Ambient Mass Spectrometry Imaging and Its Applications: History
Please note this is an old version of this entry, which may differ significantly from the current revision.
Subjects: Chemistry, Applied

Ambient mass spectrometry imaging (AMSI) has attracted much attention in recent years. As a kind of unlabeled molecular imaging technique, AMSI can enable in situ visualization of a large number of compounds in biological tissue sections in ambient conditions. In this review, the developments of various AMSI techniques are discussed according to one-step and two-step ionization strategies. In addition, recent applications of AMSI for lipid and metabolite analysis (from 2016 to 2021) in disease diagnosis, animal model research, plant science, drug metabolism and toxicology research, etc., are summarized. Finally, further perspectives of AMSI in spatial resolution, sensitivity, quantitative ability, convenience and software development are proposed. 

  • ambient mass spectrometry imaging (AMSI)
  • lipid
  • metabolite

1. Introduction
Mass spectrometry imaging (MSI) is a powerful analytical method, which is able to visualize the spatial distribution of a large number of compounds from the complex sample surface in a single experiment [1].
Generally in MSI experiments, the sample sections should be carefully prepared and then scanned and ionized by various desorption/ionization methods. The ion intensity of each individual compound at the target mass-to-charge ratio (
m/z) are extracted from each pixel’s mass spectrum and combined into a heat map revealing the relative distribution of that compound throughout the sample surface. Compared with conventional tagprobe labeling optical imaging methods, MSI enables the un-targeted imaging of multiple compounds without the need for labeling.
Ambient mass spectrometry refers to those ionization techniques operated in an atmospheric environment with little or no sample preparation [
2,3]. It was firstly introduced by Cooks et al. in 2004 with the invention of desorption electrospray ionization (DESI) [4]. Due to its high sensitivity, high speed and easy operation at native conditions, ambient mass spectrometry was widely used in MSI, and ambient mass spectrometry imaging (AMSI) has been developed to be an important branch of MSI. In AMSI, compounds are desorbed from the sample surface at ambient conditions, ionized by charged microdroplets, photons or plasma, and then introduced into the mass spectrometer for further detection. Up to now, AMSI techniques based on different ionization methods have been proposed for the improvement of sensitivity and spatial resolution, and they have been widely applied in disease diagnosis, drug metabolism, toxicology research, forensic investigation and plant science [57]. Lipid and metabolite are the small-molecule entities that have key roles for the establishment of physiological function within the biological systems. The MSI of a global lipid and the metabolite profile from a biological tissue can help with an enhanced understanding of disease molecular mechanisms, the discovery of biomarkers and the elucidation the mechanisms of drug action [8].
Several excellent reviews on different topics of AMSI have been reported. For example, Xue et al. summarized AMSI techniques from the aspects of ion source devices, ionization mechanism, resolution, sensitivity and applications in 2019 [9]. Xiao et al. introduced the important applications of the AMSI technique in pharmacology, drug metabolism, clinical diagnosis and toxicological evaluation in 2020 [10]. In this review, we will summarize the developments of AMSI technologies according to one-step/two-step ionization strategies and their application advances in lipid and metabolite from 2016 to 2021. In addition, the prospects of AMSI techniques and their applications for biological samples in the near future are discussed. Figure 1 shows the schemes of AMSI for lipid and metabolite analysis in this work. 

Figure 1. The schemes of ambient mass spectrometry imaging for lipid and metabolite analysis. 2. Development of AMSI Techniques
In AMSI, the process of target analytes on the sample surface being desorbed and simultaneously ionized is called the one-step ionization strategy, whereas when the desorbed analytes are post-ionized by another ionization source this is called the two-step ionization strategy.
2.1. One-Step Ionization Strategy
2.1.1. Desorption Electrospray Ionization (DESI)
2.1.2. Desorption Atmospheric Pressure Chemical Ionization (DAPCI) and Low-Temperature Plasma (LTP)
2.1.3. Atmospheric Pressure Matrix-Assisted Laser Desorption/Ionization (AP-MALDI) 
Figure 2. Schemes of DESI, AFADESI, EASI, DAPCI, LTP and AP-MALDI ion source. 2.2. Two-Step Ionization Strategy
In the two-step ionization strategy, desorption and ionization of analytes are separated into two steps: (1) generating analyte-containing droplets/particles/gastification products from target samples; (2) post-ionizing the desorbed neutral species. The first step is normally fulfilled by thermal desorption, laser desorption and droplet pick-up, etc. As is well known to us, some compounds can be ionized during the initial laser desorption and microdroplets pick-up processes. However, due to the matrix effect in the microenvironment of biological tissues, most of the desorbed molecules are not ionized [31]. In the second step, the desorbed neutral species can be post-ionized by using charged microdroplets, plasma or photons in ambient conditions.
2.2.1. Post-Ionization by ESI

Figure 3. Schemes of nano-DESI, single probe, LAESI, LDIDD ion source.

2.2.2. Post-Ionization by Plasma Ionization

Figure 4. Schemes of  PALDI, LADBDI, LADI, LAAPCI ion source.

2.2.3. Post-Ionization by Photoionization (PI)

Figure 5. Schemes of DAPPI, LAAPPI, DESI/PI ion source.

3. Applications in Lipids and Metabolites
3.1. Lipids
Lipids are components of the cell membrane, and they play a vital role in cell membrane fluidity, neurotransmitter transmission and transport and energy supply [74,75]. Lipid compositions can reflect histological type and cell growth state; hence, the alteration of lipid metabolism is linked to the occurrence of several human diseases [76], such as Alzheimer’s disease, breast cancer [77] and basal cell carcinoma [14]. Lipidomic analysis can provide valuable information for understanding the molecular pathological mechanisms of many diseases, diagnosis and differentiation of diseases and assessment of resection margins during clinical surgery, etc. [6,7880]. It should be noted that the spatial distribution of proteins could also be visualized by the fluorescent labeling method, termed immunohistochemistry and immunofluorescence, whereas few other technologies can image lipids [81]. In past years, it has been demonstrated that AMSI techniques can be performed to visualize the spatial distribution of the sample surface compounds in the native state, and that they have a high sensitivity to lipids and other small molecules in
diseased tissues, animal models and plants, etc.

Figure 6. The applications of AMSI in lipid analysis.

3.2. Metabolites

Molecular metabolites such as neurotransmitters, amino acids and vitamins play an important role in biosynthesis, energy production and supply, signal transduction and regulation and cognitive processes [108–110]. Changes in small molecules metabolites are often closely related to the nervous system and disease states, such as depression, Alzheimer’s disease, movement disorders, being overweight, obesity and so on [111–115]. Therefore, a comprehensive and detailed understanding of the relative abundance and spatial distribution of small-molecule metabolites in organisms is an outstanding contribution to further understanding the metabolic reorganization of tumors, elucidating the metabolic mechanism in the process of disease development and searching for potential metabolic markers for disease diagnosis. As an unlabeled molecular imaging method, AMSI technique can obtain spatial distribution information of many small-molecule metabolites in
a single experiment with little or without any pretreatment. For the imaging of labile metabolites in ambient conditions, the labile group could be protected via in situ chemical derivatization [116].

