Architecture and Composition of the Intestinal Flora: History
Please note this is an old version of this entry, which may differ significantly from the current revision.
Subjects: Biology
Contributor: , , , , , , ,

肠道微生物由细菌、古细菌、真核生物和病毒组成,其中99%以上是细菌。已知大约有 10 14种细菌构成成人肠道中的肠道菌群,这个数量是人体体细胞数量的 10 倍。

  • intestinal flora
  • homeostatic imbalances
  • diseases

一、简介

肠道菌群与宿主和谐共存,参与营养物质的消化吸收,也有助于维持宿主免疫系统的完整性,防止病原体定植[ 1 ]。此外,肠道菌群由低或高丰度的各种细菌组成,它们与宿主共同进化。在宿主为肠道菌群提供营养和合适的生存场所的同时,肠道菌群帮助宿主以更有效的方式吸收维生素和短链脂肪酸等营养物质,以驱动生长过程并支持肠道菌群的生长。肠道系统和免疫系统的功能[ 2 ]

2. 肠道菌群的结构和组成

肠道微生物群存在于宿主的整个生命周期。婴儿肠道内细菌的多样性起初很低,在早期发育过程中逐渐加速。新生儿肠道菌群以肠杆菌科葡萄球菌为主,哺乳期肠道菌群以双歧杆菌为主。食用固体饮食后,发现肠道中的细菌主要是厌氧菌株[ 3 ] [ 4 ] [ 5 ]。低水平的拟杆菌和高水平的双歧杆菌也发现在青春期,随后形成以拟杆菌门和厚壁菌门为主的肠道微生物群落,参与碳水化合物和氨基酸的代谢、发酵和氧化磷酸化[ 6 ] [ 7 ]。研究表明,衰老与许多重要变化有关,包括肠道菌群多样性的减少;厚壁菌门和拟杆菌门的比例降低;瘤胃球菌科、毛螺菌科和拟杆菌科的丰度下降; 机会性病原体的丰度增加;和减少对产生维持结构完整性和预防肠道炎症所需的短链脂肪酸至关重要的细菌数量[ 8 ] [ 9 ] [ 10 ]
肠道微生物群的组成在整个消化道中各不相同。食物在进入胃和肠之前与唾液混合。口腔微生物群复杂多样:迄今为止已鉴定出约 1000 种细菌[ 11 ] [ 12 ]。食道微生物群落主要包括厚壁菌门、拟杆菌门、放线菌门、变形菌门和梭杆菌门[ 13 ] [ 14 ]。宿主体内的细菌大多局限在胃肠道内,胃和肠之间的细菌多样性和数量存在显着差异。有 10 到 10 3每克胃内容物的细菌主要包括厚壁菌门、拟杆菌门、梭状芽孢杆菌、放线菌,以及链球菌嗜血杆菌幽门螺杆菌是胃中的主要细菌[ 15 ] [ 16 ]。小肠由十二指肠、空肠和回肠组成。