Linc-ROR in Cancer and Disease: History
Please note this is an old version of this entry, which may differ significantly from the current revision.
Contributor: , , , , , , , ,

Cancer is responsible for more than 10 million deaths every year. Metastasis and drug resistance lead to a poor survival rate and are a major therapeutic challenge. Substantial evidence demonstrates that an increasing number of long non-coding RNAs are dysregulated in cancer, including the long intergenic non-coding RNA, regulator of reprogramming (linc-ROR), which mostly exerts its role as an onco-lncRNA acting as a competing endogenous RNA that sequesters micro RNAs.

  • linc-ROR
  • lincRNA-ROR
  • lncRNA
  • cancer progression
  • cancer

1. Introduction

Cancer is a group of multifactorial diseases responsible for at least 10 million deaths around the world in 2020 alone [1]. Human cancer diversity exceeds the 200 types, observing clear differences among the origin of cells, acquisition of somatic mutations, variability in altered transcription pathways, and influences in the microenvironment of local tissues [2]. As cancer advances, new mutations produce a greater genetic heterogeneity to form the primary tumor, eventually eroding the basal membrane and spreading to other regions via the circulatory system [3][4]. This event is called metastasis and proposes a challenge to scientists and clinicians since its occurrence leads to a high recurrence and poor survival rate. Chemotherapy is a very common treatment for cancer patients, but unfortunately, most tumors exert drug resistance, resulting in around 90% of deaths in cancer patients [5]. Epigenetic processes such as DNA methylation, histone acetylation, and lncRNA interaction regulate drug transporters and metabolic enzymes, thus promoting cancer chemoresistance [6].
A vast collection of evidence shows that only 2% of the transcribed human genome codes for proteins, whereas the remaining 98% of RNAs are non-coding [7][8]. Recent advances in sequencing technology have shifted the prior assumption that non-coding RNA (ncRNA) was a “junk” transcriptional product to transcripts comprising signals that control gene expression and are essential both in normal physiological function and in disease [8][9].
Since the discovery of small regulatory ncRNAs in the 1990s, substantial progress has been made to catalog a rapidly increasing number of both short and long ncRNAs [10]. MicroRNA (miRNA), long non-coding RNA (lncRNA), circular RNA (circRNA), and PIWI interacting RNA (piRNA) are the four major ncRNA types with distinct functions in cancer [11]. While miRNAs usually bind to targeted mRNA to degrade it [12][13], lncRNAs regulate gene expression by exerting multiple mechanisms including the recruitment of polymerase II and diverse transcription factors [14][15], regulating alternative splicing of pre-mRNAs [16][17], sequestering miRNAs to prevent them from performing their function [18][19][20] or acting as a scaffold on protein–protein interactions [21][22][23].

2. Overview of Long Non-Coding RNAs

Long non-coding RNAs (lncRNAs), also known as competing endogenous RNAs (ceRNAs) [24], are a heterogeneous RNA family that comprise transcripts of 200 nucleotides or longer and are coded in the genome but not translated into proteins [25][26]. According to GENCODE, more than 56,000 lncRNA transcripts in almost 19,000 genes have been identified in humans [27]. Recent evidence suggests that lncRNAs are implicated in several cancer progression mechanisms including proliferation [28][29], differentiation [30][31], autophagy [32][33], epithelial–mesenchymal transition (EMT) [34], invasion [35][36][37], and metastasis [38][39]. LncRNAs are often found as modulators of signaling cascades at the epigenetic, transcriptional, posttranscriptional, translational, or posttranslational levels [40]. Cancer-controlling lncRNAs are classified as proto-oncogenic or tumor suppressors based on their function, being the tumorigenic lncRNAs expressed as cancer drivers that activate the cell cycle and exert anti-apoptosis effects [41]. On the other hand, tumor suppressors are generally downregulated in tumor biopsies, and evidence suggests that overexpression of these lncRNAs halts some of the cancer mechanisms [40].
Based on their structural origin and relative position to protein-coding genes, lncRNAs can be classified as (a) divergent (pancRNA) when they originate from the same promoter region as the protein-coding gene, but from the opposite strand; (b) convergent when genes are encoded on opposite strands, facing each other and convergently transcribed; (c) overlapping when genes extend along the same or opposite strand; (d) enhancer RNAs expressed as uni- or bidirectional transcripts; (e) intronic, when transcribed from an intron of another gene; (f) host lncRNA for miRNA; and (g) intergenic lncRNA (lincRNA) when the transcript is located distant from other genes [42][43]. Additionally, covalently closed circular RNAs (circRNAs) are produced by the back splicing of exons, requiring spliceosomal machinery for their biogenesis [44].
Over the last few years, substantial advances in RNA sequencing have allowed the identification of both physiological and pathological involvement of lncRNAs through four basic mechanisms: signal, decoy, guide, and scaffold [45][46][47]. Some lncRNAs function as signals to regulate the initiation, elongation, or termination of actions by transcription factors [48]. Other lncRNAs function as decoys by binding to transcription protein complexes to deviate from their target DNA [47]. Most lncRNAs have been related to act as molecular sinks for miRNAs, mediating gene expression by acting on splicing regulators and other genetic and epigenetic components [49].
In diabetes, the overexpression of lncRNA maternally expressed gene 3 (MEG3) was shown to suppress endothelial–mesenchymal transition (endMT) in diabetes retinopathy through inhibition of the PI3K/Akt/mTOR signaling pathway [50]; similarly, lncRNA H19 overexpression prevented glucose-induced endMT in human retinal endothelial cells [51]. The knockdown of lncRNA myocardial infarction-associated transcript (MIAT) decreased the proliferation and migration of cultured human carotid artery smooth muscle cells (SMCs) through the regulation of the EGR1-ELK1-ERK pathway in atherosclerosis and carotid artery disease [52]; Ye et al. [53] reported MIAT as a miR-149-5p sponge to positively modulate the expression of anti-phagocytic molecule CD47, inhibiting efferocytosis in advanced atherosclerosis. Regarding neurodegenerative diseases, significant advances have been made in the identification of novel lncRNAs and their involvement in disease etiology and progression. In Parkinson’s disease (PD) mice, the lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) was highly expressed and promoted neuroinflammation through inducing inflammasome activation and reactive oxygen species (ROS) production [54]. In another study, animal experiments suggested that lncRNA taurine up-regulated 1 (TUG1) downregulation significantly improved the motor coordination ability of PD mice and inhibited the expression of inflammatory factors [55]; correspondingly, TUG1 expression was significantly upregulated in synovial fibroblast-like synoviocytes, activating invasion, migration, glucose metabolism, and inhibited apoptosis via miR-34a-5p interaction in rheumatoid arthritis [56], reinforcing the results of previous studies where its expression induces the production of inflammatory factors.
A plethora of studies have shown the dysregulation of many lncRNAs in cancer, often found as regulators in tumorigenesis, progression, metastasis, and drug resistance by modulating signaling cascades in many transcriptional and translational levels [57]. For instance, lncRNA HOXC-AS3 was found to mediate the oncogenesis of gastric cancer by the activation of abnormal histone modification [58]; in a similar fashion, Su et al. [59] found the same transcript overexpressed in human non-small-cell lung cancer specimens and cells, promoting growth and metastasis. The novel lncRNA UPLA1 (upregulation promoting LUAD-associated transcript-1) was highly expressed in the nucleus of lung adenocarcinoma cells, significantly improving the growth of tumors by promoting the Wnt/β-catenin signaling pathway [60]. Another novel lncRNA, uc.134, was found to be downregulated in hepatocellular carcinoma tissue samples, repressing cancer progression by inhibiting the CUL4A-mediated ubiquitination of LATS1 and increasing YAPS127 phosphorylation [61].

3. Linc-ROR in Disease

Long intergenic non-coding RNAs (lincRNAs) are RNAs autonomously transcribed that do not overlap annotated coding genes [62]. The long intergenic non-coding RNA, regulator of reprogramming (linc-ROR) consists of a four exon-long transcript with a length of 2603 nucleotides, localized in chromosome 18q21.31 and identified by chromatin lysine 4 and lysine 36 marks [63]. Most of the sequence is composed of long and short interspersed retro transposable elements (LINEs and SINEs along with long terminal repeats (LTRs)) called retrotransposons [64]. There is evidence that linc-ROR acts as a molecular sink for many miRNAs with many potential binding sites demonstrated by bioinformatic tool analysis. For instance, miR-145 complementarily binds to the ROR sequence between 2055 bp and 2059 bp [65]; for miR-205-5p, a binding site at ROR 791–810 bp sequence and 317–345 bp sequence for miR-34a-5p has been reported [66]. The binding between linc-ROR and miR-194-3p was determined via a luciferase reporter gene assay with two binding sites predicted by DIANA-LncBase, the first at 1906–1923 bp, and the second at 2378–2389 bp [67]. Many other reports have predicted different binding sites for miRNAs, positioning linc-ROR as a competing endogenous RNA.