Figure 7. The applications of AMSI in metabolite analysis.


1. Chen, K.; Baluya, D.; Tosun, M.; Li, F.; Maletic-Savatic, M. Imaging Mass Spectrometry: A New Tool to Assess Molecular Underpinnings of Neurodegeneration. Metabolites 2019, 9, 135. [CrossRef] [PubMed]
2. Kuo, T.-H.; Dutkiewicz, E.P.; Pei, J.; Hsu, C.-C. Ambient Ionization Mass Spectrometry Today and Tomorrow: Embracing Challenges and Opportunities.
Anal. Chem. 2020, 92, 2353–2363. [CrossRef] [PubMed]
3. Cooks, R.G.; Zheng, O.; Zoltan, T.; Wiseman, J.M. Ambient Mass Spectrometry.
Science 2006, 311, 1566–1570. [CrossRef] [PubMed]
4. Tak
áts, Z.; Wiseman, J.M.; Gologan, B.; Cooks, R.G. Mass Spectrometry Sampling under Ambient Conditions with Desorption Electrospray Ionization. Science 2004, 306, 471–473. [CrossRef]
5. Karlsson, O.; Hanrieder, J. Imaging mass spectrometry in drug development and toxicology.
Arch. Toxicol. 2017, 91, 2283–2294. [CrossRef]
6. Calligaris, D.; Caragacianu, D.; Liu, X.; Norton, I.; Thompson, C.J.; Richardson, A.L.; Golshan, M.; Easterling, M.L.; Santagata, S.; Dillon, D.A.; et al. Application of desorption electrospray ionization mass spectrometry imaging in breast cancer margin analysis.
Proc. Natl. Acad. Sci. USA 2014, 111, 15184–15189. [CrossRef]
7. Hu, W.; Han, Y.; Sheng, Y.; Wang, Y.; Pan, Q.; Nie, H. Mass spectrometry imaging for direct visualization of components in plants tissues.
J. Sep. Sci. 2021, 44, 3462–3476. [CrossRef]
8. Miura, D.; Yoshinori, F.; Hiroyuki, W. In Situ Metabolomic Mass Spectrometry Imaging: Recent Advances and Difficulties.
J. Proteom. 2012, 75, 5052–5060. [CrossRef]
9. Xue, J.; Bai, Y.; Liu, H. Recent advances in ambient mass spectrometry imaging.
TrAC Trends Anal. Chem. 2019, 120, 115659. [CrossRef]
10. Xiao, Y.; Deng, J.; Yao, Y.; Fang, L.; Yang, Y.; Luan, T. Recent Advances of Ambient Mass Spectrometry Imaging for Biological Tissues: A Review.
Anal. Chim. Acta 2020, 1117, 74–88. [CrossRef]
11. Wiseman, J.; Ifa, D.R.; Song, Q.; Cooks, R.G. Tissue Imaging at Atmospheric Pressure Using Desorption Electrospray Ionization (DESI) Mass Spectrometry.
Angew. Chem. Int. Ed. 2006, 45, 7188–7192. [CrossRef]
12. Takats, Z.; Wiseman, J.M.; Cooks, R.G. Ambient Mass Spectrometry Using Desorption Electrospray Ionization (Desi): Instrumentation, Mechanisms and Applications in Forensics, Chemistry, and Biology.
J. Mass. Spectrom. 2005, 40, 1261–1275. [CrossRef]
13. Wiseman, J.M.; Ifa, D.R.; Zhu, Y.; Kissinger, C.B.; Manicke, N.E.; Kissinger, P.T.; Cooks, R.G. Desorption electrospray ionization mass spectrometry: Imaging drugs and metabolites in tissues.
Proc. Natl. Acad. Sci. USA 2008, 105, 18120–18125. [CrossRef]
14. Margulis, K.; Chiou, A.S.; Aasi, S.Z.; Tibshirani, R.J.; Tang, J.Y.; Zare, R.N. Distinguishing Malignant from Benign Microscopic Skin Lesions Using Desorption Electrospray Ionization Mass Spectrometry Imaging.
Proc. Natl. Acad. Sci. USA 2018, 115, 6347–6352. [CrossRef]
15. Tang, F.; Chen, Y.; He, J.-M.; Luo, Z.-G.; Abliz, Z.; Wang, X.-H. Design and performance of air flow-assisted ionization imaging mass spectrometry system.
Chin. Chem. Lett. 2014, 25, 687–692. [CrossRef]
16. Luo, Z.; He, J.; Chen, Y.; He, J.; Gong, T.; Tang, F.; Wang, X.; Zhang, R.; Huang, L.; Zhang, L.; et al. Air Flow-Assisted Ionization Imaging Mass Spectrometry Method for Easy Whole-Body Molecular Imaging under Ambient Conditions.
Anal. Chem. 2013, 85, 2977–2982. [CrossRef]
17. He, J.; Sun, C.; Li, T.; Luo, Z.; Huang, L.; Song, X.; Li, X.; Abliz, Z. A Sensitive and Wide Coverage Ambient Mass Spectrometry Imaging Method for Functional Metabolites Based Molecular Histology.
Adv. Sci. 2018, 5, 1800250. [CrossRef]
18. Song, X.; Luo, Z.; Li, X.; Li, T.; Wang, Z.; Sun, C.; Huang, L.; Xie, P.; Liu, X.; He, J.; et al. In Situ Hydrogel Conditioning of Tissue Samples To Enhance the Drug’s Sensitivity in Ambient Mass Spectrometry Imaging.
Anal. Chem. 2017, 89, 6318–6323. [CrossRef]
19. Wang, X.; Hou, Y.; Hou, Z.; Xiong, W.; Huang, G. Mass Spectrometry Imaging of Brain Cholesterol and Metabolites with Trifluoroacetic Acid-Enhanced Desorption Electrospray Ionization.
Anal. Chem. 2019, 91, 2719–2726. [CrossRef]
20. Campbell, D.I.; Ferreira, C.R.; Eberlin, L.S.; Cooks, R.G. Improved spatial resolution in the imaging of biological tissue using desorption electrospray ionization.
Anal. Bioanal. Chem. 2012, 404, 389–398. [CrossRef]
21. Haddad, R.; Milagre, H.; Catharino, R.; Eberlin, M.N. Easy Ambient Sonic-Spray Ionization Mass Spectrometry Combined with Thin-Layer Chromatography.
Anal. Chem. 2008, 80, 2744–2750. [CrossRef]
22. Alberici, R.M.; Vendramini, P.H.; Eberlin, M.N. Easy ambient sonic-spray ionization mass spectrometry for tissue imaging.
Anal. Methods 2017, 9, 5029–5036. [CrossRef]
23. Janfelt, C.; Nørgaard, A.W. Ambient Mass Spectrometry Imaging: A Comparison of Desorption Ionization by Sonic Spray and Electrospray.
J. Am. Soc. Mass Spectrom. 2012, 23, 1670–1678. [CrossRef]
24. Song, Y.; Cooks, R.G. Atmospheric Pressure Ion/Molecule Reactions for the Selective Detection of Nitroaromatic Explosives Using Acetonitrile and Air as Reagents.
Rapid Commun. Mass Spectrom. 2006, 20, 3130–3138. [CrossRef]
25. Ouyang, Y.; Liu, J.; Nie, B.; Dong, N.; Chen, X.; Chen, L.; Wei, Y. Differential diagnosis of human lung tumors using surface desorption atmospheric pressure chemical ionization imaging mass spectrometry.
RSC Adv. 2017, 7, 56044–56053. [CrossRef]
26. Harper, J.D.; Charipar, N.A.; Mulligan, C.C.; Zhang, X.; Cooks, R.G.; Ouyang, Z. Low-Temperature Plasma Probe for Ambient Desorption Ionization.
Anal. Chem. 2008, 80, 9097–9104. [CrossRef]
27. Liu, Y.; Ma, X.; Lin, Z.; He, M.; Han, G.; Yang, C.; Xing, Z.; Zhang, S.; Zhang, X. Imaging Mass Spectrometry with a LowTemperature Plasma Probe for the Analysis of Works of Art.
Angew. Chem. Int. Ed. 2010, 49, 4435–4437. [CrossRef]

