogen from another lipid molecule, and nitric oxide (NO·), a messenger in many cytosolic pathways.

    Furthermore, under oxidative stress conditions, non-metabolizable advanced glycation end-products (AGEs), responsible for para-inflammation and permanent cell damage, are produced [48].

    Over time, oxidative stress can alter transduction pathways and gene expression [49] and damage all the cellular components, including phospholipid membranes, proteins, and nuclear and mitochondrial DNA (mtDNA). Those injuries lead to the progressive loss of function of photoreceptor as well as RPE [50][51][52].

    However, photoreceptors are able to protect themselves against these oxidative injuries through several mechanisms.

    The first antioxidant defense is mediated by enzymes—such as catalase, glutathione peroxidase, and reductase—which promote the decomposition of hydrogen peroxide into water and oxygen molecules; superoxide dismutase (SOD), which is normally found in the mitochondria of cone's inner segments [53][54][55] or the glyoxalase system [56], which neutralizes ROS by acquiring electrons from oxidizing substances.

    Another important defense is provided by the endoplasmic reticulum (ER) through the activation of a cellular stress response, called unfolded protein response (UPR). As a reaction to the accumulation of misfolded proteins in the ER lumen, UPR is initially set to restore normal cell function; if this process does not occur in the proper time and way, UPR activates apoptosis. The persistent activation of UPR has been implicated in the pathogenesis and progression of several diseases, such as RP [57][58].

    Another protective mechanism against oxidative stress is the production of stress granules, proteins able to bind and protect specific mRNAs, preventing their degradation. Through the selective inhibition of such mRNAs, the transcription of constituent genes is selectively blocked while the translation of stress-induced transcripts is facilitated, allowing energy savings and cell survival [59].

    Furthermore, retinal cells can resort to autophagy to catabolize damaged proteins and organelles, ensuring a homeostatic balance and promoting their survival following oxidative damage [11][60].

    About 1–5% of ROS is generated in the mitochondria, organelles responsible for energy production in the cell. As a response to specific signals including oxidative stress, hunger, and mitochondrial protein modification, the selective autophagy of mitochondria can be activated [61].

    Autophagy plays a protective role against oxidative stress and other cellular lesions, but the build-up of autophagosomes due to prolonged insults ends up becoming harmful to cells [62].

    Finally, RPE cells have been shown to protect photoreceptors against ROS [63]. They are also known to provide many other vital functions for photoreceptors, such as light absorption, bi-directional epithelial transport, spatial ion buffering (in order to maintain the predisposition to depolarization), visual cycle regulation, phagocytosis of external photoreceptor segments (POS), secretion of trophic factors and signaling molecules, and support to the eye seen as an immunologically privileged site [64].

    In conclusion, the balance between oxidative stress and antioxidant mechanisms is crucial for cell survival. If the cell is over-stressed or has an altered protection (e.g., due to pathologies), programmed death cell, i.e., apoptosis, is induced [65][66][67][68][69]. Therefore, it is necessary to preserve the homeostasis to avoid cell death by regulating the excess of ROS that the metabolism continuously produces.

    It is especially true for RP in which the impairment of antioxidant responses has a key role in triggering the disease progression [12][47].

    In fact, the photoreceptors—in particular the rods, responsible for scotopic vision, and the RPE—are the most vulnerable cell types to oxidative damage [3], especially because they are believed to reside in a terminal G0 phase.

    2.3. Oxidative Stress and RP

    The impairment of retinal vascularization, mainly mediated by oxidative stress, is considered to play a key role in the RP progression.

    Many studies have shown a reduction both in choroidal [61][70] and macular [4][71] hemodynamics associated with a reduced visual sensitivity in RP patients.

    The catabolic products released by photoreceptors not only lead progressively to rod loss but also have negative effects on microcirculation. In fact, the retinal vessels appear thin. It becomes a vicious circle in which the altered perfusion fosters photoreceptor injury and loss [72].

    Several studies highlight the role of the impaired retinal circulation in RP and its correlation with residual function [73] and choroidal thickness [74]. In particular, the reduction in retinal blood flow both as a whole [20] and at the subfoveal level has been shown, with related alterations in electroretinographic recordings [75].

    Several studies have shown that both endogenous ROS produced by retinal metabolism and the lipid peroxidation or DNA damage, produced by external agents, such as exposure to sunlight or cigarette smoke, can contribute to photoreceptor death.

    The most pathognomonic aspect of RP is that the blood, passing through the choroid, maintains an arterial oxygen saturation until it enters the venous system. Moreover, unlike retinal capillaries, choroidal capillaries allow plasma protein diffusion in order to meet the metabolic photoreceptor needs [76].

    The rods, which make up about 95% of all photoreceptors, are progressively lost in RP; consequently, the intracapillary oxygen level remains elevated, increasing ROS production and inducing an oxidative damage in the cones, surviving cells that are eventually impaired and lost [9][45].

    The following factors have been shown to exacerbate the oxidative damage and the rod death: foveal area's exposure to light, choroidal stasis, metabolic deterioration of cones and RPE cells, lack of antioxidant enzymes such as SOD, which is normally found in the mitochondria of the cone inner segments (but not in the outer ones), glutathione peroxidase, glyoxalase and catalase, and autophagy impairment [8][10][11][77][78][79].

    In recent years, it has been demonstrated that the oxidative damage can also interfere with particular RNA molecules called long non-coding RNAs [80][81]. These are involved in several critical biochemical pathways, such as chromosome conformation modeling, genomic imprinting modulation, allosteric control of enzymatic activity, as well as cell state coordination, differentiation, and development. Dysregulation or mutation of non-coding genes has been associated with various human diseases, including RP [80][81].

    The alteration of lipoproteins and DNA derived from hyperoxia can cause irreparable damage in the residual cells (mainly cones), and therefore in the foveal region [9][45][79][82][83][84].

    In RP, the cell apoptosis induced by oxidative stress determines the so-called retinal gliosis, i.e., a state of para-inflammation in which microglial and macroglial cells are activated [85].

    The microglial cells, which are normally dormant resident retinal macrophages, provide neuroprotection against ROS damage under physiological conditions.

    Debris from apoptotic or dead cells, damaged lipopolysaccharides and ROS [21][86] can trigger the activation of apoptotic photoreceptors in RP, which generally occurs just before or at the peak of apoptotic photoreceptor death [87][88][89].

    Their activation involves the expression of inflammatory regulatory proteins such as peroxiredoxin 2 (PRDX2), pro-inflammatory cytokines such as TNF-α, interleukin-1β or interferon-γ in RPE cells [90][91], chemokines and neurotoxic agents, including hydrogen peroxide, and superoxide anion with additional oxidative stress [92][93].

    The microglia chronic activation promotes the microglial phagocytosis against the altered components of neuronal cells, determining the evolution of RP [94].

    Conversely, the suppression of their activation improves the survival of rods [95].

