Oxytocin (Cys-Tyr-Ile-Gln-Asn-Cys-Pro-Leu-Gly-NH2; OXY) and arginine vasopressin (Cys-Tyr-Phe-Gln-Asn-Cys-Pro-Arg-Gly-NH2; AVP) are nonapeptides, differing only in two aminoacids. The secretion of OXY and AVP is influenced by changes in body fluid osmolality, blood volume, blood pressure, hypoxia, and stress. AVP and OXY receptors are present in several regions of the brain (cortex, hypothalamus, pons, medulla, and cerebellum) and in the peripheral organs (heart, lungs, carotid bodies, kidneys, adrenal glands, pancreas, gastrointestinal tract, ovaries, uterus, thymus). Hypertension, myocardial infarction, and coexisting factors, such as pain and stress, have a significant impact on the secretion of oxytocin and vasopressin and on the expression of their receptors.
27. Jameson, H.; Bateman, R.; Byrne, P.; Dyavanapalli, J.; Wang, X.; Jain, V.; Mendelowitz, D. Oxytocin neuron activation prevents hypertension that occurs with chronic intermittent hypoxia/hypercapnia in rats. J. Physiol. Heart Circ. Physiol. 2016, 310, H1549–H1557. https://doi.org/10.1152/ajpheart.00808.2015.
29. Murphy, D.; Konopacka, A.; Hindmarch, C.; Patonm, J.F.; Sweedler, J.V.; Gillette, M.U.; Ueta, Y.; Grinevich, V.; Lozic, M.; Japundzic-Zigon, N. The hypothalamic-neurohypophyseal system: From genome to physiology. Neuroendocrinol. 2012, 24, 539–553. https://doi.org/10.1111/j.1365-2826.2011.02241.x.
35. Jankowski, M.; Hajjar, F.; Kawas, S.A.; Mukaddam-Daher, S.; Hoffman, G.; McCann, S.M.; Gutkowska, J. Rat heart: A site of oxytocin production and action. Natl. Acad. Sci. USA 1998, 95, 14558–14563. https://doi.org/10.1073/pnas.95.24.14558.
55. Lolait, S.J.; O'Carroll, A.M.; Brownstein, M.J. Molecular biology of vasopressin receptors. N. Y. Acad. Sci. 1995, 771, 273–292. https://doi.org/10.1111/j.1749-6632.1995.tb44688.x.
58. Juul, K.V.; Bichet, D.G.; Nielsen, S.; Nørgaard, J.P. The physiological and pathophysiological functions of renal and extrarenal vasopressin V2 receptors. J. Physiol. Renal. Physiol. 2014, 306, F931–F940. https://doi.org/10.1152/ajprenal.00604.2013.
60. Thibonnier, M.; Graves, M.K.; Wagner, M.S.; Auzan, C.; Clauser, E.; Willard, H.F. Structure, sequence, expression, and chromosomal localization of the human V1a vasopressin receptor gene. Genomics 1996, 31, 327–334. https://doi.org/10.1006/geno.1996.0055.
69. Lolait, S.J.; O'Carroll, A.M.; Mahan, L.C.; Felder, C.C.; Button, D.C.; Young, W.S., 3rd; Mezey, E.; Brownstein, M.J. Extrapituitary expression of the rat V1b vasopressin receptor gene. Natl. Acad. Sci. USA 1995, 92, 6783–6787. https://doi.org/10.1073/pnas.92.15.67.
73. Gutkowska, J.; Miskurka, M.; Danalache, B.; Gassanov, N.; Wang, D.; Jankowski, M. Functional arginine vasopressin system in early heart maturation. J. Physiol. Heart Circ. Physiol. 2007, 293, H2262–H2270. https://doi.org/10.1152/ajpheart.01320.2006.
80.Robertson, G.L. Differential diagnosis of familial diabetes insipidus. Clin. Neurol. 2021, 181, 239–248. https://doi.org/10.1016/B978-0-12-820683-6.00017-8.
103. Jankowski, M.; Wang, D.; Hajjar, F.; Mukaddam-Daher, S.; McCann, S.M.; Gutkowska, J. Oxytocin and its receptors are synthesized in the rat vasculature. Natl. Acad. Sci. USA 2000, 97, 6207–6211. https://doi.org/10.1073/pnas.110137497.