28. Laiko, V.V.; Moyer, S.C.; Cotter, R.J. Atmospheric Pressure MALDI/Ion Trap Mass Spectrometry. Anal. Chem. 2000, 72, 5239–5243. [CrossRef]
29. Chen, B.; OuYang, C.; Tian, Z.; Xu, M.; Li, L. A High Resolution Atmospheric Pressure Matrix-Assisted Laser Desorption/IonizationQuadrupole-Orbitrap Ms Platform Enables in Situ Analysis of Biomolecules by Multi-Mode Ionization and Acquisition.
Anal. Chim. Acta 2018, 1007, 16–25. [CrossRef]
30. Kompauer, M.; Heiles, S.; Spengler, B. Atmospheric Pressure Maldi Mass Spectrometry Imaging of Tissues and Cells at 1.4-Mm Lateral Resolution.
Nat. Methods 2017, 14, 90–96. [CrossRef]
31. Soltwisch, J.; Kettling, H.; Vens-Cappell, S.; Wiegelmann, M.; Müthing, J.; Dreisewerd, K. Mass spectrometry imaging with laser-induced postionization.
Science 2015, 348, 211–215. [CrossRef] [PubMed]
32. Roach, P.J.; Laskin, J.; Laskin, A. Nanospray Desorption Electrospray Ionization: An Ambient Method for Liquid-Extraction Surface Sampling in Mass Spectrometry.
Analyst 2010, 135, 2233–2236. [CrossRef] [PubMed]
33. Yin, R.; Kyle, J.; Burnum-Johnson, K.; Bloodsworth, K.J.; Sussel, L.; Ansong, C.; Laskin, J. High Spatial Resolution Imaging of Mouse Pancreatic Islets Using Nanospray Desorption Electrospray Ionization Mass Spectrometry.
Anal. Chem. 2018, 90, 6548–6555. [CrossRef] [PubMed]
34. Duncan, K.D.; Lanekoff, I. Oversampling to Improve Spatial Resolution for Liquid Extraction Mass Spectrometry Imaging.
Anal. Chem. 2018, 90, 2451–2455. [CrossRef] [PubMed]
35. Nguyen, S.N.; Liyu, A.V.; Chu, R.K.; Anderton, C.R.; Laskin, J. Constant-Distance Mode Nanospray Desorption Electrospray Ionization Mass Spectrometry Imaging of Biological Samples with Complex Topography.
Anal. Chem. 2017, 89, 1131–1137. [CrossRef]
36. Yin, R.; Burnum-Johnson, K.E.; Sun, X.; Dey, S.K.; Laskin, J. High spatial resolution imaging of biological tissues using nanospray desorption electrospray ionization mass spectrometry.
Nat. Protoc. 2019, 14, 3445–3470. [CrossRef]
37. Pan, N.; Rao, W.; Kothapalli, N.R.; Liu, R.; Burgett, A.W.G.; Yang, Z. The Single-Probe: A Miniaturized Multifunctional Device for Single Cell Mass Spectrometry Analysis.
Anal. Chem. 2014, 86, 9376–9380. [CrossRef]
38. Rao, W.; Pan, N.; Yang, Z. High Resolution Tissue Imaging Using the Single-probe Mass Spectrometry under Ambient Conditions.
J. Am. Soc. Mass Spectrom. 2015, 26, 986–993. [CrossRef]
39. Pan, N.; Standke, S.J.; Kothapalli, N.R.; Sun, M.; Bensen, R.C.; Burgett, A.W.G.; Yang, Z. Quantification of Drug Molecules in Live
Single Cells Using the Single-Probe Mass Spectrometry Technique.
Anal. Chem. 2019, 91, 9018–9024. [CrossRef]
40. Rao, W.; Pan, N.; Yang, Z. Applications of the Single-probe: Mass Spectrometry Imaging and Single Cell Analysis under Ambient Conditions.
J. Vis. Exp. 2016, 112, e53911. [CrossRef]
41. Nemes, P.; Vertes, A. Laser Ablation Electrospray Ionization for Atmospheric Pressure, in Vivo, and Imaging Mass Spectrometry.
Anal. Chem. 2007, 79, 8098–8106. [CrossRef]
42. Van Geenen, F.A.M.G.; Franssen, M.C.R.; Schotman, A.H.M.; Zuilhof, H.; Nielen, M.W.F. Ambient Characterization of Synthetic Fibers by Laser Ablation Electrospray Ionization Mass Spectrometry.
Anal. Chem. 2017, 89, 4031–4037. [CrossRef]
43. Taylor, M.J.; Liyu, A.; Vertes, A.; Anderton, C.R. Ambient Single-Cell Analysis and Native Tissue Imaging Using Laser-Ablation Electrospray Ionization Mass Spectrometry with Increased Spatial Resolution.
J. Am. Soc. Mass. Spectrom. 2021, 32, 2490–2494. [CrossRef]
44. Kulkarni, P.; Wilschut, R.A.; Verhoeven, K.J.F.; van der Putten, W.H.; Garbeva, P. LAESI mass spectrometry imaging as a tool to differentiate the root metabolome of native and range-expanding plant species.
Planta 2018, 248, 1515–1523. [CrossRef]
45. Li, H.; Balan, P.; Vertes, A. Molecular Imaging of Growth, Metabolism, and Antibiotic Inhibition in Bacterial Colonies by Laser Ablation Electrospray Ionization Mass Spectrometry.
Angew. Chem. Int. Ed. 2016, 55, 15035–15039. [CrossRef]
46. Sampson, J.S.; Hawkridge, A.M.; Muddiman, D.C. Generation and detection of multiply-charged peptides and proteins by matrix-assisted laser desorption electrospray ionization (MALDESI) fourier transform ion cyclotron resonance mass spectrometry.
J. Am. Soc. Mass Spectrom. 2006, 17, 1712–1716. [CrossRef]
47. Bokhart, M.; Muddiman, D.C. Infrared matrix-assisted laser desorption electrospray ionization mass spectrometry imaging analysis of biospecimens.
Analyst 2016, 141, 5236–5245. [CrossRef]
48. Nazari, M.; Bokhart, M.T.; Muddiman, D.C. Whole-body Mass Spectrometry Imaging by Infrared Matrix-assisted Laser Desorption Electrospray Ionization (IR-MALDESI).
J. Vis. Exp. 2016, 109, e53942. [CrossRef]
49. Barry, J.A.; Robichaud, G.; Bokhart, M.T.; Thompson, C.; Sykes, C.; Kashuba, A.D.; Muddiman, D.C. Mapping Antiretroviral Drugs in Tissue by Ir-Maldesi Msi Coupled to the Q Exactive and Comparison with Lc-Ms/Ms Srm Assay.
J. Am. Soc. Mass Spectrom. 2014, 25, 2038–2047. [CrossRef]
50. Khodjaniyazova, S.; Hanne, N.J.; Cole, J.H.; Muddiman, D.C. Mass spectrometry imaging (MSI) of fresh bones using infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI).
Anal. Methods 2019, 11, 5929–5938. [CrossRef]
51. Bagley, M.C.; Pace, C.L.; Ekelöf, M.; Muddiman, D.C. Infrared Matrix-Assisted Laser Desorption Electrospray Ionization (IrMaldesi) Mass Spectrometry Imaging Analysis of Endogenous Metabolites in Cherry Tomatoes.
Analyst 2020, 145, 5516–5523. [CrossRef]
52. Nazari, M.; Bokhart, M.; Loziuk, P.L.; Muddiman, D.C. Quantitative mass spectrometry imaging of glutathione in healthy and cancerous hen ovarian tissue sections by infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI).
Analyst 2018, 143, 654–661. [CrossRef]