    On the other hand, the macroglia represented by retinal Müller glia (RMG)—which form the columns of retinal tissue and have multiple connections with retinal neurons, microglia, astrocytes, and endothelial cells—modulate different responses depending on the severity of the stimulus. The activation of these macroglial cells leads to hypertrophy, which in turn induces the overexpression of vimentin (an intermediate filament) and glial fibrillary acidic protein (GFAP), which is considered a hallmark of retinal stress [96]. As an immediate response to non-permanent acute stimuli, the RMG promotes the secretion of trophic and antioxidant factors, but as it becomes chronic, their secretory role can be clearly deleterious to neuronal cells [96].

    Therefore, the abovementioned state of hyperoxia and the ensuing ROS formation are fundamental underlying causes of accelerated rod loss and cone injury in the retina affected by RP.

    3. Mesenchymal Cells: Therapeutic Strategies in Retinitis Pigmentosa

    Over the past few years, different therapeutic approaches aiming to delay the rod death and to prevent the cone injury in RP have been explored. In particular, much emphasis has been placed on cell therapy and gene therapy. The latter one, however, has achieved limited results in vivo and it may not modify the retinal damage once it has occurred. Consequently, scientific interest is particularly focused on cell therapy, a promising tool of regenerative medicine [97].

    Some researchers have used embryonic stem cells [98] or induced pluripotent stem cells [99] to generate neurons that could replace lost cells. Although these cells effectively express neuronal markers, most of them show a poor retinal integration, remaining close to the injection site.

    Other researchers have used mesenchymal stem cells (MSC) by exploiting their primary ability to paracrinally modulate the neuronal microenvironment by secreting growth factors (GF) in different retinal degeneration models [100][101][102][103][104][105].

    Cell therapy can contribute to maintain both the neuronal density and the function of the retina by improving and preserving intra- and extra-cellular conditions [106].

    Compared to ESCs and iPSCs, MSCs have a lower differentiation potential, but numerous advantages: they do not induce risks of uncontrolled growth and rejection reactions, not requiring immunosuppressant use; they do not have ethical problems; they are relatively inexpensive and easy to collect (especially those derived from adipose tissue); finally, they have a higher immunomodulatory capacity, meeting the prerequisites of regenerative medicine [107][108][109].

    MSCs are characterized by the group of cell surface markers, both positive and negative, proposed by the International Society for Cellular Therapy in 2006 [110]. The MSC population is defined as >95% positive for CD105, CD73, CD34, and CD90, and >95%, negative for CD45, CD14 or CD11, CD79, CD19, and HLA-DR. MSCs also express other surface markers, such as CD44, CD166, Stro-1, CD106, and CD146 [111].

    MSCs, spread ubiquitously throughout the body, play a key role in organogenesis, tissue remodeling, and repair [112].

    They can migrate to injury sites, following the intravascular administration. This process is due to the distinctive molecules present on the surface of MSCs and endothelial cells, such as P-selectin and integrins [113]. For this reason, these cells have the ability to adhere to the endothelium and cross it by metalloprotease [114].

    Among the different sources, the most interesting MSCs exploited for clinical therapeutic purposes in retinal diseases include:

    • Adipose-derived stem cells (ADSCs)

    • Adult adipocytes

    • Platelets

    Adipose tissue is one of the most interesting collection sites of MSC. Like bone marrow, adipose tissue contains a large population of stem cells, called ADSCs, within its stromal compartment. They can be obtained using simple procedures such as lipoaspiration performed under local anesthesia. ADSCs are more numerous, have a faster expansion, and a greater secretory and immunomodulatory capacity [109].

    ADSCs produce basic fibroblast GF (bFGF) also known as FGF2, vascular endothelial GF (VEGF), macrophage colony-stimulating factor (M-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), placental GF (PlGF), transforming GF beta (TGF-β), hepatocyte GF (HGF), insulin-like GF-1 (IGF-1), interleukin (IL), angiogenin, ciliary neurotrophic factor (CNTF), brain-derived neurotrophic factor (BDNF) [108][115], and glial cell-derived neurotrophic factor (GDNF) [116].

    Adult adipocytes are another type of mesenchymal cell that can be used for regenerative purposes. These can secrete specific hormones, called adipokines, which play a role in energy homeostasis. Adipose cells produce epidermal GF (EGF), bFGF, IGF-1, IL, TGFβ, pigment epithelium-derived factor (PEDF), and adiponectin [117][118][119][120].

    Finally, also the platelets, originating from the subdivision of megakaryocytes, originate from mesenchymal tissue.

    They are well known for their hemostatic action, but they can also release substances that promote tissue repair and angiogenesis, and modulate inflammation [121]. In addition, they induce cell migration and adhesion at angiogenesis sites, as well as differentiation of endothelial progenitors into mature endothelial cells [122].

    Platelets produce platelet-derived GF (PDGF), IGF-1, TGFβ, VEGF, bFGF, EGF, platelet-derived angiogenesis factor (PDAF), and thrombospondin (TSP), and several authors have used them in eye diseases such as glaucoma, age-related macular degeneration (AMD), and RP [123][124][125][126].

    They are used in regenerative therapy in the state of platelet rich plasma (PRP), obtained from plasma centrifugation, because it allows to achieve a greater production of cytokines, even 4–5 times greater than the initial conditions.

    Several cell grafting methods have been developed: intravitreal [104][127], subretinal [128], epiretinal, subtenon [126], and suprachoroidal [129][130][131][132] (Table 1). Each has its advantages and disadvantages.

    Table 1. Main clinical studies exploiting MSC for therapeutic purposes in RP.

    RP: Retinitis Pigmentosa; AMD: Age related Macular Disease, GA: Geographic Atrophy, OA: Optic Atrophy; DR: Diabetic retinopathy; RVO Retinal Venous Occlusion; BMHSC: Bone Marrow Human Stem Cell; ADMSC: Adipose Derived Mesenchymal Stem Cell; PRP: Platelet Rich Plasma; UC-MSC: Umbilical Cord Mesenchymal Stem Cell.

    In particular, the suprachoroidal implantation of MSCs according to Limoli Retinal Restoration Technique uses three types of autologous mesenchymal cells: ADSCs, adipocytes, and platelets concentrated in PRP. With this method, improvements have been observed in electroretinographic parameters and visual performance in AMD, opticopathies, and RP. Furthermore, it seems to be devoid of the potential complications reported for the intravitreal and subretinal methods [128][131][132][133][134].

    The ocular administration of MSC promotes a significant restoration of the visual system in a variety of eye diseases, including RP [100][135][136][137][138], through several mechanisms, as follows:

    • Cell differentiation and trans-differentiation for lost/damaged cell replacement

    • Paracrine action for cell repair and functional stimulation

    • Exosomes and microvesicle secretion

    • Modulation of host immune responses in inflammation site

    4. Cell-Mediated Biomolecular and Antioxidative Mechanisms in RP

    The therapeutic effect of MSCs is mainly based on the paracrine secretion of cytokines, GFs, extracellular vesicles and exosomes. In recent years, the scientific literature has highlighted the several mechanisms through which the cell therapy can slow down the RP progression. The therapeutic mechanisms are summarized below:

    • Hemorheological activity

    • Antioxidant activity

    • Anti-inflammatory activity

    • Anti-apoptotic activity

    • Cytoprotective activity

    5. Conclusions

    In view of the highlighted influence of MSC secretome on oxidative stress, the MSC graft in retina or adjacent tissues may slow down RP progression [100][101][104][126][128][131][132]: the bioactive factors released by MSCs could exert a trophic effect on photoreceptors, RMG, and RPE cells, so that the rod and cone lifespan could be prolonged.

