2. Biologically Active Compounds in SCE
S. chinensis contains many bioactive compounds, including lignans, triterpenes, phenolic acids, flavonoids, essential oils, and polysaccharides. Lignans are mainly responsible for the pro-health properties of SCE. These compounds are predominant in SCE fruits, but can also be found in the leaves, shoots, and seeds. They were extracted from the biomass of in vitro cultures [
12,
13,
14]. The most widely represented groups of SCE lignans are dibenzocyclooctadiene lignans, which, due to structural similarity to and occurrence in plants of the
Schisandra genus, are often referred to as “schisandra lignans”. Within dibenzocycloactadiene lignans, which occur in the largest amounts in the fruits of
Schisandra chinensis, are schisandrin (syn. schisandrol A, wuweizisu A), schisandrin B (syn. gomisin N, wuwezisu B, γ-schisandrin), schisantherin A (syn. gomisin C, schisandrer A), schisantherin B (syn. gomisin B, schisandrer B), schisanhenol (syn. gomisin K3), deoxyschisandrin (syn. schisandrin A), and gomisin A (syn. schisandrol B) [
4]. A WHO (World Health Organization) monograph [
15] stated that about 30
Schisandra lignans were identified, but to ensure the pro-health activity of fruits, their content should not be lower than 0.4%. At present, many more lignans in SCE have been detected. For example, schineolignins A–C, belonging to the butane-type lignans dibenzyl group, were described by Xue et al. [
16]; and schilignan F (tetrahydrofuran lignan) was isolated by Yang et al. [
17], from rattan stems of SCE.
The chemical composition and resulting biological activity of plant extracts depends on humidity, light, soil type, latitude, season, maturity, harvest time, geographical location, temperature, and other factors [
18]. Additionally, the content of individual lignans in SCE fruits depends on the location of the crop, the degree of fruit maturity, and harvest season [
19,
20,
21]. Zhang et al., (2009) studied ten fruit samples from different provinces of China [
19]. In six of them, schisandrin was predominant (2.199–5.332 mg/g), while, in the other four, schisantherin A (2.263–6.36 mg/g) dominated. Thirty fruit samples, examined by Liu et al., showed the highest content of schisandrin (3.51–11.08 mg/g) [
20]. This compound constituted 31%–33% of the
Schisandra lignans in fruits originating from Korea, and 36%–46% of those from China. In eight out of ten fruit samples, tested by Wang et al., the relationship in the concentration of SCE lignans was schisandrin > gomisin A > schisandrin B [
21].
Another important group of biologically active compounds isolated from SCE is the triterpenoids. They constitute a broad and structurally diverse group of chemical compounds. SCE contains lanostane and cycloartane-type triterpenoids and nortiterpenoids, which, in the scientific literature, are often termed as "
Schisandra nortriterpenoids" or schinortriterpenoids [
22]. An example of a compound belonging to the lanostane-type triterpenoids is kadsuric acid, described by Yang et al. [
23]. Examples of cycloartane-type triterpenoids are schisanlactone D and wuweizilactone acid [
23,
24]. Schinorterpenoids are isolated from different parts of the plant—fruits (schindilactone A, wuweizidilactone I), leaves (schindilactones IK, wuweizidilactones JP, schisanartanin N), rattan stems (schindilactone LM, wuweizidilactone S), and roots (schinchinelactone D) [
16,
23,
25,
26,
27].
Flavonoids and phenolic acids, which are polyphenols, display antioxidant properties. They are secondary plant metabolites, which occur in every part of the plant (i.e., fruits, flowers, seeds, leaves, roots, or even lignified parts). Among phenolic acids, Mocan et al., found chlorogenic acid in the fruits of SCE, while in the leaves two other derivatives of hydroxycinnamic acid (
p-cumaric and ferulic) were found [
28]. Significantly more compounds from this group were detected by Szopa et al. [
29]. These authors found chlorogenic acid and five hydroxybenzoic acid derivatives: gallic,
p-hydroxybenzoic, protocatechuic, syringic, and vanilic acids, in the leaves and fruits. Flavonoids present in SCE fruits are isoquercitin, quercetin, and its derivatives—quercetin 3-galactoside (hyperoside) and quercetin 3-rutinoside (rutin). SCE leaves also contain quercetin 3-ramnoside (quercitrin) myricetin and kaempferol [
13,
29]. Fruits of SCE also comprise the cyanidin derivatives: Cyanidin-xylosylrutinoside, cyanidin-glucosylrutinoside, cyanidin-xylosylglucoside, and cyanidin-rutinoside, belonging to the anthocyanins [
30,
31,
32].
SCE fruits also contain essential oils. The content of individual groups of compounds can be put in the following order: Sesquiterpene hydrocarbons > oxygenated sesquiterpenes > oxygenated monoterpenes > monoterpene hydrocarbons. The main aromatic compounds are ylangene (11.93%–37.71% of the volatile fraction), α-himachalene (18.03%–20.7%), and β-himachalene (6.29%–10.46%) [
33,
34].
Finally, polysaccharides isolated from SCE fruits have been intensively studied. SCE is the source of homogeneous polysaccharides composed mainly of glucose, galactose, mannose, and rhamnose in various molar proportions. Their mass ranged from 18 to 127 kDa [
35,
36,
37,
38]. Polysaccharides also occur in combination with uronic acid and proteins [
39,
40,
41].
SCE fruits contain substantial amounts of minerals. Sowndhararajan et al., showed that 100 g of dried fruits contains Fe, Mn, Cu, K, and Mg in amounts that cover 96%, 320%, 48%, 54%, and 33% of the Recommended Daily Intake (RDI) of these ingredients, respectively [
34]. According to the European Union legal regulations, a food product can be treated as a source of a particular substance if it contains more than 15% of the RDI of that substance in 100 g of the product [
42].