53. Bai, H.; Linder, K.E.; Muddiman, D.C. Three-Dimensional (3d) Imaging of Lipids in Skin Tissues with Infrared Matrix-Assisted Laser Desorption Electrospray Ionization (Maldesi) Mass Spectrometry. Anal. Bioanal. Chem. 2021, 413, 2793–2801. [CrossRef]
54. Bai, H.; Khodjaniyazova, S.; Garrard, K.P.; Muddiman, D.C. Three-Dimensional Imaging with Infrared Matrix-Assisted Laser Desorption Electrospray Ionization Mass Spectrometry.
J. Am. Soc. Mass Spectrom. 2020, 31, 292–297. [CrossRef]
55. Bagley, M.C.; Garrard, K.P.; Muddiman, D.C. The development and application of matrix assisted laser desorption electrospray ionization: The teenage years.
Mass Spectrom. Rev. 2021, online ahead of print. [CrossRef]
56. Lee, J.K.; Jansson, E.T.; Nam, H.G.; Zare, R.N. High-Resolution Live-Cell Imaging and Analysis by Laser Desorption/Ionization Droplet Delivery Mass Spectrometry.
Anal. Chem. 2016, 88, 5453–5461. [CrossRef]
57. Laskin, J.; Heath, B.S.; Roach, P.J.; Cazares, L.; Semmes, O.J. Tissue Imaging Using Nanospray Desorption Electrospray Ionization Mass Spectrometry.
Anal. Chem. 2012, 84, 141–148. [CrossRef]
58. Cody, R.B.; Laram
ée, J.A.; Durst, H.D. Versatile New Ion Source for the Analysis of Materials in Open Air under Ambient Conditions. Anal. Chem. 2005, 77, 2297–2302. [CrossRef]
59. Zhang, J.; Zhou, Z.; Yang, J.; Zhang, W.; Bai, Y.; Liu, H. Thin Layer Chromatography/Plasma Assisted Multiwavelength Laser Desorption Ionization Mass Spectrometry for Facile Separation and Selective Identification of Low Molecular Weight Compounds.
Anal. Chem. 2012, 84, 1496–1503. [CrossRef]
60. Feng, B.; Zhang, J.; Chang, C.; Li, L.; Li, M.; Xiong, X.; Guo, C.; Tang, F.; Bai, Y.; Liu, H. Ambient Mass Spectrometry Imaging: Plasma Assisted Laser Desorption Ionization Mass Spectrometry Imaging and Its Applications.
Anal. Chem. 2014, 86, 4164–4169. [CrossRef]
61. Lu, Q.; Xu, Z.; You, X.; Ma, S.; Zenobi, R. Atmospheric Pressure Mass Spectrometry Imaging Using Laser Ablation, Followed by Dielectric Barrier Discharge Ionization.
Anal. Chem. 2021, 93, 6232–6238. [CrossRef] [PubMed]
62. Lu, Q.; Guan, X.; You, X.; Xu, Z.; Zenobi, R. High-Spatial Resolution Atmospheric Pressure Mass Spectrometry Imaging Using Fiber Probe Laser Ablation-Dielectric Barrier Discharge Ionization.
Anal. Chem. 2021, 93, 14694–14700. [CrossRef] [PubMed]
63. Fowble, K.L.; Teramoto, K.; Cody, R.B.; Edwards, D.; Guarrera, D.; Musah, R.A. Development of Laser Ablation Direct Analysis in Real Time Imaging Mass Spectrometry: Application to Spatial Distribution Mapping of Metabolites Along the Biosynthetic Cascade Leading to Synthesis of Atropine and Scopolamine in Plant Tissue.
Anal. Chem. 2017, 89, 3421–3429. [CrossRef] [PubMed]
64. Herdering, C.; Reifschneider, O.; Wehe, C.A.; Sperling, M.; Karst, U. Ambient Molecular Imaging by Laser Ablation Atmospheric Pressure Chemical Ionization Mass Spectrometry.
Rapid Commun. Mass Spectrom. 2013, 27, 2595–2600. [CrossRef]
65. Elia, E.A.; Niehaus, M.; Steven, R.T.; Wolf, J.-C.; Bunch, J. Atmospheric Pressure MALDI Mass Spectrometry Imaging Using In-Line Plasma Induced Postionization.
Anal. Chem. 2020, 92, 15285–15290. [CrossRef]
66. Haapala, M.; P
ól, J.; Saarela, V.; Arvola, V.; Kotiaho, T.; Ketola, R.A.; Franssila, S.; Kauppila, T.J.; Kostiainen, R. Desorption Atmospheric Pressure Photoionization. Anal. Chem. 2007, 79, 7867–7872. [CrossRef]
67. Robb, D.B.; Covey, T.R.; Bruins, A.P. Atmospheric Pressure Photoionization: An Ionization Method for Liquid Chromatography—Mass Spectrometry.
Anal. Chem. 2000, 72, 3653–3659. [CrossRef]
68. Rejšek, J.; Vrkoslav, V.; Hanus, R.; Vaikkinen, A.; Haapala, M.; Kauppila, T.J.; Kostiainen, R.; Cvaˇcka, J. The Detection and Mapping of the Spatial Distribution of Insect Defense Compounds by Desorption Atmospheric Pressure Photoionization Orbitrap Mass Spectrometry.
Anal. Chim. Acta 2015, 886, 91–97. [CrossRef]
69. Vaikkinen, A.; Shrestha, B.; Kauppila, T.J.; Vertes, A.; Kostiainen, R. Infrared Laser Ablation Atmospheric Pressure Photoionization Mass Spectrometry.
Anal. Chem. 2012, 84, 1630–1636. [CrossRef]
70. Räsänen, R.-M.; Hieta, J.-P.; Immanen, J.; Nieminen, K.; Haavikko, R.; Yli-Kauhaluoma, J.; Kauppila, T.J. Chemical profiles of birch and alder bark by ambient mass spectrometry.
Anal. Bioanal. Chem. 2019, 411, 7573–7583. [CrossRef]
71. Hieta, J.-P.; Vaikkinen, A.; Auno, S.; Räikkönen, H.; Haapala, M.; Scotti, G.; Kopra, J.; Piepponen, P.; Kauppila, T.J. A Simple Method for Improving the Spatial Resolution in Infrared Laser Ablation Mass Spectrometry Imaging.
J. Am. Soc. Mass Spectrom. 2017, 28, 1060–1065. [CrossRef]
72. Hieta, J.P.; Kopra, J.; Räikkönen, H.; Kauppila, T.J.; Kostiainen, R. Sub-100 Mm Spatial Resolution Ambient Mass Spectrometry Imaging of Rodent Brain with Laser Ablation Atmospheric Pressure Photoionization (Laappi) and Laser Ablation Electrospray Ionization (Laesi).
Anal. Chem. 2020, 92, 13734–13741. [CrossRef]
73. Liu, C.; Qi, K.; Yao, L.; Xiong, Y.; Zhang, X.; Zang, J.; Tian, C.; Xu, M.; Yang, J.; Lin, Z.; et al. Imaging of Polar and Nonpolar Species Using Compact Desorption Electrospray Ionization/Postphotoionization Mass Spectrometry.
Anal. Chem. 2019, 91, 6616–6623. [CrossRef]
74. Han, X.; Yang, K.; Gross, R.W. Multi-dimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses.
Mass Spectrom. Rev. 2012, 31, 134–178. [CrossRef]
75. Deng, J.; Yang, Y.; Luo, L.; Xiao, Y.; Luan, T. Lipid analysis and lipidomics investigation by ambient mass spectrometry.
TrAC Trends Anal. Chem. 2020, 128, 115924. [CrossRef]
76. Yang, L.; Li, M.; Shan, Y.; Shen, S.; Bai, Y.; Liu, H. Recent advances in lipidomics for disease research.
J. Sep. Sci. 2016, 39, 38–50. [CrossRef]
77. Santoro, A.L.; Drummond, R.D.; Da Silva, I.T.; Ferreira, S.S.; Juliano, L.; Vendramini, P.H.; Lemos, M.B.D.C.; Eberlin, M.N.; De Andrade, V.P. In Situ DESI-MSI Lipidomic Profiles of Breast Cancer Molecular Subtypes and Precursor Lesions.
Cancer Res. 2020, 80, 1246–1257. [CrossRef]