    The entry is from 10.3390/antiox9100983


    1. Pagon, R.A. Retinitis pigmentosa. Surv. Ophthalmol. 1988, 33,137–177.
    2. Hartong, D.T.; Berson, E.L.; Dryja, T.P. Retinitis pigmentosa. Lancet 2006, 368, 1795–1809, doi:10.1016/s0140-6736(06)69740-7.
    3. Hamel, C.P. Retinitis pigmentosa. Orphanet J. Rare Dis. 2006, 1, 40, doi:10.1186/1750-1172-1-40.
    4. Murakami, Y.; Ikeda, Y.; Nakatake, S.; Miller, J.W.; Vavvas, D.G.; Sonoda, K.H.; Ishibashi, T. Necrotic cone photoreceptor cell death in retinitis pigmentosa. Cell Death Dis. 2015, 6, e2038, doi:10.1038/cddis.2015.385.
    5. Aït-Ali, N.; Fridlich, R.; Millet-Puel, G.; Clérin, E.; Delalande, F.; Jaillard, C.; Blond, F.; Perrocheau, L.; Reichman, S.; Byrne, L.C.; et al. Rod-Derived Cone Viability Factor Promotes Cone Survival by Stimulating Aerobic Glycolysis. Cell 2015, 161, 817–832, doi:10.1016/j.cell.2015.03.023.
    6. Campochiaro, P.A.; Mir, T.A. The mechanism of cone cell death in Retinitis Pigmentosa. Prog. Retin. Eye Res. 2018, 62, 24–37, doi:10.1016/j.preteyeres.2017.08.004.
    7. Yang, Y.J.; Peng, J.; Ying, D.; Peng, Q. A Brief Review on the Pathological Role of Decreased Blood Flow Affected in Retinitis Pigmentosa. J. Ophthalmol. 2018, 2018, 1–7, doi:10.1155/2018/3249064.
    8. Shen, J.; Yang, X.; Dong, A.; Petters, R.M.; Peng, Y.-W.; Wong, F.; Campochiaro, P.A. Oxidative damage is a potential cause of cone cell death in retinitis pigmentosa. J. Cell. Physiol. 2005, 203, 457–464, doi:10.1002/jcp.20346.
    9. Campochiaro, P.A.; Strauss, R.W.; Lu, L.; Hafiz, G.; Wolfson, Y.; Shah, S.M.; Sophie, R.; Mir, T.A.; Scholl, H.P. Is There Excess Oxidative Stress and Damage in Eyes of Patients with Retinitis Pigmentosa? Antioxid. Redox Signal. 2015, 23, 643–648, doi:10.1089/ars.2015.6327.
    10. Punzo, C.; Xiong, W.; Cepko, C.L. Loss of Daylight Vision in Retinal Degeneration: Are Oxidative Stress and Metabolic Dysregulation to Blame? J. Biol. Chem. 2014, R111, 304428.
    11. Moreno, M.-L.; Mérida, S.; Bosch-Morell, F.; Miranda, M.; Villar, V.M. Autophagy Dysfunction and Oxidative Stress, Two Related Mechanisms Implicated in Retinitis Pigmentosa. Front. Physiol. 2018, 9, 1008, doi:10.3389/fphys.2018.01008.
    12. Donato, L.; Scimone, C.; Nicocia, G.; D’Angelo, R.; Sidoti, A. Retracted Article: Role of oxidative stress in Retinitis pigmentosa: New involved pathways by an RNA-Seq analysis. Cell Cycle 2018, 18, 84–104, doi:10.1080/15384101.2018.1558873.
    13. Agbaga, M.-P.; Merriman, D.K.; Brush, R.S.; Lydic, T.A.; Conley, S.M.; Naash, M.I.; Jackson, S.; Woods, A.S.; Reid, G.E.; Busik, J.V.; et al. Differential composition of DHA and very-long-chain PUFAs in rod and cone photoreceptors. J. Lipid Res. 2018, 59, 1586–1596, doi:10.1194/jlr.m082495.
    14. Birtel, J.; Gliem, M.; Oishi, A.; Müller, P.; Herrmann, P.; Holz, F.G.; Mangold, E.; Knapp, M.; Bolz, H.J.; Issa, P.C. Genetic testing in patients with retinitis pigmentosa: Features of unsolved cases. Clin. Exp. Ophthalmol. 2019, 47, 779–786, doi:10.1111/ceo.13516.
    15. Audo, I.; Mohand-Saïd, S.; Boulanger-Scemama, E.; Zanlonghi, X.; Condroyer, C.; Demontant, V.; Boyard, F.; Antonio, A.; Méjécase, C.; El Shamieh, S.; et al. MERTK mutation update in inherited retinal diseases. Hum. Mutat. 2018, 39, 887–913, doi:10.1002/humu.23431.
    16. Scimone, C.; Donato, L.; Esposito, T.; Rinaldi, C.; D’Angelo, R.; Sidoti, A. A novel RLBP1 gene geographical area-related mutation present in a young patient with retinitis punctata albescens. Hum. Genom. 2017, 11, 1–6, doi:10.1186/s40246-017-0114-6.
    17. Utz, V.M.; Coussa, R.G.; Antaki, F.; Traboulsi, E.I. Gene therapy for RPE65-related retinal disease. Ophthalmic Genet. 2018, 39, 671–677, doi:10.1080/13816810.2018.1533027.
    18. Hicks, D.; Hamel, C.P. The Retinal Pigment Epithelium in Health and Disease. Curr. Mol. Med. 2010, 10, 802–823, doi:10.2174/156652410793937813.
    19. Nowak, J.Z. Oxidative stress, polyunsaturated fatty acids-derived oxidation products and bisretinoids as potential inducers of CNS diseases: Focus on age-related macular degeneration. Pharmacol. Rep. 2013, 65, 288–304.
    20. Beutelspacher, S.C.; Serbecic, N.; Barash, H.; Burgansky-Eliash, Z.; Grinvald, A.; Krastel, H.; Jonas, J.B. Retinal blood flow velocity measured by retinal function imaging in retinitis pigmentosa. Graefe’s Arch. Clin. Exp. Ophthalmol. 2011, 249, 1855–1858, doi:10.1007/s00417-011-1757-y.
    21. Langmann, T. Microglia activation in retinal degeneration. J. Leukoc. Biol. 2007, 81, 1345–1351, doi:10.1189/jlb.0207114.
    22. Otani, A.; Dorrell, M.I.; Kinder, K.; Moreno, S.K.; Nusinowitz, S.; Banin, E.; Heckenlively, J.; Friedlander, M. Rescue of retinal degeneration by intravitreally injected adult bone marrow–derived lineage-negative hematopoietic stem cells. J. Clin. Investig. 2004, 114, 765–774, doi:10.1172/jci200421686.
    23. Liang, F.-Q.; Aleman, T.S.; Dejneka, N.S.; Dudus, L.; Fisher, K.J.; Maguire, A.M.; Jacobson, S.G.; Bennett, J. Long-Term Protection of Retinal Structure but Not Function Using RAAV.CNTF in Animal Models of Retinitis Pigmentosa. Mol. Ther. 2001, 4, 461–472, doi:10.1006/mthe.2001.0473.
    24. Guadagni, V.; Novelli, E.; Strettoi, E. Environmental enrichment reduces photoreceptor degeneration and retinal inflammation in a mouse model of retinitis pigmentosa. Investig. Ophthalmol. Vis. Sci. 2015, 56, 4261–4261.