Linc-ROR was first identified in pluripotent stem cells as a ceRNA of miRNAs involved in core transcription factors regulatory circuitry [68]. In addition, Zou et al. [69] demonstrated that linc-ROR maintained SOX2 gene expression through competitive binding to miR-145, achieving pluripotency maintenance in human amniotic epithelial stem cells. Another study showed that linc-ROR is downregulated in osteoporosis by inhibiting osteoblast proliferation via targeting miR-145-5p, highlighting its positive correlation in cell proliferation and stemming [70]. Similarly, Feng et al. [71] studied the role of linc-ROR in bone marrow mesenchymal stem cell chondrogenesis and cartilage formation; the results revealed that linc-ROR functioned as a miRNA sponge for miR-138 and miR-145, activating SOX9 expression and chondrogenesis activity. Linc-ROR has also been documented as an angiogenesis promoter through the downregulation of miR-26 and activation of NF-kappa B and JAK1/STAT2 signaling pathways [72].
Little research has been made concerning the role of linc-ROR in cardiovascular diseases. In a study on the crosstalk between cardiac microvascular endothelial cells (CMECs) and cardiomyocytes (CMs), it was found that linc-ROR downregulated its target miR-145-5p leading to activation of the endothelial nitric oxide synthase (eNOS) pathway, therefore increasing the survival rate of both CMECs and CMs [73]. Another research found a significant upregulation of linc-ROR in a hypoxia/reoxygenation (H/R) injury model, acting as a sponge for miR-138, aggravating H/R-induced myocardial cell injury [74]. In a viral myocarditis cell model, linc-ROR destroyed the mRNA stability of Forkhead Box P Factor 1 (FOXP1) by binding polypyrimidine tract binding protein 1 (PTBP1), promoting coxsackievirus B3-induced cardiomyocyte inflammation [75].
Regarding the relationship of linc-ROR with mental and neurodegenerative diseases, little evidence has also been reported. Tamiskar et al. [76] measured expression levels of several lncRNAs in the circulation of Parkinson’s disease patients to try to establish a possible correlation; linc-ROR was higher in PD patients compared with controls, revealing linc-ROR dysregulation. A similar study in schizophrenia patients revealed the presence of a sex-based dysregulation of lncRNAs when compared with healthy subjects, with linc-ROR upregulated and correlated with age [77]. Moreover, linc-ROR and other seven lncRNAs were found upregulated in the circulation or post-mortem brain tissues of schizophrenia patients [78]. Conversely, Hasemian et al. [79] also quantified expression levels of lncRNAs in the peripheral blood of epileptic patients and found no significant difference in the expression of linc-ROR between patients and controls. In a different study, the p53 regulatory pathway was correlated with linc-ROR upregulation in ischemia-induced apoptosis, exerting a combined effect on ischemic stroke recurrence [80]. Similarly, expression of linc-ROR increased significantly in middle cerebral artery occlusion in mice and it also promoted ASK-1/STRAP/14-3-3 complex formation to inhibit the activation of TNF-α/ASK-1-mediated apoptosis of human brain microvascular endothelial cells, indicating a potential role in cerebral hypoxia-induced injury [81].
The involvement of linc-ROR in cancer proliferation and metastasis has been documented, suggesting an important role in the clinicopathological characteristics of tumors, therefore considered an oncogene that affects prognosis, survival rate, and higher recurrence rate [82]. Intriguingly, a few studies have positioned linc-ROR as a tumor-suppressor lncRNA, proposing it could be involved in several mechanistic pathways exerting multiple and even opposite functions [83][84][85]. Functional and regulatory mechanisms of linc-ROR in distinct types of cancer are summarized in Table 1.
Table 1. Functional and regulatory mechanisms of linc-ROR in cancer.
Type of Cancer Target/Relation Effect Reference
Breast MAPK/ERK pathway Promotes estrogen-independent proliferation [86]
miR-194-3p Promotes rapamycin resistance [67]
N- and E-cadherin, vimentin Promotes 5-FU and paclitaxel resistance and EMT [87]
miR-205, ZEB1, ZEB2 Promotes tamoxifen resistance and EMT [66]
LC2, Beclin 1 Promotes tamoxifen resistance by autophagy [88]
miR-205, ZEB2 Promotes EMT [89]
Estrogen and progesterone receptors Promotes lymph node metastasis [90][91]
Reproductive factors Higher risk [92]
hnRNPI, AUF1 Promotes proliferation and tumorigenesis [93]
MLL1/H3K4/TIMP3 Promotes progression [94]
CTBP1-AS2, SPRY4-IT1 Promotes pathogenesis [95]
miR-145/ARF6 Promotes metastasis and invasion [96]
miR-145/MUC1/E-cadherin Promotes metastasis and invasion [97]
TGF-β pathway Promotes proliferation and invasion [98]
miR-34a Promotes autophagy and gemcitabine resistance [63]
Wnt/β-catenin pathway Promotes viability, migration, and invasion [99]
ND Promotes metastasis [100]
Ovarian
and Endometrial
Wnt/β-catenin pathway Promotes EMT and metastasis [101]
ND Promotes proliferation, invasion, and metastasis [102]
CA125 Promotes lymph node metastasis [103]
miR-145/FLNB Promotes EMT and invasion [104]
miR-145 Promotes stemness [105]
miR-34a, Notch Promotes proliferation and suppresses apoptosis [106]
Gastric SALL4 Promotes maintenance and aggressiveness [107]
miR-519d-3p/HMGA2 Promotes proliferation, EMT and cisplatin resistance [108]
miR-212-3p/FGF7 Promotes proliferation, migration, and invasion [109]
Vimentin, E-cadherin, β-catenin, c-Myc Promotes EMT and lymph node metastasis [110]
OCT4, SOX2, NANOG, CD133 Promotes proliferation and invasion [111]
MRPI Promotes Adriamycin and vincristine resistance [112]
ADAR, FUS Increased survival rate [83]
HOXA-AS1 Downregulated [113]
miR-580-3p/ANXA10 Suppresses proliferation, migration, and invasion [114]
Lung miR-145/FSCN1 Promotes docetaxel resistance [115]
NA Promotes distant and lymph node metastasis [116]
EML4-ALK Promotes stemness and crizotinib resistance [117]
P53/miR-145 Promotes proliferation, migration, and invasion [118]
PI3K/Akt/mTOR Suppresses cisplatin resistance [85]
Liver miR-145/ZEB2 Promotes EMT and metastasis [119]
miR-145/RAD18 Promotes radioresistance [120]
IL-1β Promotes release of pro-inflammatory cytokines [121]
E-cadherin, vimentin, TWIST1 Promotes EMT and Adriamycin resistance [122]
DEPCD1 Promotes progression and angiogenesis [123]
miR-876-5p/FOXM1 Promotes sorafenib resistance [124]
TGF-β Promotes sorafenib resistance [125]
miR-145/HIF-1α Promotes survival during hypoxic stress [126]
P53 Promotes arsenic trioxide resistance [127]
miR-223-3p/NF2 Promotes proliferation and invasion [128]
OCT4, NANOG, SOX2, p53, CD133 Promotes proliferation [129]
Pancreatic ZEB1 Promotes EMT and aggressiveness [130]
Hippo/YAP pathway Promotes EMT, proliferation, and invasion [131]
HIF1-α/ZEB1 Promotes EMT [132]
miR-145, NANOG Promotes proliferation and decreases migration [65]
Let-7 family Promotes migration, invasion, and EMT [133]
Head and Neck miR-145-5p Promotes stemness [134]
ND Promotes progression and metastasis [135]
LMO4/AKT/PI3K Promotes proliferation and invasion [136]
p-AKT/p-VEGFR2 Promotes proliferation, migration, and angiogenesis [137]
P53 Promotes proliferation, metastasis and inhibits apoptosis [138][139]
ND Downregulated in plasma [140]
P53    
Esophageal miR-15b, miR33a, miR-129, miR-145, miR-206 Promotes proliferation, motility, chemoresistance, and renewal capacity [141]
ND Promotes initiation and progression [142]
miR-204-5p/MDM2/p53 Suppresses apoptosis [143]
miR-145/FSCNI Promotes metastasis [144]
miR-145/LMNB2 Promotes proliferation and migration [145]
Colorectal miR-145 Promotes stemness and metastasis [146]
hnRNPI, AUF1 Promotes proliferation and tumorigenesis [93]
NA Related with larger tumor size, metastasis, and mortality [147]
P53/miR-145 Promotes radioresistance and suppresses apoptosis [148]
miR-145 Promotes lower survival rate [149]
EGFR Promotes proliferation invasion, and migration [150]
miR-6833-3p/SMC4 Promotes proliferation and lower survival rate [151]
P53 Promotes proliferation and viability [152][153]
CCAT1 Promotes metastasis [154]
Kidney and Bladder SOX2, Nanog, POU5F1 Promotes stemness, infiltration and shorter survival [155]
ZEB1 Promotes proliferation, metastasis, EMT, and inhibits apoptosis [156]
P53, c-Myc Promotes shorter survival rate [157]
miR-206/VEGF Promotes proliferation and metastasis [158]
TESC Promotes tumorigenesis [159]
Thyroid and
Parathyroid
TESC/ALDH1A1/
TUBB3/PTEN
Promotes progression [160]
miR-145 Promotes EMT [161]
ND Promotes EMT and metastasis [162]
ND Suppresses progression [163]
Brain and Retina ND Promotes poor overall survival [164]
EGFR Promotes proliferation and stemness [165]
KLF4/CD133 Suppresses proliferation [84]
ND Promotes proliferation and angiogenesis [166]
Akt pathway Suppresses proliferation [167]
miR-32-5p/Notch Promotes EMT, invasion and metastasis [168]
Bone miR-153-3p/ABCB1 Promotes cisplatin resistance [169]
miR-185-3p/YAP1 Promotes growth and metastasis [170]
miR-206 Relates to advanced TNM, metastasis and poor survival [171]
Skin P53, PI3K/Akt Promotes proliferation [172]
Prostate miR-145/Oct4 Promotes proliferation, invasion, and tumorigenicity [173]

This entry is adapted from the peer-reviewed paper 10.3390/ncrna9010012

References

  1. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249.