78. Eberlin, L.S.; Dill, A.L.; Golby, A.J.; Ligon, K.L.; Wiseman, J.M.; Cooks, R.G.; Agar, N.Y. Discrimination of Human Astrocytoma Subtypes by Lipid Analysis Using Desorption Electrospray Ionization Imaging Mass Spectrometry. Angew. Chem. Int. Ed. 2010, 49, 5953–5956. [CrossRef]
79. Calligaris, D.; Feldman, D.R.; Norton, I.; Olubiyi, O.; Changelian, A.N.; Machaidze, R.; Vestal, M.L.; Laws, E.R.; Dunn, I.F.; Santagata, S.; et al. MALDI mass spectrometry imaging analysis of pituitary adenomas for near-real-time tumor delineation.
Proc. Natl. Acad. Sci. USA 2015, 112, 9978–9983. [CrossRef]
80. Eberlin, L.S.; Margulis, K.; Planell-Mendez, I.; Zare, R.N.; Tibshirani, R.; Longacre, T.A.; Jalali, M.; Norton, J.A.; Poultsides, G.A. Pancreatic Cancer Surgical Resection Margins: Molecular Assessment by Mass Spectrometry Imaging.
PLoS Med. 2016, 13, e1002108. [CrossRef]
81. Castellanos, A.; Hernandez, M.G.; Tomic-Canic, M.; Jozic, I.; Fernandez-Lima, F. Multimodal, in Situ Imaging of Ex Vivo Human Skin Reveals Decrease of Cholesterol Sulfate in the Neoepithelium during Acute Wound Healing.
Anal. Chem. 2020, 92, 1386–1394. [CrossRef]
82. Banerjee, S. Ambient Ionization Mass Spectrometry Imaging for Disease Diagnosis: Excitements and Challenges.
J. Biosci. 2018, 43, 731–738. [CrossRef]
83. Sans, M.; Gharpure, K.; Tibshirani, R.; Zhang, J.; Liang, L.; Liu, J.; Young, J.H.; Dood, R.L.; Sood, A.K.; Eberlin, L.S. Metabolic Markers and Statistical Prediction of Serous Ovarian Cancer Aggressiveness by Ambient Ionization Mass Spectrometry Imaging.
Cancer Res. 2017, 77, 2903–2913. [CrossRef]
84. Silva, A.A.R.; Cardoso, M.R.; Rezende, L.M.; Lin, J.Q.; Guimaraes, F.; Silva, G.R.P.; Murgu, M.; Priolli, D.G.; Eberlin, M.N.; Tata, A.; et al. Multiplatform Investigation of Plasma and Tissue Lipid Signatures of Breast Cancer Using Mass Spectrometry Tools.
Int. J. Mol. Sci. 2020, 21, 3611. [CrossRef] [PubMed]
85. Jarmusch, A.K.; Pirro, V.; Baird, Z.; Hattab, E.; Cohen-Gadol, A.; Cooks, R.G. Lipid and metabolite profiles of human brain tumors by desorption electrospray ionization-MS.
Proc. Natl. Acad. Sci. USA 2016, 113, 1486–1491. [CrossRef] [PubMed]
86. Zhang, M.; He, J.; Li, T.; Hu, H.; Li, X.; Xing, H.; Wang, J.; Yang, F.; Ma, Q.; Liu, B.; et al. Accurate Classification of Non-Small Cell Lung Cancer (Nsclc) Pathology and Mapping of Egfr Mutation Spatial Distribution by Ambient Mass Spectrometry Imaging.
Front. Oncol. 2019, 9, 804. [CrossRef] [PubMed]
87. Banerjee, S.; Zare, R.N.; Tibshirani, R.J.; Kunder, C.; Nolley, R.; Fan, R.; Brooks, J.D.; Sonn, G.A. Diagnosis of prostate cancer by desorption electrospray ionization mass spectrometric imaging of small metabolites and lipids.
Proc. Natl. Acad. Sci. USA 2017, 114, 3334–3339. [CrossRef] [PubMed] 88. Zhang, G.; Zhang, J.; DeHoog, R.J.; Pennathur, S.; Anderton, C.R.; Venkatachalam, M.A.; Alexandrov, T.; Eberlin, L.S.; Sharma, K. Desi-Msi and Metaspace Indicates Lipid Abnormalities and Altered Mitochondrial Membrane Components in Diabetic Renal Proximal Tubules. Metabolomics 2020, 16, 11. [CrossRef] [PubMed]