    25. He, Y.; Zhang, Y.; Liu, X.; Ghazaryan, E.; Li, Y.; Xie, J.; Su, G. Recent Advances of Stem Cell Therapy for Retinitis Pigmentosa. Int. J. Mol. Sci. 2014, 15, 14456–14474, doi:10.3390/ijms150814456.
    26. Tucker, B.A.; Mullins, R.F.; Stone, E.M. Stem cells for investigation and treatment of inherited retinal disease. Hum. Mol. Genet. 2014, 23, R9–R16, doi:10.1093/hmg/ddu124.
    27. Xue, C.; Rosen, R.B.; Jordan, A.; Hu, D.-N. Management of Ocular Diseases Using Lutein and Zeaxanthin: What Have We Learned from Experimental Animal Studies? J. Ophthalmol. 2015, 2015, 1–11, doi:10.1155/2015/523027.
    28. Strettoi, E.; Gargini, C.; Novelli, E.; Sala, G.; Piano, I.; Gasco, P.; Ghidoni, R. Inhibition of ceramide biosynthesis preserves photoreceptor structure and function in a mouse model of retinitis pigmentosa. Proc. Natl. Acad. Sci. USA 2010, 107, 18706–18711, doi:10.1073/pnas.1007644107.
    29. Lavail, M.M.; Nishikawa, S.; Steinberg, R.H.; Naash, M.I.; Duncan, J.L.; Trautmann, N.; Matthes, M.T.; Yasumura, D.; Lau-Villacorta, C.; Chen, J.; et al. Phenotypic characterization of P23H and S334ter rhodopsin transgenic rat models of inherited retinal degeneration. Exp. Eye Res. 2018, 167, 56–90, doi:10.1016/j.exer.2017.10.023.
    30. Takahashi, M.; Miyoshi, H.; Verma, I.M.; Gage, F.H. Rescue from Photoreceptor Degeneration in therd Mouse by Human Immunodeficiency Virus Vector-Mediated Gene Transfer. J. Virol. 1999, 73, 7812–7816, doi:10.1128/jvi.73.9.7812-7816.1999.
    31. Ali, R.R.; Sarra, G.-M.; Stephens, C.; De Alwis, M.; Bainbridge, J.W.; Munro, P.M.; Fauser, S.; Reichel, M.B.; Kinnon, C.; Hunt, D.M.; et al. Restoration of photoreceptor ultrastructure and function in retinal degeneration slow mice by gene therapy. Nat. Genet. 2000, 25, 306–310, doi:10.1038/77068.
    32. Vollrath, D.; Feng, W.; Duncan, J.L.; Yasumura, D.; D’Cruz, P.M.; Chappelow, A.; Matthes, M.T.; Kay, M.A.; Lavail, M.M. Correction of the retinal dystrophy phenotype of the RCS rat by viral gene transfer of Mertk. Proc. Natl. Acad. Sci. USA 2001, 98, 12584–12589, doi:10.1073/pnas.221364198.
    33. Acland, G.M.; Aguirre, G.D.; Ray, J.; Zhang, Q.; Aleman, T.S.; Cideciyan, A.V.; Pearce-Kelling, S.E.; Anand, V.; Zeng, Y.; Maguire, A.M.; et al. Gene therapy restores vision in a canine model of childhood blindness. Nat. Genet. 2001, 28, 92–95, doi:10.1038/ng0501-92.
    34. Miranda, M.; Arnal, E.; Ahuja, S.; Alvarez-Nölting, R.; López-Pedrajas, R.; Ekström, P.; Bosch-Morell, F.; Van Veen, T.; Romero, F.J. Antioxidants rescue photoreceptors in rd1 mice: Relationship with thiol metabolism. Free. Radic. Biol. Med. 2010, 48, 216–222, doi:10.1016/j.freeradbiomed.2009.10.042.
    35. Komeima, K.; Rogers, B.S.; Lu, L.; Campochiaro, P.A. Antioxidants reduce cone cell death in a model of retinitis pigmentosa. Proc. Natl. Acad. Sci. USA 2006, 103, 11300–11305, doi:10.1073/pnas.0604056103.
    36. Komeima, K.; Usui, S.; Shen, J.; Rogers, B.S.; Campochiaro, P.A. Blockade of neuronal nitric oxide synthase reduces cone cell death in a model of retinitis pigmentosa. Free. Radic. Biol. Med. 2008, 45, 905–912, doi:10.1016/j.freeradbiomed.2008.06.020.
    37. Sanz, M.; Johnson, L.; Ahuja, S.P.; Ekström, P.; Romero, J.; Van Veen, T. Significant photoreceptor rescue by treatment with a combination of antioxidants in an animal model for retinal degeneration. Neuroscience 2007, 145, 1120–1129, doi:10.1016/j.neuroscience.2006.12.034.
    38. Fernández-Sánchez, L.; Lax, P.; Campello, L.; Pinilla, I.; Cuenca, N. Astrocytes and Müller Cell Alterations During Retinal Degeneration in a Transgenic Rat Model of Retinitis Pigmentosa. Front. Cell. Neurosci. 2015, 9, doi:10.3389/fncel.2015.00484.
    39. Fernández-Sánchez, L.; Esquiva, G.; Pinilla, I.; Lax, P.; Cuenca, N. Retinal Vascular Degeneration in the Transgenic P23H Rat Model of Retinitis Pigmentosa. Front. Neuroanat. 2018, 12, doi:10.3389/fnana.2018.00055.
    40. Frasson, M.; Picaud, S.; Léveillard, T.; Simonutti, M.; Mohand-Said, S.; Dreyfus, H.; Hicks, D.; Sabel, J. Glial cell line-derived neurotrophic factor induces histologic and functional protection of rod photoreceptors in the rd/rd mouse. Investig. Ophthalmol. Vis. Sci. 1999, 40, 2724–2734.
    41. Bush, R.A.; Lei, B.; Tao, W.; Raz, D.; Chan, C.-C.; Cox, T.A.; Santos-Muffley, M.; Sieving, P.A. Encapsulated cell-based intraocular delivery of ciliary neurotrophic factor in normal rabbit: Dose-dependent effects on ERG and retinal histology. Investig. Opthalmology Vis. Sci. 2004, 45, 2420–2430, doi:10.1167/iovs.03-1342.
    42. Uteza, Y.; Rouillot, J.-S.; Kobetz, A.; Marchant, D.; Pecqueur, S.; Arnaud, E.; Prats, H.; Honiger, J.; Dufier, J.-L.; Abitbol, M.; et al. Intravitreous transplantation of encapsulated fibroblasts secreting the human fibroblast growth factor 2 delays photoreceptor cell degeneration in Royal College of Surgeons rats. Proc. Natl. Acad. Sci. USA 1999, 96, 3126–3131, doi:10.1073/pnas.96.6.3126.
    43. Frasson, M.; Sahel, J.-A.; Fabre, M.; Simonutti, M.; Dreyfus, H.; Picaud, S. Retinitis pigmentosa: Rod photoreceptor rescue by a calcium-channel blocker in the rd mouse. Nat. Med. 1999, 5, 1183–1187, doi:10.1038/13508.
    44. Smith, L.E. Bone marrow–derived stem cells preserve cone vision in retinitis pigmentosa. J. Clin. Investig. 2004, 114, 755–757, doi:10.1172/JCI22930.