106. Thibonnier, M.; Conarty, D.M.; Preston, J.A.; Plesnicher, C.L.; Dweik, R.A.; Erzurum, S.C. Human vascular endothelial cells express oxytocin receptors. Endocrinology 1999, 140, 1301–1309. https://doi.org/10.1210/endo.140.3.6546.
109. Jurek, B.; Neumann,D. The Oxytocin Receptor: From Intracellular Signaling to Behavior. Physiol. Rev. 2018, 98, 1805–1908. https://doi.org/10.1152/physrev.00031.2017.
113. Nomura, M.; McKenna, E.; Korach, K.S.; Pfaff, D.W.; Ogawa, S. Estrogen receptor-beta regulates transcript levels for oxytocin and arginine vasopressin in the hypothalamic paraventricular nucleus of male mice. Brain Res. Mol. Brain Res. 2002, 109, 84–94. https://doi.org/10.1016/s0169-328x(02)00525-9.
123. Antunes-Rodrigues, J.; Ruginsk, S.G.; Mecawi, A.S.; Margatho, L.O.; Cruz, J.C.; Vilhena-Franco, T.; Reis, W.L.; Ventura, R.R.; Reis, L.C.; Vivas, L.M.; et al. Mapping and signaling of neural pathways involved in the regulation of hydromineral homeostasis. J. Med. Biol. Res. 2013, 46, 327–338. https://doi.org/10.1590/1414-431X20132788.
125. Szczepańska-Sadowska, E.; Simon-Oppermann, C.; Gray, D.; Simon, E. Control of central release of vasopressin. Physiol. (Paris) 1984, 79, 432–439.
126. Szczepańska-Sadowska, E.; Simon-Oppermann, C.; Gray, D.A.; Simon, E. Plasma and cerebrospinal fluid vasopressin and osmolality in relation to thirst. Arch. 1984, 400, 294–249. https://doi.org/10.1007/BF00581562.
130. Japundžić-Žigon, N.; Lozić, M.; Šarenac, O.; Murphy, D. Vasopressin & Oxytocin in Control of the Cardiovascular System: An Updated Review. Neuropharmacol. 2020, 18, 14–33. https://doi.org/10.2174/1570159X17666190717150501.
156. Gaida, W.; Lang, R.E.; Kraft, K.; Unger, T.; Ganten, D. Altered neuropeptide concentrations in spontaneously hypertensive rats: Cause or consequence? Sci. (Lond.) 1985, 68, 35–43. https://doi.org/10.1042/cs0680035.
157. Higa-Taniguchi, K.T.; Felix, J.V.; Michelini, L.C. Brainstem oxytocinergic modulation of heart rate control in rats: Effects of hypertension and exercise training. Physiol. 2009, 94, 1103–1113. https://doi.org/10.1113/expphysiol.2009.049262.
158. Martins, A.S.; Crescenzi, A.; Stern, J.E.; Bordin, S.; Michelini, L.C. Hypertension and exercise training differentially affect oxytocin and oxytocin receptor expression in the brain. Hypertension 2005, 46, 1004–1009. https://doi.org/10.1161/01.HYP.0000175812.03322.59.
161. Indrambarya, T.; Boyd, J.H.; Wang, Y.; McConechy, M.; Walley, K.R. Low-dose vasopressin infusion results in increased mortality and cardiac dysfunction following ischemia-reperfusion injury in mice. Care 2009, 13, R98. https://doi.org/10.1186/cc7930.
175. Cowley, A.W., Jr.; Cushman, W.C.; Quillen, E.W., Jr.; Skelton, M.M.; Langford, H.G. Vasopressin elevation in essential hypertension and increased responsiveness to sodium intake. Hypertension 1981, 3, I93–I100. https://doi.org/1161/01.hyp.3.3_pt_2.i93.
198. Gimpl, G.; Reitz, J.; Brauer, S.; Trossen, C. Oxytocin receptors: Ligand binding, signalling and cholesterol dependence. Brain Res. 2008, 170, 193–204. https://doi.org/10.1016/S0079-6123(08)00417-2. PMID: 18655883.
199. Gutkowska, J.; Jankowski, M. Oxytocin revisited: It is also a cardiovascular hormone. Am. Soc. Hypertens. 2008, 2, 318–325. https://doi.org/10.1016/j.jash.2008.04.004.