89. D
ória, M.L.; McKenzie, J.S.; Mroz, A.; Phelps, D.; Speller, A.; Rosini, F.; Strittmatter, N.; Golf, O.; Veselkov, K.; Brown, R.; et al. Epithelial ovarian carcinoma diagnosis by desorption electrospray ionization mass spectrometry imaging. Sci. Rep. 2016, 6, 39219. [CrossRef] [PubMed]
90. Nielsen, M.M.B.; Lambertsen, K.L.; Clausen, B.H.; Meyer, M.; Bhandari, D.R.; Larsen, S.T.; Poulsen, S.S.; Spengler, B.; Janfelt, C.; Hansen, H.S. Mass spectrometry imaging of biomarker lipids for phagocytosis and signalling during focal cerebral ischaemia.
Sci. Rep. 2016, 6, 39571. [CrossRef]
91. Vijayalakshmi, K.; Shankar, V.; Bain, R.M.; Nolley, R.; Sonn, G.A.; Kao, C.; Zhao, H.; Tibshirani, R.; Zare, R.N.; Brooks, J.D. Identification of diagnostic metabolic signatures in clear cell renal cell carcinoma using mass spectrometry imaging.
Int. J. Cancer 2020, 147, 256–265. [CrossRef]
92. Tu, A.; Said, N.; Muddiman, D.C. Spatially resolved metabolomic characterization of muscle invasive bladder cancer by mass spectrometry imaging.
Metabolomics 2021, 17, 70. [CrossRef]
93. Zhang, J.; Yu, W.; Ryu, S.W.; Jialing, Z.; Buentello, G.; Tibshirani, R.; Suliburk, J.; Eberlin, L.S. Cardiolipins Are Biomarkers of Mitochondria—Rich Thyroid Oncocytic Tumors.
Cancer Res. 2016, 76, 6588–6597. [CrossRef] 94. Porcari, A.M.; Zhang, J.; Garza, K.Y.; Rodrigues-Peres, R.M.; Lin, J.Q.; Young, J.H.; Tibshirani, R.; Nagi, C.; Paiva, G.R.; Carter, S.A.; et al. Multicenter Study Using Desorption-Electrospray-Ionization-Mass-Spectrometry Imaging for Breast-Cancer Diagnosis. Anal. Chem. 2018, 90, 11324–11332. [CrossRef]
95. Qi, K.; Lv, Y.; Ren, Y.; Wang, X.; Wu, L.; Wang, J.; Zhang, X.; He, Y.; Zhang, C.; Liu, C.; et al. Cholesterol was identified as a biomarker in human melanocytic nevi using DESI and DESI/PI mass spectrometry imaging.
Talanta 2021, 231, 122380. [CrossRef]
96. Mao, X.; He, J.; Li, T.; Lu, Z.; Sun, J.; Meng, Y.; Abliz, Z.; Chen, J. Application of imaging mass spectrometry for the molecular diagnosis of human breast tumors.
Sci. Rep. 2016, 6, 21043. [CrossRef]
97. Zhang, J.; Li, S.Q.; Lin, J.Q.; Yu, W.; Eberlin, L.S. Mass Spectrometry Imaging Enables Discrimination of Renal Oncocytoma from Renal Cell Cancer Subtypes and Normal Kidney Tissues.
Cancer Res. 2020, 80, 689–698. [CrossRef]
98. Bensussan, A.V.; Lin, J.; Guo, C.; Katz, R.; Krishnamurthy, S.; Cressman, E.; Eberlin, L.S. Distinguishing Non-Small Cell Lung Cancer Subtypes in Fine Needle Aspiration Biopsies by Desorption Electrospray Ionization Mass Spectrometry Imaging.
Clin. Chem. 2020, 66, 1424–1433. [CrossRef]
99. Margulis, K.; Zhou, Z.; Fang, Q.; Sievers, R.E.; Lee, R.J.; Zare, R.N. Combining Desorption Electrospray Ionization Mass Spectrometry Imaging and Machine Learning for Molecular Recognition of Myocardial Infarction.
Anal. Chem. 2018, 90, 12198–12206. [CrossRef]

