Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 Dietary nitrates are considered to be performance enhancing compounds easily found in our daily diet (e.g., green leafy vegetables, beetroot, radish) or via supplements. Performance related effects are connected with increased nitric oxide availability. + 1425 word(s) 1425 2020-09-16 04:26:36 |
2 format correct Meta information modification 1425 2020-09-17 04:14:33 |

Video Upload Options

Do you have a full video?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Hlinský, T.; Kumstát, M.; Vajda, P. Dietary Nitrates in Sports Nutrition. Encyclopedia. Available online: https://encyclopedia.pub/entry/2047 (accessed on 19 April 2024).
Hlinský T, Kumstát M, Vajda P. Dietary Nitrates in Sports Nutrition. Encyclopedia. Available at: https://encyclopedia.pub/entry/2047. Accessed April 19, 2024.
Hlinský, Tomáš, Michal Kumstát, Petr Vajda. "Dietary Nitrates in Sports Nutrition" Encyclopedia, https://encyclopedia.pub/entry/2047 (accessed April 19, 2024).
Hlinský, T., Kumstát, M., & Vajda, P. (2020, September 16). Dietary Nitrates in Sports Nutrition. In Encyclopedia. https://encyclopedia.pub/entry/2047
Hlinský, Tomáš, et al. "Dietary Nitrates in Sports Nutrition." Encyclopedia. Web. 16 September, 2020.
Dietary Nitrates in Sports Nutrition
Edit

Higher intake of nitrates from the diet can increase the bioavailability of nitric oxide (NO) via the nitrate–nitrite–NO pathway. Increased production of NO (e.g., in mitochondria, blood vessel cells, muscle cells) may improve physical performance. Nevertheless, the increased availability of NO via daily diet or supplementation does not always lead to improved performance in some individuals. Research observations suggest there might be fibre-type specific effects of dietary nitrates (DN) intake. It seems that ergogenicity is somehow related to the fibre-type ratio in muscles, augmenting the exercise economy and performance more likely via type II muscle fibres than type I. Therefore, more consistent and positive improvements in physical performance are usually observed in less-trained athletes (VO2max <65 mL/min/kg) or untrained. Statistically non-significant effects on performance are less likely observed in well-trained and elite endurance-trained athletes (VO2max >65 mL/min/kg). It is also essential to follow the correct supplementation plan (acute/chronic use) to enhance exercise economy or performance, whereas the chronic use of DN brings more consistent results. Nevertheless, DN offer easily available, safe and efficient ergogenic aid for some athletes who seek to improve their performance.

ergogenic aid nitrate-nitrite-nitric oxide pathway nitric oxide physical performance

1. Introduction

Nitric oxide plays a crucial role in signalling and physiological regulatory functions of the human body which are crucial to exercise economy and performance (i.e., vasodilatation, mitochondrial respiration, glucose and calcium (Ca2+) homeostasis, skeletal muscle contractility and fatigue development). Because the NO molecule is highly unstable, there is a constant need for its regeneration [1][2][3][4].

Interestingly the substrates for NO syntheses (L-arginine and nitrates) come from our daily diet and therefore can be manipulated [5]. Increased availability of NO via diet has been linked to ergogenic effects [6][7]. However, not all athletes can benefit from these nutritional strategies [8][9]. It seems the effectiveness of NO inducing foods and supplements is limited by an athlete’s training status (aerobic fitness) and muscle fibre type ratio [10].

2. NO Metabolism and Physiological Importance

Nitric oxide synthesis in the human body is carried out via two pathways: the NO synthase (NOS)-dependent pathway and nitrate–nitrite–NO (NO3–NO2–NO) pathway [11]. Formation of NO via the NOS-dependent pathway is carried out through the utilisation of L-arginine and oxygen (O2). Thus, this reaction relies on the delivery of O2 [12]. Insufficient O2 delivery during high-intensity exercise may cause this pathway to become dysfunctional [13]. Therefore, the O2-independent pathway can substitute NO production [14] via the reduction of NO3 from the diet (e.g., green leafy vegetables, beetroot, radish) [15]. Nitrates are reduced by oral anaerobic bacteria to NO2 [16]. Subsequently, part of the total NO2 is reduced to NO in the acidic environment of the stomach where it protects the organism from some pathogens [17]. The rest of the NO2 is then transported via the upper gastrointestinal tract into the blood reaching its plasma peak level 2–3 h postprandially [18]. The reduction of NO2 to NO substitutes the O2-dependent NOS pathway in various tissues under hypoxic or acidic conditions [19]. These are conditions that typically occur in working muscles during vigorous exercise [20].