  2. Lambert, A.W.; Pattabiraman, D.R.; Weinberg, R.A. Emerging Biological Principles of Metastasis. Cell 2017, 168, 670–691.
  3. Eggert, J.; Society, O.N. Cancer Basics; Oncology Nursing Society: Pittsburgh Metropolitan Area, PA, USA, 2010.
  4. Massagué, J.; Batlle, E.; Gomis, R.R. Understanding the molecular mechanisms driving metastasis. Mol. Oncol. 2017, 11, 3–4.
  5. Bukowski, K.; Kciuk, M.; Kontek, R. Mechanisms of Multidrug Resistance in Cancer Chemotherapy. Int. J. Mol. Sci. 2020, 21, 3233.
  6. Zhou, Y.; Sun, W.; Qin, Z.; Guo, S.; Kang, Y.; Zeng, S.; Yu, L. LncRNA regulation: New frontiers in epigenetic solutions to drug chemoresistance. Biochem. Pharmacol. 2021, 189, 114228.
  7. Zhang, P.; Wu, W.; Chen, Q.; Chen, M. Non-Coding RNAs and their Integrated Networks. J. Integr. Bioinform. 2019, 16, 20190027.
  8. Saw, P.E.; Xu, X.; Chen, J.; Song, E.W. Non-coding RNAs: The new central dogma of cancer biology. Sci. China Life Sci. 2021, 64, 22–50.
  9. Peña-Flores, J.A.; Bermúdez, M.; Ramos-Payán, R.; Villegas-Mercado, C.E.; Soto-Barreras, U.; Muela-Campos, D.; Álvarez-Ramírez, A.; Pérez-Aguirre, B.; Larrinua-Pacheco, A.D.; López-Camarillo, C.; et al. Emerging role of lncRNAs in drug resistance mechanisms in head and neck squamous cell carcinoma. Front. Oncol. 2022, 12, 965628.
  10. Hombach, S.; Kretz, M. Non-coding RNAs: Classification, Biology and Functioning. Adv. Exp. Med. Biol. 2016, 937, 3–17.
  11. Yan, H.; Bu, P. Non-coding RNA in cancer. Essays Biochem. 2021, 65, 625–639.
  12. Ali Syeda, Z.; Langden, S.S.S.; Munkhzul, C.; Lee, M.; Song, S.J. Regulatory Mechanism of MicroRNA Expression in Cancer. Int. J. Mol. Sci. 2020, 21, 1723.
  13. Fabian, M.R.; Sonenberg, N.; Filipowicz, W. Regulation of mRNA translation and stability by microRNAs. Annu. Rev. Biochem. 2010, 79, 351–379.
  14. Engreitz, J.M.; Haines, J.E.; Perez, E.M.; Munson, G.; Chen, J.; Kane, M.; McDonel, P.E.; Guttman, M.; Lander, E.S. Local regulation of gene expression by lncRNA promoters, transcription and splicing. Nature 2016, 539, 452–455.
  15. Laham-Karam, N.; Laitinen, P.; Turunen, T.A.; Ylä-Herttuala, S. Activating the Chromatin by Noncoding RNAs. Antioxid. Redox Signal. 2018, 29, 813–831.
  16. Liu, Y.; Liu, X.; Lin, C.; Jia, X.; Zhu, H.; Song, J.; Zhang, Y. Noncoding RNAs regulate alternative splicing in Cancer. J. Exp. Clin. Cancer Res. 2021, 40, 11.
  17. Teng, L.; Feng, Y.C.; Guo, S.T.; Wang, P.L.; Qi, T.F.; Yue, Y.M.; Wang, S.X.; Zhang, S.N.; Tang, C.X.; La, T.; et al. The pan-cancer lncRNA PLANE regulates an alternative splicing program to promote cancer pathogenesis. Nat. Commun. 2021, 12, 3734.
  18. Cao, H.L.; Liu, Z.J.; Huang, P.L.; Yue, Y.L.; Xi, J.N. lncRNA-RMRP promotes proliferation, migration and invasion of bladder cancer via miR-206. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 1012–1021.
  19. Li, D.; Zhang, J.; Li, J. Role of miRNA sponges in hepatocellular carcinoma. Clin. Chim. Acta 2020, 500, 10–19.
  20. Zhao, Y.; Yuan, D.; Zhu, D.; Xu, T.; Huang, A.; Jiang, L.; Liu, C.; Qian, H.; Bu, X. LncRNA-MSC-AS1 inhibits the ovarian cancer progression by targeting miR-425-5p. J. Ovarian Res. 2021, 14, 109.
  21. Ding, X.; Jia, X.; Wang, C.; Xu, J.; Gao, S.J.; Lu, C. A DHX9-lncRNA-MDM2 interaction regulates cell invasion and angiogenesis of cervical cancer. Cell Death Differ. 2019, 26, 1750–1765.
  22. Dykes, I.M.; Emanueli, C. Transcriptional and Post-transcriptional Gene Regulation by Long Non-coding RNA. Genom. Proteom. Bioinform. 2017, 15, 177–186.
  23. Sanchez Calle, A.; Kawamura, Y.; Yamamoto, Y.; Takeshita, F.; Ochiya, T. Emerging roles of long non-coding RNA in cancer. Cancer Sci. 2018, 109, 2093–2100.
  24. Wang, Y.; Gao, L.; Zhu, B.; Zhu, H.; Luo, Y.; Wang, Q.; Zuo, J. Integrative analysis of long non-coding RNA acting as ceRNAs involved in chilling injury in tomato fruit. Gene 2018, 667, 25–33.
  25. Bhan, A.; Soleimani, M.; Mandal, S.S. Long Noncoding RNA and Cancer: A New Paradigm. Cancer Res. 2017, 77, 3965–3981.
  26. Jarroux, J.; Morillon, A.; Pinskaya, M. History, Discovery, and Classification of lncRNAs. Adv. Exp. Med. Biol. 2017, 1008, 1–46.
  27. Institute, E.E.B. Statistics about the Current GENCODE Release (Version 42). Available online: https://www.gencodegenes.org/human/stats.html (accessed on 16 December 2022).
  28. Liu, Y.; Yang, Y.; Li, L.; Liu, Y.; Geng, P.; Li, G.; Song, H. LncRNA SNHG1 enhances cell proliferation, migration, and invasion in cervical cancer. Biochem. Cell Biol. 2018, 96, 38–43.
  29. Luo, H.; Xu, C.; Le, W.; Ge, B.; Wang, T. lncRNA CASC11 promotes cancer cell proliferation in bladder cancer through miRNA-150. J. Cell. Biochem. 2019, 120, 13487–13493.
  30. Luo, J.; Wang, K.; Yeh, S.; Sun, Y.; Liang, L.; Xiao, Y.; Xu, W.; Niu, Y.; Cheng, L.; Maity, S.N.; et al. LncRNA-p21 alters the antiandrogen enzalutamide-induced prostate cancer neuroendocrine differentiation via modulating the EZH2/STAT3 signaling. Nat. Commun. 2019, 10, 2571.
  31. Sun, Z.; Xue, S.; Zhang, M.; Xu, H.; Hu, X.; Chen, S.; Liu, Y.; Guo, M.; Cui, H. Aberrant NSUN2-mediated m(5)C modification of H19 lncRNA is associated with poor differentiation of hepatocellular carcinoma. Oncogene 2020, 39, 6906–6919.