200. Jankowski, M.; Bissonauth, V.; Gaom, L.; Gangal, M.; Wang, D.; Danalache, B.; Wang, Y.; Stoyanova, E.; Cloutier, G.; Blaise, G.; et al. Anti-inflammatory effect of oxytocin in rat myocardial infarction. Res. Cardiol. 2010, 105, 205–218. https://doi.org/10.1007/s00395-009-0076-5.
201. Sofroniew, M.V. Vasopressin and oxytocin in the mammalian brain and spinal cord. Trends Neurosci. 1983, 6, 467–472.
202. Young, L.J.; Wang, Z.; Donaldson, R.; Rissman, E.F. Estrogen receptor alpha is essential for induction of oxytocin receptor by estrogen. Neuroreport 1998, 9, 933–936. https://doi.org/10.1097/00001756-199803300-00031.
203. Petersson, M.; Uvnäs-Moberg, K. Effects of an acute stressor on blood pressure and heart rate in rats pretreated with intracerebroventricular oxytocin Psychoneuroendocrinology 2007, 32, 959–965. https://doi.org/10.1016/j.psyneuen.2007.06.015.
204. Petersson, M.; Alster, P.; Lundeberg, T.; Uvnäs-Moberg, K. Oxytocin causes a long-term decrease of blood pressure in female and male rats. Behav. 1996, 60, 1311–1315. https://doi.org/10.1016/s0031-9384(96)00261-2.
205. Petersson, M.; Lundeberg, T.; Uvnäs-Moberg, K. Oxytocin enhances the effects of clonidine on blood pressure and locomotor activity in rats. Auton. Nerv. Syst. 1999, 78, 49–56. https://doi.org/10.1016/s0165-1838(99)00061-2.
206. Miller, M.E.; Davidge, S.T.; Mitchell, B.F. Oxytocin does not directly affect vascular tone in vessels from nonpregnant and pregnant rats. J. Physiol. Heart Circ. Physiol. 2002, 282, H1223–H1228. https://doi.org/10.1152/ajpheart.00774.2001.
207. Paquin, J.; Danalache, B.A.; Jankowski, M.; McCann, S.M.; Gutkowska, J. Oxytocin induces differentiation of P19 embryonic stem cells to cardiomyocytes. Natl. Acad. Sci. USA 2002, 99, 9550–9555. https://doi.org/10.1073/pnas.152302499.
208. Gutkowska, J.; Aliou, Y.; Lavoie, J.L.; Gaab, K.; Jankowski, M.; Broderick, T.L. Oxytocin decreases diurnal and nocturnal arterial blood pressure in the conscious unrestrained spontaneously hypertensive rat. Pathophysiology 2016, 23, 111–121. https://doi.org/10.1016/j.pathophys.2016.03.003.
209. Petersson, M.; Lundeberg, T.; Uvnäs-Moberg, K. Oxytocin decreases blood pressure in male but not in female spontaneously hypertensive rats. Auton. Nerv. Syst. 1997, 66, 15–18. https://doi.org/10.1016/s0165-1838(97)00040-4.
210. Holst, S.; Uvnäs-Moberg, K.; Petersson, M. Postnatal oxytocin treatment and postnatal stroking of rats reduce blood pressure in adulthood. Neurosci. 2002, 99, 85–90. https://doi.org/10.1016/s1566-0702(02)00134-0.
211. Petersson, M.; Uvnäs-Moberg, K. Postnatal oxytocin treatment of spontaneously hypertensive male rats decreases blood pressure and body weight in adulthood. Lett. 2008, 440, 166–169. https://doi.org/10.1016/j.neulet.2008.05.091.
212. Wsol, A.; Gondek, A.; Podobinska, M.; Chmielewski, M.; Sajdel-Sułkowska, E.; Cudnoch-Jędrzejewska, A. Increased oxytocinergic system activity in the cardiac muscle in spontaneously hypertensive SHR rats. Med Science. 2019, 2019, 85446. https://doi.org/10.5114/aoms.2019.85446.
213. Faghihi, M.; Alizadeh, A.M.; Khori, V.; Latifpour, M.; Khodayari, S. The role of nitric oxide, reactive oxygen species, and protein kinase C in oxytocin-induced cardioprotection in ischemic rat heart. Peptides 2012, 37, 314–319. https://doi.org/10.1016/j.peptides.2012.08.001.