    45. Samardzija, M.; Todorova, V.; Gougoulakis, L.; Barben, M.; Nötzli, S.; Klee, K.; Storti, F.; Gubler, A.; Imsand, C.; Grimm, C. Light stress affects cones and horizontal cells via rhodopsin-mediated mechanisms. Exp. Eye Res. 2019, 186, 107719, doi:10.1016/j.exer.2019.107719.
    46. Rohowetz, L.J.; Kraus, J.G.; Koulen, P. Reactive Oxygen Species-Mediated Damage of Retinal Neurons: Drug Development Targets for Therapies of Chronic Neurodegeneration of the Retina. Int. J. Mol. Sci. 2018, 19, 3362, doi:10.3390/ijms19113362.
    47. Domènech, E.B.; Marfany, G. The Relevance of Oxidative Stress in the Pathogenesis and Therapy of Retinal Dystrophies. Antioxidants 2020, 9, 347, doi:10.3390/antiox9040347.
    48. Nedić, O.; Rattan, S.I.; Grune, T.; Trougakos, I.P. Molecular effects of advanced glycation end products on cell signalling pathways, ageing and pathophysiology. Free Radic. Res. 2013, 47, 28–38, doi:10.3109/10715762.2013.806798.
    49. Kaarniranta, K.; Kajdanek, J.; Morawiec, J.; Pawlowska, E.; Blasiak, J. PGC-1α Protects RPE Cells of the Aging Retina against Oxidative Stress-Induced Degeneration through the Regulation of Senescence and Mitochondrial Quality Control. The Significance for AMD Pathogenesis. Int. J. Mol. Sci. 2018, 19, 2317, doi:10.3390/ijms19082317.
    50. Honda, S.; Hjelmeland, L.M.; Handa, J.T. Oxidative stress—Induced single-strand breaks in chromosomal telomeres of human retinal pigment epithelial cells in vitro. Investig. Ophthalmol. Vis. Sci. 2001, 42, 2139–2144.
    51. Cai, J.; Nelson, K.C.; Wu, M.; Sternberg, P.; Jones, D.P. Oxidative damage and protection of the RPE. Prog. Retin. Eye Res. 2000, 19, 205–221, doi:10.1016/s1350-9462(99)00009-9.
    52. Kaarniranta, K.; Koskela, A.; Felszeghy, S.; Kivinen, N.; Salminen, A.; Kauppinen, A. Fatty acids and oxidized lipoproteins contribute to autophagy and innate immunity responses upon the degeneration of retinal pigment epithelium and development of age-related macular degeneration. Biochimie 2019, 159, 49–54, doi:10.1016/j.biochi.2018.07.010.
    53. Ogasawara, M.; Zhang, H. Redox Regulation and Its Emerging Roles in Stem Cells and Stem-Like Cancer Cells. Antioxid. Redox Signal. 2009, 11, 1107–1122, doi:10.1089/ars.2008.2308.
    54. Benhar, M. Oxidants, Antioxidants and Thiol Redox Switches in the Control of Regulated Cell Death Pathways. Antioxidants 2020, 9, 309, doi:10.3390/antiox9040309.
    55. Saccà, S.S.; Roszkowska, A.M.; Izzotti, A. Environmental light and endogenous antioxidants as the main determinants of non-cancer ocular diseases. Mutat. Res. Mutat. Res. 2013, 752, 153–171, doi:10.1016/j.mrrev.2013.01.001.
    56. Donato, L.; Scimone, C.; Alibrandi, S.; Nicocia, G.; Rinaldi, C.; Sidoti, A.; D’Angelo, R. Discovery of GLO1 New Related Genes and Pathways by RNA-Seq on A2E-Stressed Retinal Epithelial Cells Could Improve Knowledge on Retinitis Pigmentosa. Antioxidants 2020, 9, 416, doi:10.3390/antiox9050416.
    57. Sano, R.; Reed, J.C. ER stress-induced cell death mechanisms. Biochim. Biophys. Acta BBA Bioenerg. 2013, 1833, 3460–3470, doi:10.1016/j.bbamcr.2013.06.028.
    58. Li, J.; Wang, J.J.; Yu, Q.; Wang, M.; Zhang, S.X. Endoplasmic reticulum stress is implicated in retinal inflammation and diabetic retinopathy. FEBS Lett. 2009, 583, 1521–1527, doi:10.1016/j.febslet.2009.04.007.
    59. Anderson, P.J.; Kedersha, N. Stress granules. Curr. Biol. 2009, 19, R397–R398, doi:10.1016/j.cub.2009.03.013.
    60. Kunchithapautham, K.; Rohrer, B. Apoptosis and Autophagy in Photoreceptors Exposed to Oxidative Stress. Autophagy 2007, 3, 433–441, doi:10.4161/auto.4294.
    61. Lin, W.-J.; Kuang, H.Y. Oxidative stress induces autophagy in response to multiple noxious stimuli in retinal ganglion cells. Autophagy 2014, 10, 1692–1701, doi:10.4161/auto.36076.
    62. Mitter, S.K.; Song, C.; Qi, X.; Mao, H.; Rao, H.; Akin, D.; Lewin, A.; Grant, M.; Dunn, W.; Ding, J.; et al. Dysregulated autophagy in the RPE is associated with increased susceptibility to oxidative stress and AMD. Autophagy 2014, 10, 1989–2005, doi:10.4161/auto.36184.
    63. Datta, S.; Cano, M.; Ebrahimi, K.; Wang, L.; Handa, J.T. The impact of oxidative stress and inflammation on RPE degeneration in non-neovascular AMD. Prog. Retin. Eye Res. 2017, 60, 201–218, doi:10.1016/j.preteyeres. 2017.03.002.
    64. Fuhrmann, S.; Zou, C.; Levine, E.M. Retinal pigment epithelium development, plasticity, and tissue homeostasis. Exp. Eye Res. 2014, 123, 141–150, doi:10.1016/j.exer.2013.09.003.
    65. Fulda, S.; Gorman, A.M.; Hori, O.; Samali, A. Cellular Stress Responses: Cell Survival and Cell Death. Int. J. Cell Biol. 2010, 2010, 214074, doi:10.1155/2010/214074.
    66. Galluzzi, L.; Vitale, I.; Aaronson, S.A.; Abrams, J.M.; Adam, D.; Agostinis, P.; Alnemri, E.S.; Altucci, L.; Amelio, I.; Andrews, D.W.; et al. Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018, 25, 486–541, doi:10.1038/s41418-017-0012-4.
    67. Tang, D.; Kang, R.; Berghe, T.V.; Vandenabeele, P.; Kroemer, G. The molecular machinery of regulated cell death. Cell Res. 2019, 29, 347–364, doi:10.1038/s41422-019-0164-5.
    68. Sies, H.; Jones, D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 2020, 21, 363–383, doi:10.1038/s41580-020-0230-3.