每克十二指肠内含细菌10 3,其中厚壁菌门和放线菌门是主要细菌[ 8 ]。空肠细菌密度高;有 10 4 –10 7每克含量的细菌——主要是革兰氏阳性需氧菌和兼性厌氧菌,如乳酸杆菌肠球菌链球菌。靠近回盲瓣的回肠厌氧菌数量逐渐超过需氧菌,而链球菌是该段肠道的优势菌[ 17 ]。结肠位于大肠下部,含有 10 11 –10 12每克含量的细菌,主要是厌氧菌,包括厚壁菌门和拟杆菌门。人口密度高,多样性高。厚壁菌门与拟杆菌门的比例与疾病的易感性有关。在大肠中,拟杆菌属双歧杆菌属、链球菌属肠杆菌科肠球菌属梭菌属乳酸杆菌属瘤胃球菌属是优势菌。此外,结肠还含有多种致病菌,如空肠弯曲杆菌肠炎沙门氏菌霍乱弧菌大肠杆菌脆弱拟杆菌 [ 15 ]。消化道细菌分布见图1
图1.胃肠道细菌分布:消化道肠道细菌的分布各不相同,口腔内的细菌种类和数量很多。进入食道后,细菌的定植减少。由于胃酸的分泌,胃中的大部分细菌无法存活,让更多的耐酸细菌,如普氏菌罗氏菌、链球菌等占据主导地位。细菌的数量从十二指肠到空肠和回肠增加。这些细菌包括梭菌属乳杆菌属肠球菌属。结肠中存在大量细菌,包括双歧杆菌属、梭菌属瘤胃球菌属、拟杆菌属链球菌属普氏菌属
肠道菌群主要按自然属性分类,包括厚壁菌门、拟杆菌门、变形菌门、放线菌门、疣微菌门、梭杆菌门和蓝细菌门。大约 98% 的肠道菌群由四种主要类型的细菌组成——Firmicutes、Bacteroidetes、Proteobacteria 和 Actinomycetes——细菌的分类如下表 1所示。最常见的细菌属是拟杆菌属梭菌属、消化球菌属、双歧杆菌杆菌属、瘤胃球菌属、粪肠球菌消化链球菌属[ 9 ] . 此外,拟杆菌门中的细菌大部分属于拟杆菌门和普氏菌,厚壁菌门主要是梭菌真细菌瘤胃球菌
表1.肠道菌群中菌种分类:根据自然特性分类,肠道细菌大部分可分为六类:厚壁菌门、拟杆菌门、变形菌门、放线菌门、梭杆菌门和疣微菌门。每个类别都包括细菌种类。
肠道菌群除按自然特性分类外,还可按与宿主的关系分类。与宿主的关系可以是互利的(即共生的)、条件致病的或完全致病的。有益菌主要促进肠道蠕动,预防便秘和腹泻,促进维生素的合成,排出外源性有害物质,阻断双歧杆菌、乳酸杆菌、球菌粪肠球菌杆菌、消化球菌、梭状芽孢杆菌罗氏菌等病原体 的入侵。 18] [ 19 ]。在一定条件下,有条件的病原菌具有侵入性,对人体造成伤害。条件致病微生物通常包括大肠杆菌肠球菌瘤胃球菌、拟杆菌脱硫弧菌白色念珠菌铜绿假单胞菌以及变形菌[ 20 ]. 致病菌产生有毒代谢物,增加肠道对有害物质的重吸收,从而导致肠道蠕动异常,致病菌对肠道的侵袭增加,包括大肠杆菌葡萄球菌、变形杆菌、链球菌消化链球菌、梭杆菌、梭菌克雷伯氏菌普雷沃氏菌破伤风梭菌韦荣氏菌科 [ 21 ] [ 22 ]