Increased NO bioavailability via food or supplements may increase exercise performance, as it is the critical factor in three physiological mechanisms related to physical exercise. Firstly, NO increases skeletal muscle O2 delivery via vasodilatation [21]. Secondly, it reduces the O2 cost of mitochondrial ATP resynthesis via an increased number of ATP molecules (P) formed per O2 molecules consumed (O) in the electron transport chain (P/O ratio) [22], possibly via the interaction with five-coordinated cytochrome C oxidase [23][24]. Lastly, it improves the efficiency of muscle contractility via reduced creatine phosphate (PCr) cost of force production [25] and changes in Ca2+ metabolism within the muscle cells [26]. Enhancing these physiological mechanisms leads to more efficient energy metabolism, lower O2 demands of the working muscles and higher muscle contractility [26] and therefore an increase in exercise economy and performance [1][22][25].

3. The Role of Dietary Nitrates in Exercise Physiology

Dietary nitrates have become a trendy topic in sports nutrition as even minor enhancement of human physiology may positively affect high-intensity exercise and, therefore, competition results. For example, there may be a decrease in the time of time-trial physical activities [27]. It is also important to note that these changes seem to be highly related to the dosage and supplementation protocol where exercise economy can be improved after a single dose of DN [28][29][30][31][32][33], but exercise performance is more likely augmented after chronic use of DN [34][35][36]. Interestingly, it seems ergogenicity is somehow related to the fibre-type ratio in muscles, augmenting the exercise economy and performance more likely via type II muscle fibres (MFs) than type I [37].

During high-intensity exercise, oxidative phosphorylation is diminished as the O2 supply is inadequate, and reliance on the anaerobic metabolic pathway of ATP regeneration is favoured [38]. Long-duration high-intensity exercise and intermittent high-intensity exercise lead to exercise-induced hypoxemia causing the muscles to become hypoxic and acidic [39]. This impairment in homeostasis may also disrupt the functioning of the NOS-dependent pathway, and continuation of exercise is highly dependent on the activity of type II MFs [40][41]. Therefore, the reliance on the substitutional NO3–NO2–NO pathway independent of O2 supply is increased [40][42]. Moreover, type II MFs have a lower blood supply which affects the partial pressure of O2 within the microvasculature (PmvO2) causing a lower O2 supply compared to type I MFs [43][44][45]. This phenomenon underlines the reliance on the NO3–NO2–NO pathway in type II MFs and even more under hypoxia [24][46]. Lastly, most recent studies suggest improvement in muscle force production and mitochondrial oxidative phosphorylation are more likely observed in type II MFs than in type I MFs after DN supplementation [47][48].

Furthermore, it has already been suggested in earlier studies that neither acute nor chronic DN supplementation can improve performance in highly trained cyclists [49][50][51], runners [52][53] or cross-country skiers [54]. These groups of endurance-trained athletes tend to have a higher type I MF ratio [55][56][57]. In contrast, high doses of DN (8.4–9.6 mmol) improved performance in highly trained kayakers and rowers [29][58] but not low doses (~4–5 mmol) [29][59]. In this context, the upper body muscles (e.g., biceps brachii, triceps brachii, deltoid, trapezius or latissimus dorsi) are well described as muscles with a higher type II MF ratio [60][61][62]. Moreover, as highly trained athletes develop specific adaptation to rowing [63] and kayaking [64], increased type II MF ratio or MF hypertrophy is more likely [65]. This exercise modality, which mostly involves muscle groups with a higher type II MF ratio [65], can be another example of the fibre-type specific effects of DN [37][66].