214. Jankowski, M.; Wang, D.; Danalache, B.; Gangal, M.; Gutkowska, J. Cardiac oxytocin receptor blockade stimulates adverse cardiac remodeling in ovariectomized spontaneously hypertensive rats. J. Physiol. Heart Circ. Physiol. 2010, 299, H265–H274. https://doi.org/10.1152/ajpheart.00487.2009.
215. Jankowski, M.; Broderick, T.L.; Gutkowska, J. Oxytocin and cardioprotection in diabetes and obesity. BMC Endocr. Disord. 2016, 16, 34. https://doi.org/10.1186/s12902-016-0110-1.
216. Jankowski, M.; Broderick, T.L.; Gutkowska, J. The Role of Oxytocin in Cardiovascular Protection. Psychol. 2020, 11, 2139. https://doi.org/10.3389/fpsyg.2020.02139..
217. Ondrejcakova, M.; Barancik, M.; Bartekova, M.; Ravingerova, T.; Jezova, D. Prolonged oxytocin treatment in rats affects intracellular signaling and induces myocardial protection against infarction. Physiol. Biophys. 2012, 31, 261–270. https://doi.org/10.4149/gpb_2012_030.
218. Polshekan, M.; Jamialahmadi, K.; Khori, V.; Alizadeh, A.M.; Saeidi, M.; Ghayour-Mobarhan, M.; Jand, Y.; Ghahremani, M.H.; Yazdani, Y. RISK pathway is involved in oxytocin postconditioning in isolated rat heart. Peptides 2016, 86, 55–62. https://doi.org/10.1016/j.peptides.2016.10.001.
219. Polshekan, M.; Khori, V.; Alizadeh, A.M.; Ghayour-Mobarhan, M.; Saeidi, M.; Jand, Y.; Rajaei, M.; Farnoosh, G.; Jamialahmadi, K. The SAFE pathway is involved in the postconditioning mechanism of oxytocin in isolated rat heart. Peptides 2019, 111, 142–151. https://doi.org/10.1016/j.peptides.2018.04.002.
220. Gonzalez-Reyes, A.; Menaouar, A.; Yip, D.; Danalache, B.; Plante, E.; Noiseux, N.; Gutkowska, J.; Jankowski, M. Molecular mechanisms underlying oxytocin-induced cardiomyocyte protection from simulated ischemia-reperfusion. Cell Endocrinol. 2015, 412, 170–181. https://doi.org/10.1016/j.mce.2015.04.028.
221. Wsol, A.; Cudnoch-Jedrzejewska, A.; Szczepanska-Sadowska, E.; Kowalewski, S.; Dobruch, J. Central oxytocin modulation of acute stress-induced cardiovascular responses after myocardial infarction in the rat. Stress 2009, 12, 517–525. https://doi.org/3109/10253890802687688.
222. Garrott, K.; Dyavanapalli, J.; Cauley, E.; Dwyer, M.K.; Kuzmiak-Glancy, S.; Wang, X.; Mendelowitz, D.; Kay, M.W. Chronic activation of hypothalamic oxytocin neurons improves cardiac function during left ventricular hypertrophy-induced heart failure. Res. 2017, 113, 1318–1328. https://doi.org/10.1093/cvr/cvx084.
223. Gutkowska, J.; Broderick, T.L.; Bogdan, D.; Wang, D.; Lavoie, J.M.; Jankowski, M. Downregulation of oxytocin and natriuretic peptides in diabetes: Possible implications in cardiomyopathy. Physiol. 2009, 587 Pt 19, 4725–4736. https://doi.org/10.1113/jphysiol.2009.176461.
224. Plante, E.; Menaouar, A.; Danalache, B.A.; Yip, D.; Broderick, T.L.; Chiasson, J.L.; Jankowski, M.; Gutkowska, J. Oxytocin treatment prevents the cardiomyopathy observed in obese diabetic male db/db mice. Endocrinology 2015, 156, 1416–1428. https://doi.org/10.1210/en.2014-1718.
225. Jung, C.; Wernly, B.; Bjursell, M.; Wiseman, J.; Admyre, T.; Wikström, J.; Palmér, M.; Seeliger, F.; Lichtenauer, M.; Franz, M.; et al. Cardiac-Specific Overexpression of Oxytocin Receptor Leads to Cardiomyopathy in Mice. Card Fail. 2018, 24, 470–478. https://doi.org/10.1016/j.cardfail.2018.05.004.