  32. Li, X.; Jin, F.; Li, Y. A novel autophagy-related lncRNA prognostic risk model for breast cancer. J. Cell. Mol. Med. 2021, 25, 4–14.
  33. Luo, Y.; Zheng, S.; Wu, Q.; Wu, J.; Zhou, R.; Wang, C.; Wu, Z.; Rong, X.; Huang, N.; Sun, L.; et al. Long noncoding RNA (lncRNA) EIF3J-DT induces chemoresistance of gastric cancer via autophagy activation. Autophagy 2021, 17, 4083–4101.
  34. Wang, L.; Cho, K.B.; Li, Y.; Tao, G.; Xie, Z.; Guo, B. Long Noncoding RNA (lncRNA)-Mediated Competing Endogenous RNA Networks Provide Novel Potential Biomarkers and Therapeutic Targets for Colorectal Cancer. Int. J. Mol. Sci. 2019, 20, 5758.
  35. Cui, P.H.; Li, Z.Y.; Li, D.H.; Han, S.Y.; Zhang, Y.J. SP1-induced lncRNA DANCR contributes to proliferation and invasion of ovarian cancer. Kaohsiung J. Med. Sci. 2021, 37, 371–378.
  36. Zhang, Y.X.; Yuan, J.; Gao, Z.M.; Zhang, Z.G. LncRNA TUC338 promotes invasion of lung cancer by activating MAPK pathway. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 443–449.
  37. Zhao, W.; Geng, D.; Li, S.; Chen, Z.; Sun, M. LncRNA HOTAIR influences cell growth, migration, invasion, and apoptosis via the miR-20a-5p/HMGA2 axis in breast cancer. Cancer Med. 2018, 7, 842–855.
  38. Li, J.; Meng, H.; Bai, Y.; Wang, K. Regulation of lncRNA and Its Role in Cancer Metastasis. Oncol. Res. 2016, 23, 205–217.
  39. Luan, X.; Wang, Y. LncRNA XLOC_006390 facilitates cervical cancer tumorigenesis and metastasis as a ceRNA against miR-331-3p and miR-338-3p. J. Gynecol. Oncol. 2018, 29, e95.
  40. Park, E.G.; Pyo, S.J.; Cui, Y.; Yoon, S.H.; Nam, J.W. Tumor immune microenvironment lncRNAs. Brief. Bioinform. 2022, 23, bbab504.
  41. Lin, W.; Zhou, Q.; Wang, C.Q.; Zhu, L.; Bi, C.; Zhang, S.; Wang, X.; Jin, H. LncRNAs regulate metabolism in cancer. Int. J. Biol. Sci. 2020, 16, 1194–1206.
  42. Schmitz, S.U.; Grote, P.; Herrmann, B.G. Mechanisms of long noncoding RNA function in development and disease. Cell. Mol. Life Sci. 2016, 73, 2491–2509.
  43. Chan, J.J.; Tay, Y. Noncoding RNA:RNA Regulatory Networks in Cancer. Int. J. Mol. Sci. 2018, 19, 1310.
  44. Li, X.; Yang, L.; Chen, L.L. The Biogenesis, Functions, and Challenges of Circular RNAs. Mol. Cell 2018, 71, 428–442.
  45. Charles Richard, J.L.; Eichhorn, P.J.A. Platforms for Investigating LncRNA Functions. SLAS Technol. 2018, 23, 493–506.
  46. Zibitt, M.S.; Hartford, C.C.R.; Lal, A. Interrogating lncRNA functions via CRISPR/Cas systems. RNA Biol. 2021, 18, 2097–2106.
  47. Dahariya, S.; Paddibhatla, I.; Kumar, S.; Raghuwanshi, S.; Pallepati, A.; Gutti, R.K. Long non-coding RNA: Classification, biogenesis and functions in blood cells. Mol. Immunol. 2019, 112, 82–92.
  48. Long, Y.; Wang, X.; Youmans, D.T.; Cech, T.R. How do lncRNAs regulate transcription? Sci. Adv. 2017, 3, eaao2110.
  49. Paraskevopoulou, M.D.; Hatzigeorgiou, A.G. Analyzing MiRNA-LncRNA Interactions. Methods Mol. Biol. 2016, 1402, 271–286.
  50. He, Y.; Dan, Y.; Gao, X.; Huang, L.; Lv, H.; Chen, J. DNMT1-mediated lncRNA MEG3 methylation accelerates endothelial-mesenchymal transition in diabetic retinopathy through the PI3K/Akt/mTOR signaling pathway. Am. J. Physiol. Endocrinol. Metab. 2021, 320, E598–E608.
  51. Thomas, A.A.; Biswas, S.; Feng, B.; Chen, S.; Gonder, J.; Chakrabarti, S. lncRNA H19 prevents endothelial-mesenchymal transition in diabetic retinopathy. Diabetologia 2019, 62, 517–530.
  52. Fasolo, F.; Jin, H.; Winski, G.; Chernogubova, E.; Pauli, J.; Winter, H.; Li, D.Y.; Glukha, N.; Bauer, S.; Metschl, S.; et al. Long Noncoding RNA MIAT Controls Advanced Atherosclerotic Lesion Formation and Plaque Destabilization. Circulation 2021, 144, 1567–1583.
  53. Ye, Z.M.; Yang, S.; Xia, Y.P.; Hu, R.T.; Chen, S.; Li, B.W.; Chen, S.L.; Luo, X.Y.; Mao, L.; Li, Y.; et al. LncRNA MIAT sponges miR-149-5p to inhibit efferocytosis in advanced atherosclerosis through CD47 upregulation. Cell Death. Dis. 2019, 10, 138.
  54. Cai, L.J.; Tu, L.; Huang, X.M.; Huang, J.; Qiu, N.; Xie, G.H.; Liao, J.X.; Du, W.; Zhang, Y.Y.; Tian, J.Y. LncRNA MALAT1 facilitates inflammasome activation via epigenetic suppression of Nrf2 in Parkinson′s disease. Mol. Brain. 2020, 13, 130.
  55. Cheng, J.; Duan, Y.; Zhang, F.; Shi, J.; Li, H.; Wang, F.; Li, H. The Role of lncRNA TUG1 in the Parkinson Disease and Its Effect on Microglial Inflammatory Response. Neuromol. Med. 2021, 23, 327–334.
  56. Zhang, M.; Lu, N.; Guo, X.Y.; Li, H.J.; Guo, Y.; Lu, L. Influences of the lncRNA TUG1-miRNA-34a-5p network on fibroblast-like synoviocytes (FLSs) dysfunction in rheumatoid arthritis through targeting the lactate dehydrogenase A (LDHA). J. Clin. Lab. Anal. 2021, 35, e23969.
  57. Najafi, S.; Khatami, S.H.; Khorsand, M.; Jamali, Z.; Shabaninejad, Z.; Moazamfard, M.; Majidpoor, J.; Aghaei Zarch, S.M.; Movahedpour, A. Long non-coding RNAs (lncRNAs); roles in tumorigenesis and potentials as biomarkers in cancer diagnosis. Exp. Cell Res. 2022, 418, 113294.
  58. Zhang, E.; He, X.; Zhang, C.; Su, J.; Lu, X.; Si, X.; Chen, J.; Yin, D.; Han, L.; De, W. A novel long noncoding RNA HOXC-AS3 mediates tumorigenesis of gastric cancer by binding to YBX1. Genome Biol. 2018, 19, 154.
  59. Su, H.; Fan, G.; Huang, J.; Qiu, X. LncRNA HOXC-AS3 promotes non-small-cell lung cancer growth and metastasis through upregulation of YBX1. Cell Death Dis. 2022, 13, 307.
  60. Han, X.; Jiang, H.; Qi, J.; Li, J.; Yang, J.; Tian, Y.; Li, W.; Jing, Q.; Wang, C. Novel lncRNA UPLA1 mediates tumorigenesis and prognosis in lung adenocarcinoma. Cell Death Dis. 2020, 11, 999.
  61. Ni, W.; Zhang, Y.; Zhan, Z.; Ye, F.; Liang, Y.; Huang, J.; Chen, K.; Chen, L.; Ding, Y. A novel lncRNA uc.134 represses hepatocellular carcinoma progression by inhibiting CUL4A-mediated ubiquitination of LATS1. J. Hematol. Oncol. 2017, 10, 91.
  62. Ransohoff, J.D.; Wei, Y.; Khavari, P.A. The functions and unique features of long intergenic non-coding RNA. Nat. Rev. Mol. Cell Biol. 2018, 19, 143–157.
  63. Chen, Y.M.; Liu, Y.; Wei, H.Y.; Lv, K.Z.; Fu, P.F. Large intergenic non-coding RNA-ROR reverses gemcitabine-induced autophagy and apoptosis in breast cancer cells. Oncotarget 2016, 7, 59604–59617.