100. Bergman, H.-M.; Lindfors, L.; Palm, F.; Kihlberg, J.; Lanekoff, I. Metabolite aberrations in early diabetes detected in rat kidney using mass spectrometry imaging. Anal. Bioanal. Chem. 2019, 411, 2809–2816. [CrossRef]
101. Zeng, T.; Guo, W.; Jiang, L.; Luo, Q.; Shi, Z.; Lei, B.; Zhang, J.; Cai, Z. Integration of omics analysis and atmospheric pressure MALDI mass spectrometry imaging reveals the cadmium toxicity on female ICR mouse.
Sci. Total Environ. 2021, 801, 149803. [CrossRef]
102. Kim, J.Y.; Lee, S.Y.; Kim, H.; Park, J.-W.; Lim, D.-K.; Moon, D.W. Biomolecular Imaging of Regeneration of Zebrafish Caudal Fins Using High Spatial Resolution Ambient Mass Spectrometry.
Anal. Chem. 2018, 90, 12723–12730. [CrossRef]
103. Liu, W.; Nie, H.; Liang, D.; Bai, Y.; Liu, H. Phospholipid imaging of zebrafish exposed to fipronil using atmospheric pressure matrix-assisted laser desorption ionization mass spectrometry.
Talanta 2020, 209, 120357. [CrossRef]
104. Klein, D.R.; Feider, C.L.; Garza, K.Y.; Lin, J.Q.; Eberlin, L.S.; Brodbelt, J.S. Desorption Electrospray Ionization Coupled with Ultraviolet Photodissociation for Characterization of Phospholipid Isomers in Tissue Sections.
Anal. Chem. 2018, 90, 10100–10104. [CrossRef]
105. Zhang, J.; Huo, X.; Guo, C.; Ma, X.; Huang, H.; He, J.; Wang, X.; Tang, F. Rapid Imaging of Unsaturated Lipids at an Isomeric Level Achieved by Controllable Oxidation.
Anal. Chem. 2021, 93, 2114–2124. [CrossRef]
106. Unsihuay, D.; Su, P.; Hu, H.; Qiu, J.; Kuang, S.; Li, Y.; Sun, X.; Dey, S.K.; Laskin, J. Imaging and Analysis of Isomeric Unsaturated Lipids through Online Photochemical Derivatization of Carbon-Carbon Double Bonds.
Angew. Chem. Int. Ed. 2021, 60, 7559–7563. [CrossRef]
107. Zhang, J.; Guo, C.; Huo, X.; Ma, X.; Li, X.; Abliz, Z.; Chu, Y.; Wang, X.; Tang, F. Unsaturated Lipid Isomeric Imaging Based on the Patern
ò–Büchi Reaction in the Solid Phase in Ambient Conditions. Talanta 2021, 235, 122816. [CrossRef]
108. Cao, Q.; Wang, Y.; Chen, B.; Ma, F.; Hao, L.; Li, G.; Ouyang, C.; Li, L. Visualization and Identification of Neurotransmitters in Crustacean Brain via Multifaceted Mass Spectrometric Approaches.
ACS Chem. Neurosci. 2019, 10, 1222–1229. [CrossRef] [PubMed]
109. Kroll, J.L.; Steele, A.M.; Pinkham, A.E.; Choi, C.; Khan, D.A.; Patel, S.V.; Chen, J.R.; Aslan, S.; Brown, E.S.; Ritz, T. Hippocampal metabolites in asthma and their implications for cognitive function.
NeuroImage Clin. 2018, 19, 213–221. [CrossRef] [PubMed]
110. Rinschen, M.M.; Ivanisevic, J.; Giera, M.; Siuzdak, G. Identification of bioactive metabolites using activity metabolomics.
Nat. Rev. Mol. Cell Biol. 2019, 20, 353–367. [CrossRef] [PubMed]
111. Wang, R.; Satizabal, C.L.; Beiser, A.S.; Vasan, R.S.; DeCarli, C.; Gerszten, R.E.; Yang, Q.; Seshadri, S. Circulating metabolites associated with brain MRI markers of Alzheimer’s disease.
Alzheimers Dement. 2020, 16, e044283. [CrossRef]
112. Ozden, A.; Angelos, H.; Feyza, A.; Elizabeth, W.; John, P. Altered plasma levels of arginine metabolites in depression.
J. Psychiatr. Res. 2020, 120, 21–28. [CrossRef]
113. Doummar, D.; Moussa, F.; Nougues, M.-C.; Ravelli, C.; Louha, M.; Whalen, S.; Burglen, L.; Rodriguez, D.; De Villemeur, T.B. Monoamine neurotransmitters and movement disorders in children and adults.
Rev. Neurol. 2018, 174, 581–588. [CrossRef]
114. Cani, P.D. Microbiota and metabolites in metabolic diseases.
Nat. Rev. Endocrinol. 2019, 15, 69–70. [CrossRef]
115. Crabtree, G.W.; Gogos, J.A. Role of Endogenous Metabolite Alterations in Neuropsychiatric Disease.
ACS Chem. Neurosci. 2018, 9, 2101–2113. [CrossRef]
116. Zhuang, M.; Hou, Z.; Chen, P.; Liang, G.; Huang, G. Introducing charge tag via click reaction in living cells for single cell mass spectrometry.
Chem. Sci. 2020, 11, 7308–7312. [CrossRef]
117. Sun, C.; Li, T.; Song, X.; Huang, L.; Zang, Q.; Xu, J.; Bi, N.; Jiao, G.; Hao, Y.; Chen, Y.; et al. Spatially resolved metabolomics to discover tumor-associated metabolic alterations.
Proc. Natl. Acad. Sci. USA 2018, 116, 52–57. [CrossRef]
118. Pang, X.; Gao, S.; Ga, M.; Zhang, J.; Luo, Z.; Chen, Y.; Zhang, R.; He, J.; Abliz, Z. Mapping Metabolic Networks in the Brain by Ambient Mass Spectrometry Imaging and Metabolomics.
Anal. Chem. 2021, 93, 6746–6754. [CrossRef]
119. Nizioł, J.; Sunner, J.; Beech, I.B.; Ossoli´nski, K.; Ossoli´nska, A.; Ossoli´nski, T.; Płaza, A.; Ruman, T. Localization of Metabolites of Human Kidney Tissue with Infrared Laser-Based Selected Reaction Monitoring Mass Spectrometry Imaging and Silver-109 Nanoparticle-Based Surface Assisted Laser Desorption/Ionization Mass Spectrometry Imaging.
Anal. Chem. 2020, 92, 4251–4258.
120. Song, X.; Zang, Q.; Zare, R.N. Hydrogen–Deuterium Exchange Desorption Electrospray Ionization Mass Spectrometry Visualizes an Acidic Tumor Microenvironment.
Anal. Chem. 2021, 93, 10411–10417. [CrossRef]
121. Yan, X.; Zhao, X.; Zhou, Z.; McKay, A.; Brunet, A.; Zare, R. Cell-Type-Specific Metabolic Profiling Achieved by Combining Desorption Electrospray Ionization Mass Spectrometry Imaging and Immunofluorescence Staining.
Anal. Chem. 2020, 92, 13281–13289. [CrossRef]
122. Hemalatha, R.G.; Ganayee, M.A.; Pradeep, T. Electrospun Nanofiber Mats as “Smart Surfaces” for Desorption Electrospray Ionization Mass Spectrometry (Desi Ms)-Based Analysis and Imprint Imaging.
Anal. Chem. 2016, 88, 5710–5717. [CrossRef]
123. Enomoto, H.; Sensu, T.; Sato, K.; Sato, F.; Paxton, T.; Yumoto, E.; Miyamoto, K.; Asahina, M.; Yokota, T.; Yamane, H. Visualisation of Abscisic Acid and 12-Oxo-Phytodienoic Acid in Immature
Phaseolus vulgaris L. Seeds Using Desorption Electrospray IonisationImaging Mass Spectrometry. Sci. Rep. 2017, 7, 42977. [CrossRef]
124. Zhang, C.; Žukauskaite, A.; Petˇr ˙
ík, I.; Pˇenˇcík, A.; Hönig, M.; Grúz, J.; Široká, J.; Novák, O.; DoleŽal, K. In Situ Characterisation of Phytohormones from Wounded Arabidopsis Leaves Using Desorption Electrospray Ionisation Mass Spectrometry Imaging.
Analyst 2021, 146, 2653–2663. [CrossRef] [PubMed]