4. Training Status as a Limiting Factor

Nutritional strategies to increase the bioavailability of NO and possibly physical performance have been under the scope of research for many years, and there are some crucial variables (e.g., muscle fibre-type ratio, physiological limitations) which can influence their effectiveness [8][67]. Consumption of DN in the form of either nitrate-rich foods or supplements generally increases plasma levels of NO2 [28] which interestingly does not always lead to improvement in exercise performance especially in well-trained endurance and elite endurance athletes [68].

Fibre-type specific effects of DN supplementation have been demonstrated in animal experiments where muscle force development increased in type II (fast-twitch glycolytic fibres type IIx) but not in type I MFs (slow-twitch oxidative fibres) [34]. Reliance on the NO3–NO2–NO pathway is higher in type II MFs due to the lower O2 tension (pO2) than in type I [43]. Therefore, an increase in the bioavailability of NO mainly affects type II MFs [37]. Endurance-trained athletes are likely to have a higher ratio of slow oxidative type I MFs compared to non-trained and recreationally active athletes [69] or the inactive population and the elderly [70]. This phenomenon also relates to higher aerobic fitness in highly and elite trained athletes which cannot be augmented any further [68]. These seem to be possible explanations for the lower ergogenicity of DN supplementation in highly trained or elite athletes, as some studies failed to enhance the performance of the participants [52][71]. It has been suggested that the efficiency of DN supplementation is related to an athlete’s training status, especially in high-intensity endurance exercises, e.g., time-trial performance, where O2 delivery is impaired and reliance on type II MFs is higher [68].

Significant beneficial effects of DN intake in elite endurance athletes are less likely to be observed. This athletic group demonstrated a high proportion of type I MFs, elite exercise performance close to the athlete’s physiological limits or NO3-mediated vasodilation in non-prioritized muscles which may lead to reduced O2 delivery to the essential muscles working very close to their maximal cardiac output [69]. All these factors are now suggested as potential causes of the lower ergogenicity in highly trained athletes.

