1000/1000
Hot
Most Recent
Wearable sensors are beneficial for continuous health monitoring, movement analysis, rehabilitation, evaluation of human performance. Wearable stretch sensors are increasingly being used for human movement monitoring. The content presented provides a review of wearable stretch sensors as well the design, development and validation of a wearable soft-robotic-stretch sensors.
The wearable stretch sensors (WSS) have numerous applications that involve motion capture studies. For body strain measurements, these can be integrated onto clothing or directly laminated on human skin. Measurements ranging from minute skin motions induced by respiration and heartbeat to more significant human body strains like the bending or straightening of body joints can be obtained[1][2]. The information obtained from these sensors can be used to evaluate body movements, posture, and performance of the player during sports activities[2][3]. The information recorded could be useful for monitoring the body performance and wellness analysis of an individual. Another application of WSS involves mounting them on the knee joint[1][4][5]. This helps in gaining information about different knee patterns, such as walking, running, jumping, squatting, and various other activities. WSS are beneficial for continuous health monitoring, rehabilitation, and the evaluation of human performance.
A brief review of a variety of such WSS and skin-mounted sensors with their broad applications in human motion detection have been summarized in Table 1. The review table surveys various studies conducted on the application of WSS that include both resistive and capacitive types of sensors. The table highlights the potential application of these wearable sensors as motion-capturing devices and comprises of a review of human movement monitoring, gait analysis, and other movement-based applications using such WSS. Table 1 also includes information about the current challenges and limitations in the use of skin mountable and wearable sensors for body-integrated applications[6][7][8][9][10][11][12][13][14][15][16][17][18][19].
Table 1. A review of different studies assessing human movement with the use of wearable stretch sensors with descriptions of the study applications, tests conducted, and findings, as well as limitations and future scope.
While several wearable devices that incorporate different types of sensor technology exist for fall detection, they have their own limitations, such as inertial measurement unit (IMU) distortion, reliability, and high financial costs[20][21]. Moreover, there is a constant need for the design and development of novel wearable technology to combat the increasing threat of falls and fall-related injuries in occupational settings. Our research team was tasked with the design and development of a wearable device using soft-robotic stretch (SRS) sensors capable of capturing the human joint movement kinematics, specifically at the ankle joint in the lower extremity. The research team has since then published a series of five papers under the “Closing the Wearable Gap” series: Part I to Part V[22][23][24][25][26], which discuss the design, development, and testing of the foot and ankle wearable device. Specifically, the Parts I and II papers tested the reliability and feasibility of using SRS on both a mechanical ankle joint device and on human participants[22][23]. The SRS are thin strap-like electronic sensors that produce a linear change in voltage recorded either in resistance (LiquidWire, Beaverton, Oregon, USA) or capacitance (StretchSense, Auckland, NZ, USA) when they are stretched (Figure 1). Subsequently, when the SRS were fixed on the anterior, posterior, medial, and lateral sides of the foot and ankle segments spanning across the ankle joint axis, they stretch during all four degrees of freedom of the ankle joint, plantar flexion, dorsiflexion, eversion, and inversion movements, respectively. The change in voltage was correlated to the change in the ankle joint range of motion angles using traditional electric goniometers as well as using the gold standard 3D motion capture system. The results from these papers identified significant linear models and validated with significant goodness-of-fit when compared to the gold standard 3D motion capture system[22][23]. The linearity of the stretch from the SRS was reported to have an R2 value of 0.99 in the Part I paper and an R2 value of 0.95–0.99 in the Part II paper. Thus, the Parts I and II papers (Figure 2) demonstrated that the SRS sensors could be used as a potential wearable device to detect ankle joint kinematics in both sagittal and frontal movements of plantar flexion/dorsiflexion and inversion/eversion movements, respectively. However, the movements in these two studies were performed one at a time from a static, non-weight-bearing condition. The need for assessing the use of SRS sensors in dynamic movements, especially fall detection, was necessary. The critical advancement of studies exploring more complex movements lead to the Parts III, IV, and V papers (Figure 2)[24][25][26], the next projects investigated by the research team, which are explained further with in-context of WSS in fall detection, their applications, limitations, and future scope.
Figure 1. Different wearable stretch sensors used by the current research team. From left to right: (1) StretchSense Pressure Sensor, (2) StretchSense Displacement Sensor, (3) LiquidWire Flocked Sensor, (4) LiquidWire Silicone Sensor, and (5) LiquidWire Elastic Sensor.
Figure 2. A pictorial representation of past and future works from the “Closing the Wearable Gap” (CWG) journal article series (Parts I to V). (1) CWG Part I—Mobile Systems for Kinematic Signal Monitoring of the Foot and Ankle, (2) CWG Part II—Sensor Orientation and Placement for Foot and Ankle Joint Kinematic Measurements, (3) CWG Part III—Use of Stretch Sensors in Detecting Ankle Joint Kinematics during Unexpected & Expected, Slip & Trip Perturbations, (4) CWG Part IV—3D Motion Capture Cameras Versus Soft Robotic Sensors Comparison of Gait Movement Assessment, (5) CWG Part V—Development of Pressure-Sensitive Sock Utilizing Soft Sensors, and (6) CWG—future iteration of an ankle sock concept to monitor human movement.
Although different types of sensors are being used for fall monitoring and detection, the placement of these sensors on the human body have been limited predominantly to the torso and lower extremities[27], and body-worn sensors used for fall detection have also been traditionally placed on the waist/hip or as trunk attachments[27]. Occasionally, wearable sensors such as accelerometers that are placed on the head and neck have also been utilized that detect the acceleration changes of the head in the event of falls[28]. However, based on the postural stability model suggested by Winter (1995), the human body is considered as an inverted pendulum, with the axis of rotation pivoted at the ankle joint[29]. Subsequently, placing the SRS sensors across the ankle joint axis allows the researchers to monitor the kinematics of the ankle joint complex from an inverted pendulum model aspect. The SRS sensors placed on the anterior aspect of the feet stretches during plantar flexion, while the one placed on the posterior aspect of the feet stretches during dorsiflexion. Similarly, the SRS sensor on the lateral aspect of the ankle stretches during inversion, and the one on the medial aspect stretches during eversion. Correlating the linear change in voltage due to the stretch of the SRS with changes in the ankle joint range of motion in degrees quantified using 3D motion capture enables constant monitoring of ankle joint kinematics during human physical activity.