125. Pontes, J.G.d.M.; Vendramini, P.H.; Fernandes, L.S.; De Souza, F.H.; Pilau, E.; Eberlin, M.N.; Magnani, R.F.; Wulff, N.A.; Fill, T.P. Mass spectrometry imaging as a potential technique for diagnostic of Huanglongbing disease using fast and simple sample preparation. Sci. Rep. 2020, 10, 13457. [CrossRef] [PubMed]
126. Ara
újo, F.D.S.; Vieira, R.L.; Molano, E.P.L.; Máximo, H.J.; Dalio, R.J.F.; Vendramini, P.H.; Araújo, W.L.; Eberlin, M.N. Desorption Electrospray Ionization Mass Spectrometry Imaging Reveals Chemical Defense of Burkholderia Seminalis against Cacao Pathogens. RSC Adv. 2017, 7, 29953–29958. [CrossRef]
127. Nie, L.-X.; Dong, J.; Huang, L.-Y.; Qian, X.-Y.; Lian, C.-J.; Kang, S.; Dai, Z.; Ma, S.-C. Microscopic Mass Spectrometry Imaging Reveals the Distribution of Phytochemicals in the Dried Root of Isatis tinctoria.
Front. Pharmacol. 2021, 12, 685575. [CrossRef]
128. Ashton, S.; Song, Y.H.; Nolan, J.; Cadogan, E.; Murray, J.; Odedra, R.; Foster, J.; Hall, P.A.; Low, S.; Taylor, P.; et al. Aurora kinase inhibitor nanoparticles target tumors with favorable therapeutic index in vivo.
Sci. Transl. Med. 2016, 8, 325ra17. [CrossRef]
129. Swales, J.G.; Tucker, J.W.; Spreadborough, M.J.; Iverson, S.L.; Clench, M.R.; Webborn, P.J.H.; Goodwin, R.J.A. Mapping Drug Distribution in Brain Tissue Using Liquid Extraction Surface Analysis Mass Spectrometry Imaging.
Anal. Chem. 2015, 87, 10146–10152. [CrossRef]
130. Parson, W.B.; Koeniger, S.L.; Johnson, R.W.; Erickson, J.; Tian, Y.; Stedman, C.; Schwartz, A.; Tarcsa, E.; Cole, R.; Van Berkel, G.J. Analysis of chloroquine and metabolites directly from whole-body animal tissue sections by liquid extraction surface analysis (LESA) and tandem mass spectrometry.
J. Mass Spectrom. 2012, 47, 1420–1428. [CrossRef]
131. Swales, J.G.; Tucker, J.W.; Strittmatter, N.; Nilsson, A.; Cobice, D.; Clench, M.R.; Mackay, C.L.; Andren, P.E.; Tak
áts, Z.; Webborn, P.J.H.; et al. Mass Spectrometry Imaging of Cassette-Dosed Drugs for Higher Throughput Pharmacokinetic and Biodistribution Analysis. Anal. Chem. 2014, 86, 8473–8480. [CrossRef]
132. D’Alvise, J.; Mortensen, R.; Hansen, S.H.; Janfelt, C. Detection of follicular transport of lidocaine and metabolism in adipose tissue in pig ear skin by DESI mass spectrometry imaging.
Anal. Bioanal. Chem. 2014, 406, 3735–3742. [CrossRef]
133. Kertesz, V.; Van Berkel, G.J.; Vavrek, M.; Koeplinger, K.A.; Schneider, B.B.; Covey, T.R. Comparison of Drug Distribution Images from Whole-Body Thin Tissue Sections Obtained Using Desorption Electrospray Ionization Tandem Mass Spectrometry and Autoradiography.
Anal. Chem. 2008, 80, 5168–5177. [CrossRef]
134. Okutan, S.; Hansen, H.S.; Janfelt, C. Cryo-sectioning of mice for whole-body imaging of drugs and metabolites with desorption electrospray ionization mass spectrometry imaging–A simplified approach.
Proteomics 2016, 16, 1633–1641. [CrossRef]
135. Wang, Z.; He, B.; Liu, Y.; Huo, M.; Fu, W.; Yang, C.; Wei, J.; Abliz, Z. In situ metabolomics in nephrotoxicity of aristolochic acids based on air flow-assisted desorption electrospray ionization mass spectrometry imaging.
Acta Pharm. Sin. B 2020, 10, 1083–1093. [CrossRef]
136. Zhang, J.; Du, Q.; Song, X.; Gao, S.; Pang, X.; Li, Y.; Zhang, R.; Abliz, Z.; He, J. Evaluation of the tumor-targeting efficiency and intratumor heterogeneity of anticancer drugs using quantitative mass spectrometry imaging.
Theranostics 2020, 10, 2621–2630. [CrossRef]
137. Swales, J.G.; Strittmatter, N.; Tucker, J.W.; Clench, M.R.; Webborn, P.J.; Goodwin, R.J. Spatial Quantitation of Drugs in tissues using Liquid Extraction Surface Analysis Mass Spectrometry Imaging.
Sci. Rep. 2016, 6, 37648. [CrossRef]
138. Vismeh, R.; Waldon, D.J.; Teffera, Y.; Zhao, Z. Localization and Quantification of Drugs in Animal Tissues by Use of Desorption Electrospray Ionization Mass Spectrometry Imaging.
Anal. Chem. 2012, 84, 5439–5445. [CrossRef]
139. Hansen, H.T.; Janfelt, C. Aspects of Quantitation in Mass Spectrometry Imaging Investigated on Cryo-Sections of Spiked Tissue Homogenates.
Anal. Chem. 2016, 88, 11513–11520. [CrossRef]
140. Song, X.; He, J.; Pang, X.; Zhang, J.; Sun, C.; Huang, L.; Li, C.; Zang, Q.; Li, X.; Luo, Z.; et al. Virtual Calibration Quantitative Mass Spectrometry Imaging for Accurately Mapping Analytes across Heterogenous Biotissue.
Anal. Chem. 2019, 91, 2838–2846. [CrossRef]











This entry is adapted from the peer-reviewed paper 10.3390/metabo11110780

This entry is offline, you can click here to edit this entry!