References

  1. Jones, A.M.; Thompson, C.; Wylie, L.J.; Vanhatalo, A. Dietary nitrate and physical performance. Annu. Rev. Nutr. 2018, 38, 303–328, doi:10.1146/annurev-nutr-082117-051622.
  2. Murad, F. Discovery of some of the biological effects of nitric oxide and its role in cell signaling. Biosci. Rep. 1999, 19, 133–154, doi:10.1023/A:1020265417394.
  3. Ignarro, L.J. Nitric oxide: A unique endogenous signaling molecule in vascular biology. Biosci. Rep. 1999, 19, 51–71, doi:10.1023/A:1020150124721.
  4. Furchgott, R.F. Endothelium-derived relaxing factor: Discovery, early studies, and identification as nitric oxide. Biosci. Rep. 1999, 19, 235–251, doi:10.1023/A:1020537506008.
  5. Clifford, T.; Howatson, G.; West, D.J.; Stevenson, E.J. The potential benefits of red beetroot supplementation in health and disease. Nutrients 2015, 7, 2801–2822, doi:10.3390/nu7042801.
  6. Burke, L.M. Practical issues in evidence-based use of performance supplements: Supplement interactions, repeated use and individual responses. Sports Med. 2017, 47, 79–100, doi:10.1007/s40279-017-0687-1.
  7. Peeling, P.; Castell, L.M.; Derave, W.; de Hon, O.; Burke, L.M. Sports foods and dietary supplements for optimal function and performance enhancement in track-and-field athletes. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 198–209, doi:10.1123/ijsnem.2018-0271.
  8. Vitale, K.; Getzin, A. Nutrition and supplement update for the endurance athlete: Review and recommendations. Nutrients 2019, 11, 1289, doi:10.3390/nu11061289.
  9. Hord, N.G.; Tang, Y.; Bryan, N.S. Food sources of nitrates and nitrites: The physiologic context for potential health benefits. Am. J. Clin. Nutr. 2009, 90, 1–10, doi:10.3945/ajcn.2008.27131.
  10. Jonvik, K.L.; Nyakayiru, J.; van Loon, L.J.C.; Verdijk, L.B. Can elite athletes benefit from dietary nitrate supplementation? J. Appl. Physiol. 2015, 119, 759–761, doi:10.1152/japplphysiol.00232.2015.
  11. Murad, F. Nitric oxide and cyclic GMP in cell signaling and drug development. N. Engl. J. Med. 2006, 355, 2003–2011, doi:10.1056/NEJMsa063904.
  12. Rhodes, P.M.; Leone, A.M.; Francis, P.L.; Struthers, A.D.; Moncada, S. The L-arginine: Nitric oxide pathway is the major source of plasma nitrite in fasted humans. Biochem. Biophys. Res. Commun. 1995, 209, 590–596, doi:10.1006/bbrc.1995.1541.
  13. Lundberg, J.O.; Carlström, M.; Larsen, F.J.; Weitzberg, E. Roles of dietary inorganic nitrate in cardiovascular health and disease. Cardiovasc. Res. 2011, 89, 525–532, doi:10.1093/cvr/cvq325.
  14. Kapil, V.; Weitzberg, E.; Lundberg, J.O.; Ahluwalia, A. Clinical evidence demonstrating the utility of inorganic nitrate in cardiovascular health. Nitric Oxide 2014, 38, 45–57, doi:10.1016/j.niox.2014.03.162.
  15. Lidder, S.; Webb, A.J. Vascular effects of dietary nitrate (as found in green leafy vegetables and beetroot) via the nitrate‐nitrite‐nitric oxide pathway. Br. J. Clin. Pharmacol. 2013, 75, 677–696, doi:10.1111/j.1365-2125.2012.04420.x.
  16. Duncan, C.; Dougall, H.; Johnston, P.; Green, S.; Brogan, R.; Leifert, C.; Smith, L.; Golden, M.; Benjamin, N. Chemical generation of nitric oxide in the mouth from the enterosalivary circulation of dietary nitrate. Nat. Med. 1995, 1, 546, doi:10.1038/nm0695-546.
  17. Benjamin, N.; O’Driscoll, F.; Dougall, H.; Duncan, C.; Smith, L.; Golden, M.; McKenzie, H. Stomach NO synthesis. Nature 1994, 368, 502, doi:10.1038/368502a0.