  64. Quek, X.C.; Thomson, D.W.; Maag, J.L.; Bartonicek, N.; Signal, B.; Clark, M.B.; Gloss, B.S.; Dinger, M.E. lncRNAdb v2.0: Expanding the reference database for functional long noncoding RNAs. Nucleic Acids Res. 2015, 43, D168–D173.
  65. Gao, S.; Wang, P.; Hua, Y.; Xi, H.; Meng, Z.; Liu, T.; Chen, Z.; Liu, L. ROR functions as a ceRNA to regulate Nanog expression by sponging miR-145 and predicts poor prognosis in pancreatic cancer. Oncotarget 2016, 7, 1608–1618.
  66. Zhang, H.Y.; Liang, F.; Zhang, J.W.; Wang, F.; Wang, L.; Kang, X.G. Effects of long noncoding RNA-ROR on tamoxifen resistance of breast cancer cells by regulating microRNA-205. Cancer Chemother. Pharmacol. 2017, 79, 327–337.
  67. Zhou, Q.; Guo, J.; Huang, W.; Yu, X.; Xu, C.; Long, X. Linc-ROR promotes the progression of breast cancer and decreases the sensitivity to rapamycin through miR-194-3p targeting MECP2. Mol. Oncol. 2020, 14, 2231–2250.
  68. Wang, Y.; Xu, Z.; Jiang, J.; Xu, C.; Kang, J.; Xiao, L.; Wu, M.; Xiong, J.; Guo, X.; Liu, H. Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. Dev. Cell 2013, 25, 69–80.
  69. Zou, G.; Liu, T.; Guo, L.; Huang, Y.; Feng, Y.; Huang, Q.; Duan, T. miR-145 modulates lncRNA-ROR and Sox2 expression to maintain human amniotic epithelial stem cell pluripotency and β islet-like cell differentiation efficiency. Gene 2016, 591, 48–57.
  70. Fu, Y.; Hu, X.; Gao, Y.; Li, K.; Fu, Q.; Liu, Q.; Liu, D.; Zhang, Z.; Qiao, J. LncRNA ROR/miR-145-5p axis modulates the osteoblasts proliferation and apoptosis in osteoporosis. Bioengineered 2021, 12, 7714–7723.
  71. Feng, L.; Yang, Z.M.; Li, Y.C.; Wang, H.X.; Lo, J.H.T.; Zhang, X.T.; Li, G. Linc-ROR promotes mesenchymal stem cells chondrogenesis and cartilage formation via regulating SOX9 expression. Osteoarthr. Cartil. 2021, 29, 568–578.
  72. Qin, W.W.; Xin, Z.L.; Wang, H.Q.; Wang, K.P.; Li, X.Y.; Wang, X. Inhibiting lncRNA ROR suppresses growth, migration and angiogenesis in microvascular endothelial cells by up-regulating miR-26. Eur. Rev. Med. Pharm. Sci. 2018, 22, 7985–7993.
  73. Chen, G.; Xu, C.; Gillette, T.G.; Huang, T.; Huang, P.; Li, Q.; Li, X.; Li, Q.; Ning, Y.; Tang, R.; et al. Cardiomyocyte-derived small extracellular vesicles can signal eNOS activation in cardiac microvascular endothelial cells to protect against Ischemia/Reperfusion injury. Theranostics 2020, 10, 11754–11774.
  74. Hu, Y.H.; Sun, J.; Zhang, J.; Hua, F.Z.; Liu, Q.; Liang, Y.P. Long non-coding RNA ROR sponges miR-138 to aggravate hypoxia/reoxygenation-induced cardiomyocyte apoptosis via upregulating Mst1. Exp. Mol. Pathol. 2020, 114, 104430.
  75. Zeng, M.; Yi, S.; Xiao, Y.; Chen, Z. LncRNA ROR promotes NLRP3-mediated cardiomyocyte pyroptosis by upregulating FOXP1 via interactions with PTBP1. Cytokine 2022, 152, 155812.
  76. Honarmand Tamizkar, K.; Gorji, P.; Gholipour, M.; Hussen, B.M.; Mazdeh, M.; Eslami, S.; Taheri, M.; Ghafouri-Fard, S. Parkinson’s Disease Is Associated With Dysregulation of Circulatory Levels of lncRNAs. Front. Immunol. 2021, 12, 763323.
  77. Fallah, H.; Azari, I.; Neishabouri, S.M.; Oskooei, V.K.; Taheri, M.; Ghafouri-Fard, S. Sex-specific up-regulation of lncRNAs in peripheral blood of patients with schizophrenia. Sci. Rep. 2019, 9, 12737.
  78. Ghafouri-Fard, S.; Eghtedarian, R.; Taheri, M.; Beatrix Brühl, A.; Sadeghi-Bahmani, D.; Brand, S. A Review on the Expression Pattern of Non-coding RNAs in Patients With Schizophrenia: With a Special Focus on Peripheral Blood as a Source of Expression Analysis. Front. Psychiatry 2021, 12, 640463.
  79. Hashemian, F.; Ghafouri-Fard, S.; Arsang-Jang, S.; Mirzajani, S.; Fallah, H.; Mehvari Habibabadi, J.; Sayad, A.; Taheri, M. Epilepsy Is Associated With Dysregulation of Long Non-coding RNAs in the Peripheral Blood. Front. Mol. Biosci. 2019, 6, 113.
  80. Liu, X.; Wang, L.; Wang, Q.; Zhao, J.; Chang, H.; Zhu, R. Association Between Genetic Variants in the lncRNA-p53 Regulatory Network and Ischemic Stroke Prognosis. Neurotox Res. 2021, 39, 1171–1180.
  81. Zhou, Q.; An, Y.; Tang, Y. Long noncoding RNA-regulator of reprogramming alleviates hypoxia-induced cerebral injury in mice model and human via modulating apoptosis complexes. J. Integr. Neurosci. 2019, 18, 431–437.
  82. Chen, W.; Yang, J.; Fang, H.; Li, L.; Sun, J. Relevance Function of Linc-ROR in the Pathogenesis of Cancer. Front. Cell Dev. Biol. 2020, 8, 696.
  83. Yu, X.; Ding, H.; Shi, Y.; Yang, L.; Zhou, J.; Yan, Z.; Xiao, B. Downregulated Expression of linc-ROR in Gastric Cancer and Its Potential Diagnostic and Prognosis Value. Dis. Markers 2020, 2020, 7347298.
  84. Feng, S.; Yao, J.; Chen, Y.; Geng, P.; Zhang, H.; Ma, X.; Zhao, J.; Yu, X. Expression and Functional Role of Reprogramming-Related Long Noncoding RNA (lincRNA-ROR) in Glioma. J. Mol. Neurosci. 2015, 56, 623–630.
  85. Shi, H.; Pu, J.; Zhou, X.L.; Ning, Y.Y.; Bai, C. Silencing long non-coding RNA ROR improves sensitivity of non-small-cell lung cancer to cisplatin resistance by inhibiting PI3K/Akt/mTOR signaling pathway. Tumour Biol. 2017, 39, 1010428317697568.
  86. Peng, W.X.; Huang, J.G.; Yang, L.; Gong, A.H.; Mo, Y.Y. Linc-RoR promotes MAPK/ERK signaling and confers estrogen-independent growth of breast cancer. Mol. Cancer 2017, 16, 161.
  87. Chen, Y.M.; Liu, Y.; Wei, H.Y.; Lv, K.Z.; Fu, P. Linc-ROR induces epithelial-mesenchymal transition and contributes to drug resistance and invasion of breast cancer cells. Tumour Biol. 2016, 37, 10861–10870.
  88. Li, Y.; Jiang, B.; Zhu, H.; Qu, X.; Zhao, L.; Tan, Y.; Jiang, Y.; Liao, M.; Wu, X. Inhibition of long non-coding RNA ROR reverses resistance to Tamoxifen by inducing autophagy in breast cancer. Tumour Biol. 2017, 39, 1010428317705790.
  89. Hou, P.; Zhao, Y.; Li, Z.; Yao, R.; Ma, M.; Gao, Y.; Zhao, L.; Zhang, Y.; Huang, B.; Lu, J. LincRNA-ROR induces epithelial-to-mesenchymal transition and contributes to breast cancer tumorigenesis and metastasis. Cell Death. Dis. 2014, 5, e1287.
  90. Zhao, T.; Wu, L.; Li, X.; Dai, H.; Zhang, Z. Large intergenic non-coding RNA-ROR as a potential biomarker for the diagnosis and dynamic monitoring of breast cancer. Cancer Biomark. 2017, 20, 165–173.
  91. Zhang, K.; Luo, Z.; Zhang, Y.; Wang, Y.; Cui, M.; Liu, L.; Zhang, L.; Liu, J. Detection and analysis of circulating large intergenic non-coding RNA regulator of reprogramming in plasma for breast cancer. Thorac. Cancer 2018, 9, 66–74.