226. Rosseland, L.A.; Hauge, T.H.; Grindheim, G.; Stubhaug, A.; Langesæter, E. Changes in blood pressure and cardiac output during cesarean delivery: The effects of oxytocin and carbetocin compared with placebo. Anesthesiology 2013, 119, 541–551. https://doi.org/10.1097/ALN.0b013e31829416dd.
227. Svanström, M.C.; Biber, B.; Hanes, M.; Johansson, G.; Näslund, U.; Bålfors, E.M. Signs of myocardial ischaemia after injection of oxytocin: A randomized double-blind comparison of oxytocin and methylergometrine during Caesarean section. J. Anaesth. 2008, 100, 683–689. https://doi.org/10. 1093/bja/aen071.
228. Kemp, A.H.; Quintana, D.S.; Kuhnert, R.L.; Griffiths, K.; Hickie, I.B.; Guastella, A.J. Oxytocin increases heart rate variability in humans at rest: Implications for social approach-related motivation and capacity for social engagement. PLoS ONE 2012, 7, e44014. https://doi.org/10.1371/journal.pone.0044014.
229. Cowley, A.W., Jr.; Szczepanska-Sadowska, E.; Stepniakowski, K.; Mattson, D. Chronic intravenous administration of V1 arginine vasopressin agonist results in sustained hypertension. J. Physiol. 1994, 267 Pt 2, H751–H756. https://doi.org/10.1152/ajpheart.1994.267.2.H751.
230. Góźdź, A.; Szczepańska-Sadowska, E.; Szczepańska, K.; Maśliński, W.; Luszczyk, B. Vasopressin V1a, V1b and V2 receptors mRNA in the kidney and heart of the renin transgenic TGR(mRen2)27 and Sprague Dawley rats. Physiol. Pharmacol. 2002, 53, 349–357.
231. Gruber, C.W.; Koehbach, J.; Muttenthaler, M. Exploring bioactive peptides from natural sources for oxytocin and vasopressin drug discovery. Future Med. Chem. 2012, 4, 1791–1798. https://doi.org/10.4155/fmc.12.108.
232. Guillon, G.; Trueba, M.; Joubert, D.; Grazzini, E.; Chouinard, L.; Côté, M.; Payet, M.D.; Manzoni, O.; Barberis, C.; Robert, M. Vasopressin stimulates steroid secretion in human adrena adrenal glands: Comparison with angiotensin-II effect. Endocrinology 1995, 136, 1285–1295. https://doi.org/10.1210/endo.136.3.7867583.
233. Szczepanska-Sadowska, E.; Stepniakowski, K.; Skelton, M.M.; Cowley, A., Jr. Prolonged stimulation of intrarenal V1 vasopressin receptors results in sustained hypertension. J. Physiol. 1994, 267, R1217–R1225. https://doi.org/10.1152/ajpregu.1994.267.5.R1217.
234. Kc, P.; Haxhiu, M.A.; Tolentino-Silva, F.P.; Wu, M.; Trouth, C.O.; Mack, S.O. Paraventricular vasopressin-containing neurons project to brain stem and spinal cord respiratory-related sites. Physiol. Neurobiol. 2002, 133, 75–88. https://doi.org/10.1016/s1569-9048(02)00131-3.
235. Komnenov, D.; Quaal, H.; Rossi, N.F. V(1a) and V(1b) vasopressin receptors within the paraventricular nucleus contribute to hypertension in male rats exposed to chronic mild unpredictable stress. J. Physiol. Regul. Integr. Comp. Physiol. 2021, 320, R213–R225. https://doi.org/10.1152/ajpregu.00245.2020.
236. Yang, Z.; Coote, J.H. The role of supraspinal vasopressin and glutamate neurones in an increase in renal sympathetic activity in response to mild haemorrhage in the rat. Physiol. 2006, 91, 791–797. https://doi.org/10.1113/expphysiol.2006.034082.
237. Lankhuizen, I.M.; van Veghel, R.; Saxena, P.R.; Schoemaker, R.G. [Arg8]-vasopressin-induced responses on coronary and mesenteric arteries of rats with myocardial infarction: The effects of V1a- and V2-receptor antagonists. Cardiovasc. Pharmacol. 2000, 36, 38–44. https://doi.org/10.1097/00005344-200007000-00005.