  18. James, P.E.; Willis, G.R.; Allen, J.D.; Winyard, P.G.; Jones, A.M. Nitrate pharmacokinetics: Taking note of the difference. Nitric Oxide 2015, 48, 44–50, doi:10.1016/j.niox.2015.04.006.
  19. Lundberg, J.O.; Weitzberg, E. NO generation from inorganic nitrate and nitrite: Role in physiology, nutrition and therapeutics. Arch. Pharm. Res. 2009, 32, 1119–1126, doi:10.1007/s12272-009-1803-z.
  20. Domínguez, R.; Maté-Muñoz, J.L.; Cuenca, E.; García-Fernández, P.; Mata-Ordoñez, F.; Lozano-Estevan, M.C.; Veiga-Herreros, P.; da Silva, S.F.; Garnacho-Castaño, M.V. Effects of beetroot juice supplementation on intermittent high-intensity exercise efforts. J. Int. Soc. Sports Nutr. 2018, 15, 2, doi:10.1186/s12970-017-0204-9.
  21. Moncada, S.; Higgs, A. The L-arginine-nitric oxide pathway. N. Engl. J. Med. 1993, 329, 2002–2012, doi:10.1056/NEJM199312303292706.
  22. Larsen, F.J.; Schiffer, T.A.; Borniquel, S.; Sahlin, K.; Ekblom, B.; Lundberg, J.O.; Weitzberg, E. Dietary inorganic nitrate improves mitochondrial efficiency in humans. Cell Metab. 2011, 13, 149–159, doi:10.1016/j.cmet.2011.01.004.
  23. Sarti, P.; Forte, E.; Mastronicola, D.; Giuffrè, A.; Arese, M. Cytochrome c oxidase and nitric oxide in action: Molecular mechanisms and pathophysiological implications. Biochim. Biophys. Acta 2012, 1817, 610–619, doi:10.1016/j.bbabio.2011.09.002.
  24. Van Faassen, E.E.; Bahrami, S.; Feelisch, M.; Hogg, N.; Kelm, M.; Kim‐Shapiro, D.B.; Kozlov, A.V.; Li, H.; Lundberg, J.O.; Mason, R.; et al. Nitrite as regulator of hypoxic signaling in mammalian physiology. Med. Res. Rev. 2009, 29, 683–741, doi:10.1002/med.20151.
  25. Bailey, S.J.; Fulford, J.; Vanhatalo, A.; Winyard, P.G.; Blackwell, J.R.; DiMenna, F.J.; Wilkerson, D.P.; Benjamin, N.; Jones, A.M. Dietary nitrate supplementation enhances muscle contractile efficiency during knee-extensor exercise in humans. J. Appl. Physiol. 2010, 109, 135–148, doi:10.1152/japplphysiol.00046.2010.
  26. Coggan, A.R.; Peterson, L.R. Dietary nitrate enhances the contractile properties of human skeletal muscle. Exerc. Sport Sci. Rev. 2018, 46, 254–261, doi:10.1249/JES.0000000000000167.
  27. Rokkedal-Lausch, T.; Franch, J.; Poulsen, M.K.; Thomsen, L.P.; Weitzberg, E.; Kamavuako, E.N.; Karbing, D.S.; Larsen, R.G. Chronic high-dose beetroot juice supplementation improves time trial performance of well-trained cyclists in normoxia and hypoxia. Nitric Oxide Biol. Chem. 2019, 85, 44–52, doi:10.1016/j.niox.2019.01.011.
  28. Wylie, L.J.; Kelly, J.; Bailey, S.J.; Blackwell, J.R.; Skiba, P.F.; Winyard, P.G.; Jeukendrup, A.E.; Vanhatalo, A.; Jones, A.M. Beetroot juice and exercise: Pharmacodynamic and dose-response relationships. J. Appl. Physiol. 2013, 115, 325–336, doi:10.1152/japplphysiol.00372.2013.
  29. Hoon, M.W.; Jones, A.M.; Johnson, N.A.; Blackwell, J.R.; Broad, E.M.; Lundy, B.; Rice, A.J.; Burke, L.M. The effect of variable doses of inorganic nitrate-rich beetroot juice on simulated 2,000-m rowing performance in trained athletes. Int. J. Sports Physiol. Perform. 2014, 9, 615–620, doi:10.1123/ijspp.2013-0207.