  92. Luo, C.; Cao, J.; Peng, R.; Guo, Q.; Ye, H.; Wang, P.; Wang, K.; Song, C. Functional Variants in Linc-ROR are Associated with mRNA Expression of Linc-ROR and Breast Cancer Susceptibility. Sci. Rep. 2018, 8, 4680.
  93. Huang, J.; Zhang, A.; Ho, T.T.; Zhang, Z.; Zhou, N.; Ding, X.; Zhang, X.; Xu, M.; Mo, Y.Y. Linc-RoR promotes c-Myc expression through hnRNP I and AUF1. Nucleic Acids Res. 2016, 44, 3059–3069.
  94. Hu, A.; Hong, F.; Li, D.; Jin, Y.; Kon, L.; Xu, Z.; He, H.; Xie, Q. Long non-coding RNA ROR recruits histone transmethylase MLL1 to up-regulate TIMP3 expression and promote breast cancer progression. J. Transl. Med. 2021, 19, 95.
  95. Mohebi, M.; Sattari, A.; Ghafouri-Fard, S.; Modarressi, M.H.; Kholghi-Oskooei, V.; Taheri, M. Expression profiling revealed up-regulation of three lncRNAs in breast cancer samples. Exp. Mol. Pathol. 2020, 117, 104544.
  96. Eades, G.; Wolfson, B.; Zhang, Y.; Li, Q.; Yao, Y.; Zhou, Q. lincRNA-RoR and miR-145 regulate invasion in triple-negative breast cancer via targeting ARF6. Mol. Cancer Res. 2015, 13, 330–338.
  97. Ma, J.; Yang, Y.; Huo, D.; Wang, Z.; Zhai, X.; Chen, J.; Sun, H.; An, W.; Jie, J.; Yang, P. LincRNA-RoR/miR-145 promote invasion and metastasis in triple-negative breast cancer via targeting MUC1. Biochem. Biophys. Res. Commun. 2018, 500, 614–620.
  98. Hou, L.; Tu, J.; Cheng, F.; Yang, H.; Yu, F.; Wang, M.; Liu, J.; Fan, J.; Zhou, G. Long noncoding RNA ROR promotes breast cancer by regulating the TGF-β pathway. Cancer Cell Int. 2018, 18, 142.
  99. Jiang, B.; Zhu, H.; Tang, L.; Gao, T.; Zhou, Y.; Gong, F.; Tan, Y.; Xie, L.; Wu, X.; Li, Y. Apatinib Inhibits Stem Properties and Malignant Biological Behaviors of Breast Cancer Stem Cells by Blocking Wnt/β-catenin Signal Pathway through Downregulating LncRNA ROR. Anti-Cancer Agents Med. Chem. 2022, 22, 1723–1734.
  100. Toraih, E.A.; El-Wazir, A.; Ageeli, E.A.; Hussein, M.H.; Eltoukhy, M.M.; Killackey, M.T.; Kandil, E.; Fawzy, M.S. Unleash multifunctional role of long noncoding RNAs biomarker panel in breast cancer: A predictor classification model. Epigenomics 2020, 12, 1215–1237.
  101. Lou, Y.; Jiang, H.; Cui, Z.; Wang, L.; Wang, X.; Tian, T. Linc-ROR induces epithelial-to-mesenchymal transition in ovarian cancer by increasing Wnt/β-catenin signaling. Oncotarget 2017, 8, 69983–69994.
  102. Jiang, H.H.; Lou, Y.H.; Wang, X.Y.; Han, Y.; Cui, Z.M. Expression and function of long intergenic non-protein coding RNA-regulator of reprogramming in high-grade ovarian serous cancer. Zhonghua Fu Chan Ke Za Zhi 2016, 51, 921–927.
  103. Shen, W.; Xie, X.; Liu, M.; Wang, L. Diagnostic Value of lncRNA ROR in Differentiating Ovarian Cancer Patients. Clin. Lab. 2020, 66.
  104. Li, J.; Zhang, S.; Wu, L.; Pei, M. Interaction between LncRNA-ROR and miR-145 contributes to epithelial-mesenchymal transition of ovarian cancer cells. Gen. Physiol. Biophys. 2019, 38, 461–471.
  105. Zhou, X.; Gao, Q.; Wang, J.; Zhang, X.; Liu, K.; Duan, Z. Linc-RNA-RoR acts as a “sponge” against mediation of the differentiation of endometrial cancer stem cells by microRNA-145. Gynecol. Oncol. 2014, 133, 333–339.
  106. Zeng, S.Y.; Liu, C.Q.; Zhuang, Y.; Chen, Y.; Gu, L.L.; Shi, S.Q. LncRNA ROR promotes proliferation of endometrial cancer cells via regulating Notch1 pathway. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 5970–5978.
  107. Alsadat Mahmoudian, R.; Lotfi Gharaie, M.; Abbaszadegan, R.; Forghanifard, M.M.; Abbaszadegan, M.R. Interaction between LINC-ROR and Stemness State in Gastric Cancer Cells with Helicobacter pylori Infection. Iran. Biomed. J. 2021, 25, 157–168.
  108. Jin, W.; Zhang, H.; Li, M.; Lin, S. Long Noncoding RNA Regulator of Reprogramming Regulates Cell Growth, Metastasis, and Cisplatin Resistance in Gastric Cancer via miR-519d-3p/HMGA2 Axis. Cancer Biother. Radiopharm. 2020.
  109. Mi, Y.; Li, Y.; He, Z.; Chen, D.; Hong, Q.; You, J. Upregulation of Linc-ROR Promotes the Proliferation, Migration, and Invasion of Gastric Cancer Cells Through miR-212-3p/FGF7 Axis. Cancer Manag. Res. 2021, 13, 899–912.
  110. Liu, M.; Zhang, M.; Yin, H. Linc-ROR promotes invasion and metastasis of gastric cancer by activating epithelial-mesenchymal transition. Indian J. Pathol. Microbiol. 2022, 65, 545–550.
  111. Wang, S.; Liu, F.; Deng, J.; Cai, X.; Han, J.; Liu, Q. Long Noncoding RNA ROR Regulates Proliferation, Invasion, and Stemness of Gastric Cancer Stem Cell. Cell. Reprogram. 2016, 18, 319–326.
  112. Wang, S.; Chen, W.; Yu, H.; Song, Z.; Li, Q.; Shen, X.; Wu, Y.; Zhu, L.; Ma, Q.; Xing, D. lncRNA ROR Promotes Gastric Cancer Drug Resistance. Cancer Control 2020, 27, 1073274820904694.
  113. Soghala, S.; Harsiny, K.; Momeni, P.; Hatami, M.; Kholghi Oskooei, V.; Hussen, B.M.; Taheri, M.; Ghafouri-Fard, S. Down-regulation of LINC-ROR, HOXA-AS2 and MEG3 in gastric cancer. Heliyon 2022, 8, e11155.
  114. Bai, L.; Zhuang, Y.; Xie, J.; Liu, K.; Yin, S.; Yan, F. SOX2-Induced Linc-ROR Upregulation Inhibits Gastric Carcinoma Cell Proliferation and Metastasis Via the miR-580-3p/ANXA10 Pathway. Biochem. Genet. 2022.
  115. Pan, Y.; Chen, J.; Tao, L.; Zhang, K.; Wang, R.; Chu, X.; Chen, L. Long noncoding RNA ROR regulates chemoresistance in docetaxel-resistant lung adenocarcinoma cells via epithelial mesenchymal transition pathway. Oncotarget 2017, 8, 33144–33158.
  116. Qu, C.H.; Sun, Q.Y.; Zhang, F.M.; Jia, Y.M. Long non-coding RNA ROR is a novel prognosis factor associated with non-small-cell lung cancer progression. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 4087–4091.
  117. Yang, Y.; Huang, J.; Xie, N.; Huang, H.; Xu, S.; Cai, J.; Qi, S. lincROR influences the stemness and crizotinib resistance in EML-ALK(+) non-small-cell lung cancer cells. OncoTargets Ther. 2018, 11, 3649–3657.
  118. Xia, F.; Xiong, Y.; Li, Q. Interaction of lincRNA ROR and p53/miR-145 correlates with lung cancer stem cell signatures. J. Cell. Biochem. 2017.
  119. Li, C.; Lu, L.; Feng, B.; Zhang, K.; Han, S.; Hou, D.; Chen, L.; Chu, X.; Wang, R. The lincRNA-ROR/miR-145 axis promotes invasion and metastasis in hepatocellular carcinoma via induction of epithelial-mesenchymal transition by targeting ZEB2. Sci. Rep. 2017, 7, 4637.