238. Lankhuizen, I.M.; van Veghel, R.; Saxena, P.R.; Schoemaker, R.G. Vascular and renal effects of vasopressin and its antagonists in conscious rats with chronic myocardial infarction; evidence for receptor shift. J. Pharmacol. 2001, 423, 195–202. https://doi.org/10.1016/s0014-2999(01)01092-5.
239. Sellke, N.; Kuczmarski, A.; Lawandy, I.; Cole, V.L.; Ehsan, A.; Singh, A.K.; Liu, Y.; Sellke, F.W.; Feng, J. Enhanced coronary arteriolar contraction to vasopressin in patients with diabetes after cardiac surgery. Thorac. Cardiovasc. Surg. 2018, 156, 2098–2107. https://doi.org/10.1016/j.jtcvs.2018.05.090.
240. Serradeil-Le Gal, C.; Villanova, G.; Boutin, M.; Maffrand, J.P.; Le Fur, G. Effects of SR 49059, a non-peptide antagonist of vasopressin V1a receptors, on vasopressin-induced coronary vasoconstriction in conscious rabbits. Clin. Pharmacol. 1995, 9, 17–24. https://doi.org/10.1111/j.1472-8206.1995.tb00260.x.
241. Walker, B.R.; Haynes, J.J.; Wang, H.L.; Voelkel, N.F. Vasopressin-induced pulmonary vasodilation in rats. J. Physiol. 1989, 257, H415–H422. https://doi.org/10.1152/ajpheart.1989.257.2.H415.
242. Izumi, Y.; Nakayama, Y.; Mori, T.; Miyazaki, H.; Inoue, H.; Kohda, Y.; Inoue, T.; Nonoguchi, H.; Tomita, K. Downregulation of vasopressin V2 receptor promoter activity via V1a receptor pathway. J. Physiol. Renal. Physiol. 2007, 292, F1418–F1426. https://doi.org/10.1152/ajprenal.00358.2006.
243. Terada, Y.; Tomita, K.; Nonoguchi, H.; Yang, T.; Marumo, F. Different localization and regulation of two types of vasopressin receptor messenger RNA in microdissected rat nephron segments using reverse transcription polymerase chain reaction. J. Clin. Investig. 1993, 92, 2339–2345. https://doi.org/10.1172/JCI116838.
244. Aoyagi, T.; Koshimizu, T.A.; Tanoue, A. Vasopressin regulation of blood pressure and volume: Findings from V1a receptor-deficient mice. Kidney Int. 2009, 76, 1035–1039. https://doi.org/10.1038/ki.2009.319.
245. Izumi, Y.; Hori, K.; Nakayama, Y.; Kimura, M.; Hasuike, Y.; Nanami, M.; Kohda, Y.; Otaki, Y.; Kuragano, T.; Obinata, M.; et al. Aldosterone requires vasopressin V1a receptors on intercalated cells to mediate acid-base homeostasis. Am. Soc. Nephrol. 2011, 22, 673–680. https://doi.org/10.1681/ASN.2010050468.
246. Bucher, M.; Hobbhahn, J.; Taeger, K.; Kurtz, A. Cytokine-mediated downregulation of vasopressin V(1A) receptors during acute endotoxemia in rats. J. Physiol. Regul. Integr. Comp. Physiol. 2002, 282, R979–R984. https://doi.org/10.1152/ajpregu.00520.2001.
247. Pena, A.; Murat, B.; Trueba, M.; Ventura, M.A.; Bertrand, G.; Cheng, L.L.; Stoev, S.; Szeto, H.H.; Wo, N.; Brossard, G.; et al. Pharmacological and physiological characterization of d[Leu4, Lys8]vasopressin, the first V1b-selective agonist for rat vasopressin/oxytocin receptors. Endocrinology 2007, 148, 4136–4146. https://doi.org/10.1210/en.2006-1633.
248. Saito, M.; Tahara, A.; Sugimoto, T.; Abe, K.; Furuichi, K. Evidence that atypical vasopressin V(2) receptor in inner medulla of kidney is V(1B) receptor. J. Pharmacol. 2000, 401, 289–296. https://doi.org/10.1016/s0014-2999(00)00465-9.