    69. Sies, H. Oxidative stress: A concept in redox biology and medicine. Redox Biol. 2015, 4, 180–183, doi:10.1016/j.redox.2015.01.002.
    70. Langham, M.E.; Kramer, T. Decreased choroidal blood flow associated with retinitis pigmentosa. Eye 1990, 4, 374–381, doi:10.1038/eye.1990.50.
    71. Murakami, Y.; Ikeda, Y.; Akiyama, M.; Fujiwara, K.; Yoshida, N.; Nakatake, S.; Notomi, S.; Nabeshima, T.; Hisatomi, T.; Enaida, H.; et al. Correlation between macular blood flow and central visual sensitivity in retinitis pigmentosa. Acta Ophthalmol. 2015, 93, e644–e648, doi:10.1111/aos.12693.
    72. Marc, R.E.; Jones, B. Retinal Remodeling in Inherited Photoreceptor Degenerations. Mol. Neurobiol. 2003, 28, 139–148, doi:10.1385/mn:28:2:139.
    73. Peng, Q.; Zhu, W.; Li, C. A research on the mechanism of pigmentary degeneration of retina belonging to deficiency complicated with blood stasis. Jiangsu Tradit. Chin. Med. 1990, 1, 39–41.
    74. Ayton, L.N.; Guymer, R.; Luu, C.D. Choroidal thickness profiles in retinitis pigmentosa. Clin. Exp. Ophthalmol. 2012, 41, doi:10.1111/j.1442-9071.2012.02867.x.
    75. Falsini, B.; Anselmi, G.M.; Marangoni, D.; D’Esposito, F.; Fadda, A.; Di Renzo, A.; Campos, E.C.; Riva, C.E. Subfoveal Choroidal Blood Flow and Central Retinal Function in Retinitis Pigmentosa. Investig. Opthalmology Vis. Sci. 2011, 52, 1064–1069, doi:10.1167/iovs.10-5964.
    76. Bill, A.; Sperber, G.; Ujiie, K. Physiology of the choroidal vascular bed. Int. Ophthalmol. 1983, 6, 101–107, doi:10.1007/bf00127638.
    77. Lieberthal, W.; Triaca, V.; Koh, J.S.; Pagano, P.J.; Levine, J.S. Role of superoxide in apoptosis induced by growth factor withdrawal. Am. J. Physiol. Content 1998, 275, F691–F702, doi:10.1152/ajprenal.1998.275.5.f691.
    78. Yu, D.-Y.; Cringle, S.; Valter, K.; Walsh, N.; Lee, D.; Stone, J. Photoreceptor Death, Trophic Factor Expression, Retinal Oxygen Status, and Photoreceptor Function in the P23H Rat. Investig. Opthalmol. Vis. Sci. 2004, 45, 2013–2019, doi:10.1167/iovs.03-0845.
    79. Yu, D.-Y.; Cringle, S.J. Retinal degeneration and local oxygen metabolism. Exp. Eye Res. 2005, 80, 745–751, doi:10.1016/j.exer.2005.01.018.
    80. Jain, S.; Thakkar, N.; Chhatai, J.; Bhadra, M.P.; Bhadra, U. Long non-coding RNA: Functional agent for disease traits. RNA Biol. 2016, 14, 522–535, doi:10.1080/15476286.2016.1172756.
    81. Donato, L.; Scimone, C.; Alibrandi, S.; Rinaldi, C.; Sidoti, A.; D’Angelo, R. Transcriptome Analyses of lncRNAs in A2E-Stressed Retinal Epithelial Cells Unveil Advanced Links between Metabolic Impairments Related to Oxidative Stress and Retinitis Pigmentosa. Antioxidants 2020, 9, 318, doi:10.3390/antiox9040318.
    82. Fisher, A.B. Reactive Oxygen Species and Cell Signaling in Lung Ischemia. Cell Signal. Vasc. Inflamm. 2007, 31, 125–135, doi:10.1007/978-1-59259-909-7_13.
    83. Türksever, C.; Valmaggia, C.; Orgül, S.; Schorderet, D.F.; Flammer, J.; Todorova, M. Retinal vessel oxygen saturation and its correlation with structural changes in retinitis pigmentosa. Acta Ophthalmol. 2014, 92, 454–460, doi:10.1111/aos.12379.
    84. Donato, L.; Scimone, C.; Nicocia, G.; Denaro, L.; Robledo, R.; Sidoti, A.; D’Angelo, R. GLO1 gene polymorphisms and their association with retinitis pigmentosa: A case–control study in a Sicilian population. Mol. Biol. Rep. 2018, 45, 1349–1355, doi:10.1007/s11033-018-4295-4.
    85. Cerman, E.; Akkoc, T.; Eraslan, M.; Şahin, Özlem; Ozkara, S.; Aker, F.V.; Subaşı, C.; Karaoz, E.; Akkoç, T. Correction: Retinal Electrophysiological Effects of Intravitreal Bone Marrow Derived Mesenchymal Stem Cells in Streptozotocin Induced Diabetic Rats. PLoS ONE 2016, 11, e0165219, doi:10.1371/journal.pone.0165219.
    86. Kreutzberg, G.W. Microglia: A sensor for pathological events in the CNS. Trends Neurosci. 1996, 19, 312–318, doi:10.1016/0166-2236(96)10049-7.
    87. Zeiss, C.; Johnson, E.A. Proliferation of microglia, but not photoreceptors, in the outer nuclear layer of the rd-1 mouse. Investig. Opthalmol. Vis. Sci. 2004, 45, 971–976, doi:10.1167/iovs.03-0301.
    88. Gupta, N.; Brown, K.E.; Milam, A.H. Activated microglia in human retinitis pigmentosa, late-onset retinal degeneration, and age-related macular degeneration. Exp. Eye Res. 2003, 76, 463–471, doi:10.1016/s0014-4835(02)00332-9.
    89. Zeng, H.-Y.; Zhu, X.-A.; Zhang, C.; Yang, L.-P.; Wu, L.-M.; Tso, M.O.M. Identification of Sequential Events and Factors Associated with Microglial Activation, Migration, and Cytotoxicity in Retinal Degeneration inrdMice. Investig. Opthalmol. Vis. Sci. 2005, 46, 2992–2999, doi:10.1167/iovs.05-0118.
    90. Detrick, B.; Hooks, J.J. The RPE Cell and the Immune System. In Retinal Pigment Epithelium in Health and Disease; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2019; pp. 101–114.
    91. Rashid, K.; Akhtar-Schaefer, I.; Langmann, T. Microglia in Retinal Degeneration. Front. Immunol. 2019, 10, doi:10.3389/fimmu.2019.01975.
    92. Banati, R.B.; Gehrmann, J.; Schubert, P.; Kreutzberg, G.W. Cytotoxicity of microglia. Glia 1993, 7, 111–118, doi:10.1002/glia.440070117.
    93. Boje, K.M.; Arora, P.K. Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Res. 1992, 587, 250–256, doi:10.1016/0006-8993(92)91004-x.