This entry is adapted from the peer-reviewed paper 10.3390/ijms23158343

References

  1. Albhaisi, S.A.M.; Bajaj, J.S.; Sanyal, A.J. Role of gut microbiota in liver disease. Am. J. Physiol. Gastrointest. Liver Physiol. 2020, 318, G84–G98.
  2. Shi, N.; Li, N.; Duan, X.; Niu, H. Interaction between the gut microbiome and mucosal immune system. Mil. Med. Res. 2017, 4, 14.
  3. Milani, C.; Ferrario, C.; Turroni, F.; Duranti, S.; Mangifesta, M.; van Sinderen, D.; Ventura, M. The human gut microbiota and its interactive connections to diet. J. Hum. Nutr. Diet. 2016, 29, 539–546.
  4. Tanaka, M.; Sanefuji, M.; Morokuma, S.; Yoden, M.; Momoda, R.; Sonomoto, K.; Ogawa, M.; Kato, K.; Nakayama, J. The association between gut microbiota development and maturation of intestinal bile acid metabolism in the first 3 y of healthy Japanese infants. Gut Microbes 2020, 11, 205–216.
  5. Adlerberth, I.; Wold, A.E. Establishment of the gut microbiota in Western infants. Acta Paediatr. 2009, 98, 229–238.
  6. Durack, J.; Lynch, S.V. The gut microbiome: Relationships with disease and opportunities for therapy. J. Exp. Med. 2019, 216, 20–40.
  7. Hollister, E.B.; Riehle, K.; Luna, R.A.; Weidler, E.M.; Rubio-Gonzales, M.; Mistretta, T.A.; Raza, S.; Doddapaneni, H.V.; Metcalf, G.A.; Muzny, D.M.; et al. Structure and function of the healthy pre-adolescent pediatric gut microbiome. Microbiome 2015, 3, 36.
  8. Adak, A.; Khan, M.R. An insight into gut microbiota and its functionalities. Cell Mol. Life Sci. 2019, 76, 473–493.
  9. Gomaa, E.Z. Human gut microbiota/microbiome in health and diseases: A review. Antonie Van Leeuwenhoek 2020, 113, 2019–2040.
  10. Gonzalez Olmo, B.M.; Butler, M.J.; Barrientos, R.M. Evolution of the Human Diet and Its Impact on Gut Microbiota, Immune Responses, and Brain Health. Nutrients 2021, 13, 196.
  11. Dewhirst, F.E.; Chen, T.; Izard, J.; Paster, B.J.; Tanner, A.C.; Yu, W.H.; Lakshmanan, A.; Wade, W.G. The human oral microbiome. J. Bacteriol. 2010, 192, 5002–5017.
  12. Wade, W.G. The oral microbiome in health and disease. Pharmacol. Res. 2013, 69, 137–143.
  13. Martinez-Guryn, K.; Leone, V.; Chang, E.B. Regional Diversity of the Gastrointestinal Microbiome. Cell Host Microbe 2019, 26, 314–324.
  14. Pei, Z.; Bini, E.J.; Yang, L.; Zhou, M.; Francois, F.; Blaser, M.J. Bacterial biota in the human distal esophagus. Proc. Natl. Acad. Sci. USA 2004, 101, 4250–4255.
  15. Jandhyala, S.M.; Talukdar, R.; Subramanyam, C.; Vuyyuru, H.; Sasikala, M.; Nageshwar Reddy, D. Role of the normal gut microbiota. World J. Gastroenterol. 2015, 21, 8787–8803.
  16. Nardone, G.; Compare, D. The human gastric microbiota: Is it time to rethink the pathogenesis of stomach diseases? United Eur. Gastroenterol. J. 2015, 3, 255–260.
  17. O’Hara, A.M.; Shanahan, F. The gut flora as a forgotten organ. EMBO Rep. 2006, 7, 688–693.
  18. Weaver, K.E. Enterococcal Genetics. Microbiol. Spectr. 2019, 7, 7.2.11.
  19. Ma, Q.; Li, Y.; Li, P.; Wang, M.; Wang, J.; Tang, Z.; Wang, T.; Luo, L.; Wang, C.; Wang, T.; et al. Research progress in the relationship between type 2 diabetes mellitus and intestinal flora. Biomed. Pharmacother. 2019, 117, 109138.
  20. Krawczyk, B.; Wityk, P.; Galecka, M.; Michalik, M. The Many Faces of Enterococcus spp.-Commensal, Probiotic and Opportunistic Pathogen. Microorganisms 2021, 9, 1900.
  21. Murphy, E.C.; Frick, I.M. Gram-positive anaerobic cocci—Commensals and opportunistic pathogens. FEMS Microbiol. Rev. 2013, 37, 520–553.
  22. Martin, R.M.; Bachman, M.A. Colonization, Infection, and the Accessory Genome of Klebsiella pneumoniae. Front. Cell Infect. Microbiol. 2018, 8, 4.
More
This entry is offline, you can click here to edit this entry!
Video Production Service