249. El-Werfali, W.; Toomasian, C.; Maliszewska-Scislo, M.; Li, C.; Rossi, N.F. Haemodynamic and renal sympathetic responses to V1b vasopressin receptor activation within the paraventricular nucleus. Physiol. 2015, 100, 553–565. https://doi.org/10.1113/expphysiol.2014.084426.
250. Aguilera, G.; Rabadan-Diehl, C. Regulation of vasopressin V1b receptors in the anterior pituitary gland of the rat. Physiol. 2000, 85, 19S–26S. https://doi.org/10.1111/j.1469-445x.2000.tb00004.x.
251. Oshikawa, S.; Tanoue, A.; Koshimizu, T.A.; Kitagawa, Y.; Tsujimoto, G. Vasopressin stimulates insulin release from islet cells through V1b receptors: A combined pharmacological/knockout approach. Pharmacol. 2004, 65, 623–629. https://doi.org/10.1124/mol.65.3.623.
252. Hus-Citharel, A.; Bouby, N.; Corbani, M.; Mion, J.; Mendre, C.; Darusi, J.; Tomboly, C.; Trueba, M.; Serradeil-Le Gal, C.; Llorens-Cortes, C.; et al. Characterization of a functional V(1B) vasopressin receptor in the male rat kidney: Evidence for cross talk between V(1B) and V(2) receptor signaling pathways. J. Physiol. Renal. Physiol. 2021, 321, F305–F321. https://doi.org/10.1152/ajprenal.00081.2021.
253. Szczepanska-Sadowska, E.; Brzezinski, M. Interaction between effects of insulin and vasopressin on renal excretion of water and sodium in rats. Metab. Res. 1982, 14, 175–179. https://doi.org/10.1055/s-2007-1018962.
254. Ishikawa, S.E. Hyponatremia Associated with Heart Failure: Pathological Role of Vasopressin-Dependent Impaired Water Excretion. Clin. Med. 2015, 4, 933–947. https://doi.org/10.3390/jcm4050933.
255. Qian, Q. Salt, water and nephron: Mechanisms of action and link to hypertension and chronic kidney disease. Nephrology (Carlton) 2018, 23, 44–49. https://doi.org/10.1111/nep.13465.
256. Robertson, G.L. The regulation of vasopressin function in health and disease. Recent Prog. Horm. Res. 1976, 33, 333–385. https://doi.org/10.1016/b978-0-12-571133-3.50015-5.
257. Gonzalez, A.A.; Cifuentes-Araneda, F.; Ibaceta-Gonzalez, C.; Gonzalez-Vergara, A.; Zamora, L.; Henriquez, R.; Rosales, C.B.; Navar, L.G.; Prieto, M.C. Vasopressin/V2 receptor stimulates renin synthesis in the collecting duct. J. Physiol. Renal. Physiol. 2016, 310, F284–F293. https://doi.org/10.1152/ajprenal.00360.2015.
258. Schrier, R.W. Vasopressin and aquaporin 2 in clinical disorders of water homeostasis. Semin Nephrol. 2008, 28, 289–296. https://doi.org/10.1016/j.semnephrol.2008.03.009.
259. Stockand, J.D. Vasopressin regulation of renal sodium excretion. Kidney Int. 2010, 78, 849–856. https://doi.org/10.1038/ki.2010.276.
260. Nielsen, J.; Kwon, T.H.; Praetorius, J.; Frøkiaer, J.; Knepper, M.A.; Nielsen, S. Aldosterone increases urine production and decreases apical AQP2 expression in rats with diabetes insipidus. J. Physiol. Renal. Physiol. 2006, 290, F438–F449. https://doi.org/10.1152/ajprenal.00158.2005.
261. Brønd, L.; Müllertz, K.M.; Torp, M.; Nielsen, J.; Graebe, M.; Hadrup, N.; Nielsen, S.; Christensen, S.; Jonassen, T.E. Congestive heart failure in rats is associated with increased collecting duct vasopressin sensitivity and vasopressin type 2 receptor reexternalization. J. Physiol. Renal. Physiol. 2013, 305, F1547–F1554. https://doi.org/10.1152/ajprenal.00461.2012.
262. Cowley, A.W., Jr. Control of the renal medullary circulation by vasopressin V1 and V2 receptors in the rat. Physiol. 2000, 85, 223S–231S. https://doi.org/10.1111/j.1469-445x.2000.tb00027.x.