    94. Zhao, L.; Zabel, M.K.; Wang, X.; Ma, W.; Shah, P.; Fariss, R.N.; Qian, H.; Parkhurst, C.N.; Gan, W.; Wong, W.T. Microglial phagocytosis of living photoreceptors contributes to inherited retinal degeneration. EMBO Mol. Med. 2015, 7, 1179–1197, doi:10.15252/emmm.201505298.
    95. Peng, B.; Xiao, J.; Wang, K.; So, K.F.; Tipoe, G.L.; Lin, B. Suppression of Microglial Activation Is Neuroprotective in a Mouse Model of 21. Human Retinitis Pigmentosa. J. Neurosci. 2014, 34, 8139–8150.
    96. Subirada, P.V.; Paz, M.C.; Ridano, M.E.; Lorenc, V.E.; Vaglienti, M.V.; Barcelona, P.F.; Luna, J.D.; Sánchez, M.C. A journey into the retina: Müller glia commanding survival and death. Eur. J. Neurosci. 2018, 47, 1429–1443, doi:10.1111/ejn.13965.
    97. Klassen, H. Stem cells in clinical trials for treatment of retinal degeneration. Expert Opin. Biol. Ther. 2015, 16, 7–14, doi:10.1517/14712598.2016.1093110.
    98. Idelson, M.; Alper, R.; Obolensky, A.; Ben-Shushan, E.; Hemo, I.; Yachimovich-Cohen, N.; Khaner, H.; Smith, Y.; Wiser, O.; Gropp, M.; et al. Directed Differentiation of Human Embryonic Stem Cells into Functional Retinal Pigment Epithelium Cells. Cell Stem Cell 2009, 5, 396–408, doi:10.1016/j.stem.2009.07.002.
    99. Takahashi, K.; Yamanaka, S. Induced pluripotent stem cells in medicine and biology. Development 2013, 140, 2457–2461, doi:10.1242/dev.092551.
    100. Ding, S.L.S.; Kumar, S.; Mok, P.L. Cellular Reparative Mechanisms of Mesenchymal Stem Cells for Retinal Diseases. Int. J. Mol. Sci. 2017, 18, 1406, doi:10.3390/ijms18081406.
    101. Huo, D.-M.; Dong, F.-T.; Yu, W.-H.; Gao, F. Differentiation of mesenchymal stem cell in the microenviroment of retinitis pigmentosa. Int. J. Ophthalmol. 2010, 3, 216–219.
    102. Zarbin, M. Cell-Based Therapy for Degenerative Retinal Disease. Trends Mol. Med. 2016, 22, 115–134, doi:10.1016/j.molmed.2015.12.007.
    103. Siqueira, R.C.; Messias, A.; Voltarelli, J.C.; Scott, I.U.; Jorge, R. Intravitreal injection of autologous bone marrow–derived mononuclear cells for hereditary retinal dystrophy. Retina 2011, 31, 1207–1214, doi:10.1097/iae.0b013e3181f9c242.
    104. Siqueira, R.C.; Messias, A.; Messias, K.; Arcieri, R.S.; Ruiz, M.A.; Souza, N.F.; Martins, L.C.; Jorge, R. Quality of life in patients with retinitis pigmentosa submitted to intravitreal use of bone marrow-derived stem cells (Reticell-clinical trial). Stem Cell Res. Ther. 2015, 6, 29, doi:10.1186/s13287-015-0020-6.
    105. Park, S.S.; Bauer, G.; Abedi, M.; Pontow, S.; Panorgias, A.; Jonnal, R.; Zawadzki, R.J.; Werner, J.S.; Nolta, J. Intravitreal Autologous Bone Marrow CD34+ Cell Therapy for Ischemic and Degenerative Retinal Disorders: Preliminary Phase 1 Clinical Trial Findings. Investig. Opthalmol. Vis. Sci. 2014, 56, 81–89, doi:10.1167/iovs.14-15415.
    106. Jones, M.K.; Lu, B.; Girman, S.; Wang, S. Cell-based therapeutic strategies for replacement and preservation in retinal degenerative diseases. Prog. Retin. Eye Res. 2017, 58, 1–27, doi:10.1016/j.preteyeres.2017.01.004.
    107. Romanov, Y.A.; Darevskaya, A.N.; Merzlikina, N.V.; Buravkova, L.B. Mesenchymal Stem Cells from Human Bone Marrow and Adipose Tissue: Isolation, Characterization, and Differentiation Potentialities. Bull. Exp. Biol. Med. 2005, 140, 138–143, doi:10.1007/s10517-005-0430-z.
    108. Lindroos, B.; Suuronen, R.; Miettinen, S. The Potential of Adipose Stem Cells in Regenerative Medicine. Stem Cell Rev. Rep. 2010, 7, 269–291, doi:10.1007/s12015-010-9193-7.
    109. Öner, A.; Sevim, D.G. Complications of stem cell-based therapies in retinal diseases. Stem Cell Res. Open Library 2017, 1, 1–7.
    110. Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.; Krause, D.; Deans, R.; Keating, A.; Prockop, D.; Horwitz, E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006, 8, 315–317, doi:10.1080/14653240600855905.
    111. Bara, J.J.; Richards, R.G.; Alini, M.; Stoddart, M.J. Concise Review: Bone Marrow-Derived Mesenchymal Stem Cells Change Phenotype Following In Vitro Culture: Implications for Basic Research and the Clinic. Stem Cells 2014, 32, 1713–1723, doi:10.1002/stem.1649.
    112. Baddour, J.A.; Sousounis, K.; Tsonis, P.A. Organ repair and regeneration: An overview. Birth Defects Res. Part C Embryo Today Rev. 2012, 96, 1–29, doi:10.1002/bdrc.21006.
    113. Ruster, B.; Gottig, S.; Ludwig, R.J.; Bistrian, R.; Muller, S.; Seifried, E.; Gille, J.; Henschler, R. Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells. Blood 2006, 108, 3938–3944, doi:10.1182/blood-2006-05-025098.
    114. De Becker, A.; Van Hummelen, P.; Bakkus, M.; Broek, I.V.; De Wever, J.; De Waele, M.; Van Riet, I. Migration of culture-expanded human mesenchymal stem cells through bone marrow endothelium is regulated by matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-3. Haematologica 2007, 92, 440–449, doi:10.3324/haematol.10475.
    115. Luo, S.; Hao, L.; Li, X.; Yu, N.; Diao, Z.; Ren, L.; Xu, H. Adipose tissue-derived stem cells treated with estradiol enhance survival of autologous fat transplants. Tohoku J. Exp. Med. 2013, 231, 101–110, doi:10.1620/tjem.231.101.
    116. Hu, Z.-L.; Li, N.; Wei, X.; Tang, L.; Wang, T.-H.; Chen, X.-M. Neuroprotective effects of BDNF and GDNF in intravitreally transplanted mesenchymal stem cells after optic nerve crush in mice. Int. J. Ophthalmol. 2017, 10, 35–42, doi:10.18240/ijo.2017.01.06.