  120. Chen, Y.; Shen, Z.; Zhi, Y.; Zhou, H.; Zhang, K.; Wang, T.; Feng, B.; Chen, Y.; Song, H.; Wang, R.; et al. Long non-coding RNA ROR promotes radioresistance in hepatocelluar carcinoma cells by acting as a ceRNA for microRNA-145 to regulate RAD18 expression. Arch. Biochem. Biophys. 2018, 645, 117–125.
  121. Li, X.; Li, N. LINC ROR from Hepatocarcinoma Cell-derived Exosomes Modulates Inflammation in Human Macrophages. Sichuan Da Xue Xue Bao Yi Xue Ban 2019, 50, 177–181.
  122. Zhang, Y.; Wu, W.; Sun, Q.; Ye, L.; Zhou, D.; Wang, W. Linc-ROR facilitates hepatocellular carcinoma resistance to doxorubicin by regulating TWIST1-mediated epithelial-mesenchymal transition. Mol. Med. Rep. 2021, 23, 340.
  123. Tian, C.; Abudoureyimu, M.; Lin, X.; Chu, X.; Wang, R. Linc-ROR facilitates progression and angiogenesis of hepatocellular carcinoma by modulating DEPDC1 expression. Cell Death Dis. 2021, 12, 1047.
  124. Zhi, Y.; Abudoureyimu, M.; Zhou, H.; Wang, T.; Feng, B.; Wang, R.; Chu, X. FOXM1-Mediated LINC-ROR Regulates the Proliferation and Sensitivity to Sorafenib in Hepatocellular Carcinoma. Mol. Ther. Nucleic Acids 2019, 16, 576–588.
  125. Takahashi, K.; Yan, I.K.; Kogure, T.; Haga, H.; Patel, T. Extracellular vesicle-mediated transfer of long non-coding RNA ROR modulates chemosensitivity in human hepatocellular cancer. FEBS Open Bio 2014, 4, 458–467.
  126. Takahashi, K.; Yan, I.K.; Haga, H.; Patel, T. Modulation of hypoxia-signaling pathways by extracellular linc-RoR. J. Cell Sci. 2014, 127, 1585–1594.
  127. Li, X.; Sun, D.; Zhao, T.; Zhang, Z. Long non-coding RNA ROR confers arsenic trioxide resistance to HepG2 cells by inhibiting p53 expression. Eur. J. Pharmacol. 2020, 872, 172982.
  128. Ma, Y.L.; Wang, C.Y.; Guan, Y.J.; Gao, F.M. Long noncoding RNA ROR promotes proliferation and invasion of colorectal cancer by inhibiting tumor suppressor gene NF2 through interacting with miR-223-3p. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 2401–2411.
  129. He, X.; Yu, J.; Xiong, L.; Liu, Y.; Fan, L.; Li, Y.; Chen, B.; Chen, J.; Xu, X. Exosomes derived from liver cancer cells reprogram biological behaviors of LO2 cells by transferring Linc-ROR. Gene 2019, 719, 144044.
  130. Zhan, H.X.; Wang, Y.; Li, C.; Xu, J.W.; Zhou, B.; Zhu, J.K.; Han, H.F.; Wang, L.; Wang, Y.S.; Hu, S.Y. LincRNA-ROR promotes invasion, metastasis and tumor growth in pancreatic cancer through activating ZEB1 pathway. Cancer Lett. 2016, 374, 261–271.
  131. Chen, W.; Wang, H.; Liu, Y.; Xu, W.; Ling, C.; Li, Y.; Liu, J.; Chen, M.; Zhang, Y.; Chen, B.; et al. Linc-RoR promotes proliferation, migration, and invasion via the Hippo/YAP pathway in pancreatic cancer cells. J Cell. Biochem. 2020, 121, 632–641.
  132. Sun, Z.; Sun, D.; Feng, Y.; Zhang, B.; Sun, P.; Zhou, B.; Du, L.; Wang, Y.; Fan, Z.; Yang, J.; et al. Exosomal linc-ROR mediates crosstalk between cancer cells and adipocytes to promote tumor growth in pancreatic cancer. Mol. Ther. Nucleic Acids 2021, 26, 253–268.
  133. Fu, Z.; Li, G.; Li, Z.; Wang, Y.; Zhao, Y.; Zheng, S.; Ye, H.; Luo, Y.; Zhao, X.; Wei, L.; et al. Endogenous miRNA Sponge LincRNA-ROR promotes proliferation, invasion and stem cell-like phenotype of pancreatic cancer cells. Cell Death Discov. 2017, 3, 17004.
  134. Arunkumar, G.; Deva Magendhra Rao, A.K.; Manikandan, M.; Arun, K.; Vinothkumar, V.; Revathidevi, S.; Rajkumar, K.S.; Rajaraman, R.; Munirajan, A.K. Expression profiling of long non-coding RNA identifies linc-RoR as a prognostic biomarker in oral cancer. Tumour Biol. 2017, 39, 1010428317698366.
  135. Rose, M.M.; Dhamodharan, S.; Bharath, G.; Murali, K.; Subbiah, S.; Bhaskar, L.V.; Murugan, A.K.; Munirajan, A.K. Linc-ROR genetic variants are associated with the advanced disease in oral squamous cell carcinoma. Arch. Oral Biol. 2022, 139, 105428.
  136. Ma, X.; Zhang, H.; Li, Q.; Schiferle, E.; Qin, Y.; Xiao, S.; Li, T. FOXM1 Promotes Head and Neck Squamous Cell Carcinoma via Activation of the Linc-ROR/LMO4/AKT/PI3K Axis. Front. Oncol. 2021, 11, 658712.
  137. Zhang, S.; Cai, J.; Ji, Y.; Zhou, S.; Miao, M.; Zhu, R.; Li, K.; Xue, Z.; Hu, S. Tumor-derived exosomal lincRNA ROR promotes angiogenesis in nasopharyngeal carcinoma. Mol. Cell. Probes 2022, 66, 101868.
  138. Hong, F.; Gu, W.; Jiang, J.; Liu, X.; Jiang, H. Anticancer activity of polyphyllin I in nasopharyngeal carcinoma by modulation of lncRNA ROR and P53 signalling. J. Drug Target. 2019, 27, 806–811.
  139. Li, L.; Gu, M.; You, B.; Shi, S.; Shan, Y.; Bao, L.; You, Y. Long non-coding RNA ROR promotes proliferation, migration and chemoresistance of nasopharyngeal carcinoma. Cancer Sci. 2016, 107, 1215–1222.
  140. Wei, J.; Meng, X.; Wei, X.; Zhu, K.; Du, L.; Wang, H. Down-regulated lncRNA ROR in tumor-educated platelets as a liquid-biopsy biomarker for nasopharyngeal carcinoma. J. Cancer Res. Clin. Oncol. 2022.
  141. Wang, L.; Yu, X.; Zhang, Z.; Pang, L.; Xu, J.; Jiang, J.; Liang, W.; Chai, Y.; Hou, J.; Li, F. Linc-ROR promotes esophageal squamous cell carcinoma progression through the derepression of SOX9. J. Exp. Clin. Cancer Res. 2017, 36, 182.
  142. Sahebi, R.; Malakootian, M.; Balalaee, B.; Shahryari, A.; Khoshnia, M.; Abbaszadegan, M.R.; Moradi, A.; Javad Mowla, S. Linc-ROR and its spliced variants 2 and 4 are significantly up-regulated in esophageal squamous cell carcinoma. Iran. J. Basic Med. Sci. 2016, 19, 1131–1135.
  143. Gao, H.; Wang, T.; Zhang, P.; Shang, M.; Gao, Z.; Yang, F.; Liu, R. Linc-ROR regulates apoptosis in esophageal squamous cell carcinoma via modulation of p53 ubiquitination by targeting miR-204-5p/MDM2. J. Cell. Physiol. 2020, 235, 2325–2335.
  144. Shang, M.; Wang, X.; Zhang, Y.; Gao, Z.; Wang, T.; Liu, R. LincRNA-ROR promotes metastasis and invasion of esophageal squamous cell carcinoma by regulating miR-145/FSCN1. OncoTargets Ther. 2018, 11, 639–649.
  145. Su, X.; Feng, X.; Gao, C.; Wang, G.; Liu, L. ROR promotes the proliferation and migration of esophageal cancer through regulating miR-145/LMNB2 signal axis. Am. J. Transl. Res. 2020, 12, 7223–7235.
  146. Yan, Z.Y.; Sun, X.C. LincRNA-ROR functions as a ceRNA to regulate Oct4, Sox2, and Nanog expression by sponging miR-145 and its effect on biologic characteristics of colonic cancer stem cells. Zhonghua Bing Li Xue Za Zhi 2018, 47, 284–290.