263. Gassanov, N.; Jankowski, M.; Danalache, B.; Wang, D.; Grygorczyk, R.; Hoppe, U.C.; Gutkowska, J.Arginine vasopressin-mediated cardiac differentiation: Insights into the role of its receptors and nitric oxide signaling. Biol. Chem. 2007, 282, 11255–11265. https://doi.org/10.1074/jbc.M610769200.
264. Burrell, L.M.; Phillips, P.A.; Stephenson, J.M.; Risvanis, J.; Johnston, C.I. Vasopressin and a nonpeptide antidiuretic hormone receptor antagonist (OPC-31260). Blood Press. 1994, 3, 137–141. https://doi.org/10.3109/08037059409101533.
265. Clair, M.J.; King, M.K.; Goldberg, A.T.; Hendrick, J.W.; Nisato, R.; Gay, D.M.; Morrison, A.E.; McElmurray, J.H., 3rd; Krombach, R.S.; Bond, B.R.; et al. Selective vasopressin, angiotensin II, or dual receptor blockade with developing congestive heart failure. Pharmacol. Exp. Ther. 2000, 293, 852–860.
266. Milik, E.; Szczepanska-Sadowska, E.; Dobruch, J.; Cudnoch-Jedrzejewska, A.; Maslinski, W. Altered expression of V1a receptors mRNA in the brain and kidney after myocardial infarction and chronic stress. Neuropeptides 2014, 48, 257–266. https://doi.org/10.1016/j.npep.2014.07.004.
267. Faraco, G.; Wijasa, T.S.; Park, L.; Moore, J.; Anrather, J.; Iadecola, C. Water deprivation induces neurovascular and cognitive dysfunction through vasopressin-induced oxidative stress. Cereb. Blood Flow Metab. 2014, 34, 852–860. https://doi.org/10.1038/jcbfm.2014.24.
268. Zhu, W.; Tilley, D.G.; Myers, V.D.; Tsai, E.J.; Feldman, A.M. Increased vasopressin 1A receptor expression in failing human hearts. Am. Coll. Cardiol. 2014, 63, 375–376. https://doi.org/10.1016/j.jacc.2013.09.032.
269. Gheorghiade, M.; Konstam, M.A.; Burnett, J.C., Jr.; Grinfeld, L.; Maggioni, A.P.; Swedberg, K.; Udelson, J.E.; Zannad, F.; Cook, T.; Ouyang, J.; et al. Short-term clinical effects of tolvaptan, an oral vasopressin antagonist, in patients hospitalized for heart failure: The EVEREST Clinical Status Trials. Efficacy of Vasopressin Antagonism in Heart Failure Outcome Study with Tolvaptan (EVEREST) Investigators. JAMA 2007, 297, 1332–1343. https://doi.org/10.1001/jama.297.12.1332.
270. Udelson, J.E.; McGrew, F.A.; Flores, E.; Ibrahim, H.; Katz, S.; Koshkarian, G.; O'Brien, T.; Kronenberg, M.W.; Zimmer, C.; Orlandi, C.; et al. Multicenter, randomized, double-blind, placebo-controlled study on the effect of oral tolvaptan on left ventricular dilation and function in patients with heart failure and systolic dysfunction. Am. Coll. Cardiol. 2007, 49, 2151–2159. https://doi.org/10.1016/j.jacc.2007.01.091.
271. Urbach, J.; Goldsmith, S.R. Vasopressin antagonism in heart failure: A review of the hemodynamic studies and major clinical trials. Adv. Cardiovasc. Dis. 2021, 15, 1753944720977741. https://doi.org/10.1177/1753944720977741.
272. McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Heart J. 2021, 42, 3599–3726. https://doi.org/10.1093/eurheartj/ehab368. PMID: 34447992.
273. Goldsmith, S.R.; Burkhoff, D.; Gustafsson, F.; Voors, A.; Zannad, F.; Kolkhof, P.; Staedtler, G.; Colorado, P.; Dinh, W.; Udelson, J.E. Dual Vasopressin Receptor Antagonism to Improve Congestion in Patients With Acute Heart Failure: Design of the AVANTI Trial. Card Fail. 2021, 27, 233–241. https://doi.org/10.1016/j.cardfail.2020.10.007.
This entry is adapted from the peer-reviewed paper 10.3390/ijms222111465