  30. Vanhatalo, A.; Bailey, S.J.; Blackwell, J.R.; DiMenna, F.J.; Pavey, T.G.; Wilkerson, D.P.; Benjamin, N.; Winyard, P.G.; Jones, A.M. Acute and chronic effects of dietary nitrate supplementation on blood pressure and the physiological responses to moderate-intensity and incremental exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 299, R1121–R1131, doi:10.1152/ajpregu.00206.2010.
  31. Wylie, L.J.; Ortiz de Zevallos, J.; Isidore, T.; Nyman, L.; Vanhatalo, A.; Bailey, S.J.; Jones, A.M. Dose-dependent effects of dietary nitrate on the oxygen cost of moderate-intensity exercise: Acute vs. chronic supplementation. Nitric Oxide 2016, 57, 30–39, doi:10.1016/j.niox.2016.04.004.
  32. Thompson, K.G.; Turner, L.; Prichard, J.; Dodd, F.; Kennedy, D.O.; Haskell, C.; Blackwell, J.R.; Jones, A.M. Influence of dietary nitrate supplementation on physiological and cognitive responses to incremental cycle exercise. Respir. Physiol. Neurobiol. 2014, 193, 11–20, doi:10.1016/j.resp.2013.12.015.
  33. Muggeridge, D.J.; Sculthorpe, N.; Grace, F.M.; Willis, G.; Thornhill, L.; Weller, R.B.; James, P.E.; Easton, C. Acute whole body UVA irradiation combined with nitrate ingestion enhances time trial performance in trained cyclists. Nitric Oxide 2015, 48, 3–9, doi:10.1016/j.niox.2014.09.158.
  34. Hernández, A.; Schiffer, T.A.; Ivarsson, N.; Cheng, A.J.; Bruton, J.D.; Lundberg, J.O.; Weitzberg, E.; Westerblad, H. Dietary nitrate increases tetanic [Ca2+]i and contractile force in mouse fast-twitch muscle. J. Physiol. 2012, 590, 3575–3583, doi:10.1113/jphysiol.2012.232777.
  35. Haider, G.; Folland, J.P. Nitrate supplementation enhances the contractile properties of human skeletal muscle. Med. Sci. Sports Exerc. 2014, 46, 2234–2243, doi:10.1249/MSS.0000000000000351.
  36. Whitfield, J.; Gamu, D.; Heigenhauser, G.J.F.; van Loon, L.J.C.; Spriet, L.L.; Tupling, A.R.; Holloway, G.P. Beetroot juice increases human muscle force without changing Ca2+-handling proteins. Med. Sci. Sports Exerc. 2017, 49, 2016–2024, doi:10.1249/MSS.0000000000001321.
  37. Jones, A.M.; Ferguson, S.K.; Bailey, S.J.; Vanhatalo, A.; Poole, D.C. Fiber Type-Specific Effects of Dietary Nitrate. Exerc. Sport Sci. Rev. 2016, 44, 53, doi:10.1249/JES.0000000000000074.
  38. Sussman, I.; Erecińska, M.; Wilson, D.F. Regulation of cellular energy metabolism. The Crabtree effect. Biochim. Biophys. Acta Bioenerg. 1980, 591, 209–223, doi:10.1016/0005-2728(80)90153-X.
  39. Nourry, C.; Fabre, C.; Bart, F.; Grosbois, J.-M.; Berthoin, S.; Mucci, P. Evidence of exercise-induced arterial hypoxemia in prepubescent trained children. Pediatr. Res. 2004, 55, 674–681, doi:10.1203/01.PDR.0000114481.58902.FB.
  40. Lundberg, J.O.; Weitzberg, E. NO-synthase independent NO generation in mammals. Biochem. Biophys. Res. Commun. 2010, 396, 39–45, doi:10.1016/j.bbrc.2010.02.136.
  41. Modin, A.; Björne, H.; Herulf, M.; Alving, K.; Weitzberg, E.; Lundberg, J.O. Nitrite-derived nitric oxide: A possible mediator of “acidic-metabolic” vasodilation. Acta Physiol. Scand. 2001, 171, 9–16, doi:10.1046/j.1365-201X.2001.00771.x.
  42. Lundberg, J.O.; Weitzberg, E.; Gladwin, M.T. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat. Rev. Drug Discov. 2008, 7, 156–167, doi:10.1038/nrd2466.
  43. Behnke, B.J.; McDonough, P.; Padilla, D.J.; Musch, T.I.; Poole, D.C. Oxygen exchange profile in rat muscles of contrasting fibre types. J. Physiol. 2003, 549, 597–605, doi:10.1113/jphysiol.2002.035915.