  147. Shaalan, A.A.M.; Mokhtar, S.H.; Ahmedah, H.T.; Almars, A.I.; Toraih, E.A.; Ibrahiem, A.T.; Fawzy, M.S.; Salem, M.A. Prognostic Value of LINC-ROR (rs1942347) Variant in Patients with Colon Cancer Harboring BRAF Mutation: A Propensity Score-Matched Analysis. Biomolecules 2022, 12, 569.
  148. Yang, P.; Yang, Y.; An, W.; Xu, J.; Zhang, G.; Jie, J.; Zhang, Q. The long noncoding RNA-ROR promotes the resistance of radiotherapy for human colorectal cancer cells by targeting the p53/miR-145 pathway. J. Gastroenterol. Hepatol. 2017, 32, 837–845.
  149. Zhou, P.; Sun, L.; Liu, D.; Liu, C.; Sun, L. Long Non-Coding RNA lincRNA-ROR Promotes the Progression of Colon Cancer and Holds Prognostic Value by Associating with miR-145. Pathol. Oncol. Res. 2016, 22, 733–740.
  150. Chen, Y.; Yang, L.; Yin, D.; Feng, X.; Jie, J.; Yao, D.; Chen, J. Role of Long Noncoding RNA Regulator of Reprogramming in Colon Cancer Progression via Epidermal Growth Factor Receptor Signaling. Technol. Cancer Res. Treat. 2022, 21, 15330338221114707.
  151. Li, X.; Chen, W.; Jia, J.; You, Z.; Hu, C.; Zhuang, Y.; Lin, Z.; Liu, Y.; Yang, C.; Xu, R. The Long Non-Coding RNA-RoR Promotes the Tumorigenesis of Human Colorectal Cancer by Targeting miR-6833-3p Through SMC4. OncoTargets Ther. 2020, 13, 2573–2581.
  152. Li, H.; Jiang, X.; Niu, X. Long Non-Coding RNA Reprogramming (ROR) Promotes Cell Proliferation in Colorectal Cancer via Affecting P53. Med. Sci. Monit. 2017, 23, 919–928.
  153. Chaleshi, V.; Irani, S.; Alebouyeh, M.; Mirfakhraie, R.; Aghdaei, H.A. Association of lncRNA-p53 regulatory network (lincRNA-p21, lincRNA-ROR and MALAT1) and p53 with the clinicopathological features of colorectal primary lesions and tumors. Oncol. Lett. 2020, 19, 3937–3949.
  154. Thiele, J.A.; Hosek, P.; Kralovcova, E.; Ostasov, P.; Liska, V.; Bruha, J.; Vycital, O.; Rosendorf, J.; Opattova, A.; Horak, J.; et al. lncRNAs in Non-Malignant Tissue Have Prognostic Value in Colorectal Cancer. Int. J. Mol. Sci. 2018, 19, 2672.
  155. Fawzy, M.S.; Toraih, E.A.; El-Wazir, A.; Hosny, M.M.; Badran, D.I.; El Kelish, A. Long intergenic non-coding RNA, regulator of reprogramming (LINC-ROR) over-expression predicts poor prognosis in renal cell carcinoma. Arch. Med. Sci. 2021, 17, 1016–1027.
  156. Chen, Y.; Peng, Y.; Xu, Z.; Ge, B.; Xiang, X.; Zhang, T.; Gao, L.; Shi, H.; Wang, C.; Huang, J. LncROR Promotes Bladder Cancer Cell Proliferation, Migration, and Epithelial-Mesenchymal Transition. Cell. Physiol. Biochem. 2017, 41, 2399–2410.
  157. Shi, J.; Zhang, W.; Tian, H.; Zhang, Q.; Men, T. lncRNA ROR promotes the proliferation of renal cancer and is negatively associated with favorable prognosis. Mol. Med. Rep. 2017, 16, 9561–9566.
  158. Shi, J.; Zhang, D.; Zhong, Z.; Zhang, W. lncRNA ROR promotes the progression of renal cell carcinoma through the miR-206/VEGF axis. Mol. Med. Rep. 2019, 20, 3782–3792.
  159. Fan, J.; Xing, Y.; Wen, X.; Jia, R.; Ni, H.; He, J.; Ding, X.; Pan, H.; Qian, G.; Ge, S.; et al. Long non-coding RNA ROR decoys gene-specific histone methylation to promote tumorigenesis. Genome Biol. 2015, 16, 139.
  160. Fan, Y.; Fan, X.; Yan, H.; Liu, Z.; Wang, X.; Yuan, Q.; Xie, J.; Lu, X.; Yang, Y. Long non-coding ROR promotes the progression of papillary thyroid carcinoma through regulation of the TESC/ALDH1A1/TUBB3/PTEN axis. Cell Death Dis. 2022, 13, 157.
  161. Zhang, R.; Hardin, H.; Huang, W.; Buehler, D.; Lloyd, R.V. Long Non-coding RNA Linc-ROR Is Upregulated in Papillary Thyroid Carcinoma. Endocr. Pathol. 2018, 29, 1–8.
  162. Hardin, H.; Helein, H.; Meyer, K.; Robertson, S.; Zhang, R.; Zhong, W.; Lloyd, R.V. Thyroid cancer stem-like cell exosomes: Regulation of EMT via transfer of lncRNAs. Lab. Investig. 2018, 98, 1133–1142.
  163. Yu, Q.; Hardin, H.; Chu, Y.H.; Rehrauer, W.; Lloyd, R.V. Parathyroid Neoplasms: Immunohistochemical Characterization and Long Noncoding RNA (lncRNA) Expression. Endocr. Pathol. 2019, 30, 96–105.
  164. Toraih, E.A.; El-Wazir, A.; Hussein, M.H.; Khashana, M.S.; Matter, A.; Fawzy, M.S.; Hosny, S. Expression of long intergenic non-coding RNA, regulator of reprogramming, and its prognostic value in patients with glioblastoma. Int. J. Biol. Markers 2019, 34, 69–79.
  165. Kovalenko, T.F.; Yadav, B.; Anufrieva, K.S.; Rubtsov, Y.P.; Zatsepin, T.S.; Shcherbinina, E.Y.; Solyus, E.M.; Staroverov, D.B.; Larionova, T.D.; Latyshev, Y.A.; et al. Functions of long non-coding RNA ROR in patient-derived glioblastoma cells. Biochimie 2022, 200, 131–139.
  166. Ruiz Esparza-Garrido, R.; Rodríguez-Corona, J.M.; López-Aguilar, J.E.; Rodríguez-Florido, M.A.; Velázquez-Wong, A.C.; Viedma-Rodríguez, R.; Salamanca-Gómez, F.; Velázquez-Flores, M. Differentially Expressed Long Non-Coding RNAs Were Predicted to Be Involved in the Control of Signaling Pathways in Pediatric Astrocytoma. Mol. Neurobiol. 2017, 54, 6598–6608.
  167. Li, Y.; He, Z.C.; Liu, Q.; Zhou, K.; Shi, Y.; Yao, X.H.; Zhang, X.; Kung, H.F.; Ping, Y.F.; Bian, X.W. Large Intergenic Non-coding RNA-RoR Inhibits Aerobic Glycolysis of Glioblastoma Cells via Akt Pathway. J. Cancer 2018, 9, 880–889.
  168. Gao, Y.; Luo, X.; Zhang, J. LincRNA-ROR is activated by H3K27 acetylation and induces EMT in retinoblastoma by acting as a sponge of miR-32 to activate the Notch signaling pathway. Cancer Gene Ther. 2021, 28, 42–54.
  169. Cheng, F.H.; Zhao, Z.S.; Liu, W.D. Long non-coding RNA ROR regulated ABCB1 to induce cisplatin resistance in osteosarcoma by sponging miR-153-3p. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 7256–7265.
  170. Wang, W.; Li, Y.; Zhi, S.; Li, J.; Miao, J.; Ding, Z.; Peng, Y.; Huang, Y.; Zheng, R.; Yu, H.; et al. LncRNA-ROR/microRNA-185-3p/YAP1 axis exerts function in biological characteristics of osteosarcoma cells. Genomics 2021, 113, 450–461.
  171. Fei, D.; Sui, G.; Lu, Y.; Tan, L.; Dongxu, Z.; Zhang, K. The long non-coding RNA-ROR promotes osteosarcoma progression by targeting miR-206. J. Cell. Mol. Med. 2019, 23, 1865–1872.
  172. Li, X.; Zuo, C.; Wu, M.; Zhang, Z. Linc-ROR promotes arsenite-transformed keratinocyte proliferation by inhibiting P53 activity. Metallomics 2020, 12, 963–973.
  173. Liu, T.; Chi, H.; Chen, J.; Chen, C.; Huang, Y.; Xi, H.; Xue, J.; Si, Y. Curcumin suppresses proliferation and in vitro invasion of human prostate cancer stem cells by ceRNA effect of miR-145 and lncRNA-ROR. Gene 2017, 631, 29–38.
More
This entry is offline, you can click here to edit this entry!
ScholarVision Creations