    117. Wang, P.; Mariman, E.; Renes, J.; Keijer, J. The secretory function of adipocytes in the physiology of white adipose tissue. J. Cell. Physiol. 2008, 216, 3–13, doi:10.1002/jcp.21386.
    118. Tilg, H.; Moschen, A.R. Adipocytokines: Mediators linking adipose tissue, inflammation and immunity. Nat. Rev. Immunol. 2006, 6, 772–783, doi:10.1038/nri1937.
    119. Nakagami, H.; Morishita, R.; Maeda, K.; Kikuchi, Y.; Ogihara, T.; Kaneda, Y. Adipose Tissue-Derived Stromal Cells as a Novel Option for Regenerative Cell Therapy. J. Atheroscler. Thromb. 2006, 13, 77–81, doi:10.5551/jat.13.77.
    120. Schäffler, A.; Buchler, C.H. Concise Review: Adipose Tissue-Derived Stromal Cells-Basic and Clinical Implications for Novel Cell-Based Therapies. Stem Cells 2007, 25, 818–827, doi:10.1634/stemcells.2006-0589.
    121. Jurk, K.; Kehrel, B.E. Platelets: Physiology and Biochemistry. Semin. Thromb. Hemost. 2005, 31, 381–392, doi:10.1055/s-2005-916671.
    122. Mishra, A.; Velotta, J.; Brinton, T.J.; Wang, X.; Chang, S.; Palmer, O.; Sheikh, A.; Chung, J.; Yang, P.C.-M.; Robbins, R.; et al. RevaTen platelet-rich plasma improves cardiac function after myocardial injury. Cardiovasc. Revascularization Med. 2011, 12, 158–163, doi:10.1016/j.carrev.2010.08.005.
    123. Qureshi, A.H.; Chaoji, V.; Maiguel, D.; Faridi, M.H.; Barth, C.J.; Salem, S.M.; Singhal, M.; Stoub, D.; Krastins, B.; Ogihara, M.; et al. Proteomic and Phospho-Proteomic Profile of Human Platelets in Basal, Resting State: Insights into Integrin Signaling. PLoS ONE 2009, 4, e7627, doi:10.1371/journal.pone.0007627.
    124. Osborne, A.; Sanderson, J.; Martin, K.R. Neuroprotective Effects of Human Mesenchymal Stem Cells and Platelet-Derived Growth Factor on Human Retinal Ganglion Cells. Stem Cells 2017, 36, 65–78, doi:10.1002/stem.2722.
    125. Lykov, A.P.; Poveshchenk, O.V.; Surovtseva, M.A.; Stanishevskaya, O.M.; Chernykh, D.V.; Arben’Eva, N.S.; Bratko, V. Autologous Plasma Enriched with Platelet Lysate for the Treatment of Idiopathic Age-Related Macular Degeneration: A Prospective Study. Ann. Russ. Acad. Med. Sci. 2018, 73, 40–48, doi:10.15690/vramn932.
    126. Arslan, U.; Özmert, E.; Demirel, S.; Örnek, F.; Şermet, F. Effects of subtenon-injected autologous platelet-rich plasma on visual functions in eyes with retinitis pigmentosa: Preliminary clinical results. Graefe’s Arch. Clin. Exp. Ophthalmol. 2018, 256, 893–908, doi:10.1007/s00417-018-3953-5.
    127. Siqueira, R.C.; Messias, A.; Gurgel, V.P.; Simões, B.P.; Scott, I.U.; Jorge, R. Improvement of ischaemic macular oedema after intravitreal injection of autologous bone marrow-derived haematopoietic stem cells. Acta Ophthalmol. 2014, 93, 174–176, doi:10.1111/aos.12473.
    128. Öner, A.; Gonen, Z.B.; Sinim, N.; Cetin, M.; Ozkul, Y. Subretinal adipose tissue-derived mesenchymal stem cell implantation in advanced stage retinitis pigmentosa: A phase I clinical safety study. Stem Cell Res. Ther. 2016, 7, 178, doi:10.1186/s13287-016-0432-y.
    129. Kahraman, N.S.; Öner, A. Umbilical cord derived mesenchymal stem cell implantation in retinitis pigmentosa: a 6-month follow-up results of a phase 3 trial. Int J Ophthalmol. 2020;13(9):1423-1429. Published 2020 Sep 18. doi:10.18240/ijo.2020.09.14
    130. Limoli, P.G.; Vingolo, E.M.; Morales, M.U.; Nebbioso, M.; Limoli, C. Preliminary Study on Electrophysiological Changes After Cellular Autograft in Age-Related Macular Degeneration. Medicine 2014, 93, e355, doi:10.1097/md.0000000000000355.
    131. Limoli, P.G.; Vingolo, E.M.; Limoli, C.; Nebbioso, M. Stem Cell Surgery and Growth Factors in Retinitis Pigmentosa Patients: Pilot Study after Literature Review. Biomedicines 2019, 7, 94, doi:10.3390/biomedicines7040094.
    132. Limoli, P.G.; Limoli, C.S.S.; Morales, M.U.; Vingolo, E.M. Mesenchymal stem cell surgery, rescue and regeneration in retinitis pigmentosa: Clinical and rehabilitative prognostic aspects. Restor. Neurol. Neurosci. 2020, 38, 1–15, doi:10.3233/RNN-190970.
    133. Limoli, P.G.; Limoli, C.; Vingolo, E.M.; Scalinci, S.Z.; Nebbioso, M. Cell surgery and growth factors in dry age-related macular degeneration: Visual prognosis and morphological study. Oncotarget 2016, 7, 46913–46923, doi:10.18632/oncotarget.10442.
    134. Limoli, P.G.; Vingolo, E.M.; Limoli, C.; Scalinci, S.Z.; Nebbioso, M. Regenerative Therapy by Suprachoroidal Cell Autograft in Dry Age-related Macular Degeneration: Preliminary In Vivo Report. J. Vis. Exp. 2018, 12, e56469, doi:10.3791/56469.
    135. Öner, A. Stem Cell Treatment in Retinal Diseases: Recent Developments. Turk. J. Ophthalmol. 2018, 48, 33–38, doi:10.4274/tjo.89972.
    136. Mok, P.L.; Leong, C.F.; Cheong, S.-K. Cellular mechanisms of emerging applications of mesenchymal stem cells. Malays. J. Pathol. 2013, 35, 17–32.
    137. Kim, K.-S.; Park, J.-M.; Kong, T.; Kim, C.; Bae, S.-H.; Kim, H.W.; Moon, J. Retinal Angiogenesis Effects of TGF-β1 and Paracrine Factors Secreted from Human Placental Stem Cells in Response to a Pathological Environment. Cell Transplant. 2016, 25, 1145–1157, doi:10.3727/096368915x688263.
    138. Zhao, P.-T.; Zhang, L.-J.; Shao, H.; Bai, L.-L.; Yu, B.; Su, C.; Dong, L.-J.; Liu, X.; Li, X.; Zhang, X. Therapeutic effects of mesenchymal stem cells administered at later phase of recurrent experimental autoimmune uveitis. Int. J. Ophthalmol. 2016, 9, 1381–1389, doi:10.18240/ijo.2016.10.03.