  44. McDonough, P.; Behnke, B.J.; Padilla, D.J.; Musch, T.I.; Poole, D.C. Control of microvascular oxygen pressures in rat muscles comprised of different fibre types. J. Physiol. 2005, 563, 903–913, doi:10.1113/jphysiol.2004.079533.
  45. Ferreira, L.F.; McDonough, P.; Behnke, B.J.; Musch, T.I.; Poole, D.C. Blood flow and O2 extraction as a function of O2 uptake in muscles composed of different fiber types. Respir. Physiol. Neurobiol. 2006, 153, 237–249, doi:10.1016/j.resp.2005.11.004.
  46. Vanin, A.F.; Bevers, L.M.; Slama-Schwok, A.; van Faassen, E.E. Nitric oxide synthase reduces nitrite to NO under anoxia. Cell. Mol. Life Sci. 2007, 64, 96–103, doi:10.1007/s00018-006-6374-2.
  47. Bailey, S.J.; Varnham, R.L.; DiMenna, F.J.; Breese, B.C.; Wylie, L.J.; Jones, A.M. Inorganic nitrate supplementation improves muscle oxygenation, O₂ uptake kinetics, and exercise tolerance at high but not low pedal rates. J. Appl. Physiol. 2015, 118, 1396–1405, doi:10.1152/japplphysiol.01141.2014.
  48. Coggan, A.R.; Leibowitz, J.L.; Kadkhodayan, A.; Thomas, D.P.; Ramamurthy, S.; Spearie, C.A.; Waller, S.; Farmer, M.; Peterson, L.R. Effect of acute dietary nitrate intake on maximal knee extensor speed and power in healthy men and women. Nitric Oxide 2015, 48, 16–21, doi:10.1016/j.niox.2014.08.014.
  49. Cermak, N.M.; Res, P.; Stinkens, R.; Lundberg, J.O.; Gibala, M.J.; van Loon, L.J.C. No improvement in endurance performance after a single dose of beetroot juice. Int. J. Sport Nutr. Exerc. Metab. 2012, 22, 470–478, doi:10.1123/ijsnem.22.6.470.
  50. Christensen, P.M.; Nyberg, M.; Bangsbo, J. Influence of nitrate supplementation on VO₂ kinetics and endurance of elite cyclists. Scand. J. Med. Sci. Sports 2013, 23, e21–e31, doi:10.1111/sms.12005.
  51. Mosher, S.L.; Gough, L.A.; Deb, S.; Saunders, B.; Naughton, L.R.M.; Brown, D.R.; Sparks, S.A. High dose Nitrate ingestion does not improve 40 km cycling time trial performance in trained cyclists. Res. Sports Med. 2020, 28, 138–146, doi:10.1080/15438627.2019.1586707.
  52. Boorsma, R.K.; Whitfield, J.; Spriet, L.L. Beetroot juice supplementation does not improve performance of elite 1500-m runners. Med. Sci. Sports Exerc. 2014, 46, 2326–2334, doi:10.1249/MSS.0000000000000364.
  53. Bescós, R.; Ferrer-Roca, V.; Galilea, P.A.; Roig, A.; Drobnic, F.; Sureda, A.; Martorell, M.; Cordova, A.; Tur, J.A.; Pons, A. Sodium nitrate supplementation does not enhance performance of endurance athletes. Med. Sci. Sports Exerc. 2012, 44, 2400–2409, doi:10.1249/MSS.0b013e3182687e5c.
  54. Peacock, O.; Tjønna, A.E.; James, P.; Wisløff, U.; Welde, B.; Böhlke, N.; Smith, A.; Stokes, K.; Cook, C.; Sandbakk, Ø. Dietary nitrate does not enhance running performance in elite cross-country skiers. Med. Sci. Sports Exerc. 2012, 44, 2213–2219, doi:10.1249/MSS.0b013e3182640f48.
  55. Coyle, E.F.; Feltner, M.E.; Kautz, S.A.; Hamilton, M.T.; Montain, S.J.; Baylor, A.M.; Abraham, L.D.; Petrek, G.W. Physiological and biomechanical factors associated with elite endurance cycling performance. Med. Sci. Sports Exerc. 1991, 23, 93–107.
  56. Jeukendrup, A.E.; Craig, N.P.; Hawley, J.A. The bioenergetics of world class cycling. J. Sci. Med. Sport 2000, 3, 414–433, doi:10.1016/S1440-2440(00)80008-0.
  57. Yan, Z.; Okutsu, M.; Akhtar, Y.N.; Lira, V.A. Regulation of exercise-induced fiber type transformation, mitochondrial biogenesis, and angiogenesis in skeletal muscle. J. Appl. Physiol. 2010, 110, 264–274, doi:10.1152/japplphysiol.00993.2010.
  58. Peeling, P.; Cox, G.R.; Bullock, N.; Burke, L.M. Beetroot juice improves on-water 500 M time-trial performance, and laboratory-based paddling economy in national and international-level kayak athletes. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 278–284, doi:10.1123/ijsnem.2014-0110.
  59. Muggeridge, D.J.; Howe, C.C.F.; Spendiff, O.; Pedlar, C.; James, P.E.; Easton, C. The effects of a single dose of concentrated beetroot juice on performance in trained flatwater kayakers. Int. J. Sport Nutr. Exerc. Metab. 2013, 23, 498–506, doi:10.1123/ijsnem.23.5.498.
  60. Johnson, M.A.; Polgar, J.; Weightman, D.; Appleton, D. Data on the distribution of fibre types in thirty-six human muscles. An autopsy study. J. Neurol. Sci. 1973, 18, 111–129, doi:10.1016/0022-510X(73)90023-3.
  61. Polgar, J.; Johnson, M.A.; Weightman, D.; Appleton, D. Data on fibre size in thirty-six human muscles: An autopsy study. J. Neurol. Sci. 1973, 19, 307–318, doi:10.1016/0022-510X(73)90094-4.
  62. Jennekens, F.G.I.; Tomlinson, B.E.; Walton, J.N. The sizes of the two main histochemical fibre types in five limb muscles in man: An autopsy study. J. Neurol. Sci. 1971, 13, 281–292, doi:10.1016/0022-510X(71)90033-5.
  63. Roth, W.; Schwanitz, P.; Pas, P.; Bauer, P. Force-time characteristics of the rowing stroke and corresponding physiological muscle adaptations. Int. J. Sports Med. 1993, 14, S32–S34, doi:10.1055/s-2007-1021221.
  64. Shephard, R.J. Science and medicine of canoeing and kayaking. Sports Med. 1987, 4, 19–33, doi:10.2165/00007256-198704010-00003.
  65. Steinacker, J. Physiological aspects of training in rowing. Int. J. Sports Med. 1993, 14 (Suppl. 1), S3.
  66. Wylie, L.J.; Park, J.W.; Vanhatalo, A.; Kadach, S.; Black, M.I.; Stoyanov, Z.; Schechter, A.N.; Jones, A.M.; Piknova, B. Human skeletal muscle nitrate store: Influence of dietary nitrate supplementation and exercise. J. Physiol. 2019, 597, 5565–5576, doi:10.1113/JP278076.
  67. Bryan, N.S.; Ivy, J.L. Inorganic nitrite and nitrate: Evidence to support consideration as dietary nutrients. Nutr. Res. 2015, 35, 643–654, doi:10.1016/j.nutres.2015.06.001.
  68. Porcelli, S.; Ramaglia, M.; Bellistri, G.; Pavei, G.; Pugliese, L.; Montorsi, M.; Rasica, L.; Marzorati, M. Aerobic fitness affects the exercise performance responses to nitrate supplementation. Med. Sci. Sports Exerc. 2015, 47, 1643–1651, doi:10.1249/MSS.0000000000000577.
  69. Tesch, P.A.; Karlsson, J. Muscle fiber types and size in trained and untrained muscles of elite athletes. J. Appl. Physiol. 1985, 59, 1716–1720, doi:10.1152/jappl.1985.59.6.1716.
  70. Proctor, D.N.; Sinning, W.E.; Walro, J.M.; Sieck, G.C.; Lemon, P.W. Oxidative capacity of human muscle fiber types: Effects of age and training status. J. Appl. Physiol. 1995, 78, 2033–2038, doi:10.1152/jappl.1995.78.6.2033.
  71. McQuillan, J.A.; Dulson, D.K.; Laursen, P.B.; Kilding, A.E. Dietary nitrate fails to improve 1 and 4 km cycling performance in highly trained cyclists. Int. J. Sport Nutr. Exerc. Metab. 2017, 27, 255–263, doi:10.1123/ijsnem.2016-0212.
More
Information
Contributors MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register : , ,
View Times: 759
Revisions: 2 times (View History)
Update Date: 17 Sep 2020
1000/1000