The potential neuroprotective properties of Transcorneal Electrical Stimulation (TES) are possibly achieved through regulating neuroplasticity, neurotrophic expression, inflammatory responses, apoptosis, glutamate metabolism, and retinal blood flow. The putative neuroprotective effects of TES on mood control are supported by its shared mechanisms of action with current antidepressant treatments, including its neuroprotective effects against apoptosis and inflammation, as well as its ability to promote neurotrophic expression. This entry aims to discuss the neuromodulation potential of TES as a treatment for depressive disorders and the neuroprotective mechanisms of action that might contribute to the antidepressant-like responses.
Major depressive disorder, commonly known as depression, is the leading cause of disability worldwide [1]. It is considered a major global disease burden, with more than 4.4% of the world’s population estimated to suffer from depression, and 800,000 depression-related suicide cases annually [2]. The economic cost of depression in US adults exceeded USD 300 billion in 2018 [3]. According to the Diagnostic and Statistical Manual of Mental Disorders 5th Edition (DSM-V), depression is primarily characterized by anhedonia and sadness persisting for at least 2 weeks, which is accompanied by secondary symptoms such as fatigue, sense of worthlessness, psychomotor agitation, changes in appetite or weight, sleep difficulties, loss of concentration, and/or recurrent thoughts of suicide [4]. The burden of depression is further compounded by the high comorbidity of physical disorders [5], as evidenced by its close association with pain [6][7], dementia [8], type 2 diabetes [9][10], cardiovascular diseases [11][12][13][14], and cancers [15]. Depression not only leads to additional medical and financial costs, but also aggravates the prognosis or even mortality in diseased populations.
Depression is commonly treated with psychotherapy and medications that generally target the reuptake of neurotransmitters [16]. Nevertheless, up to 60% of patients inadequately respond to drug treatments, in which approximately 10–30% of patients develop treatment-resistant depression (TRD) with failure to respond to two or more types of antidepressant treatments [17][18][19][20]. Electroconvulsive therapy (ECT) is considered a common treatment for TRD and the remission rate is reported at approximately 50%, with nearly half of the patients relapsing within the first year following ECT [21][22][23][24][25]. Given the increasing prevalence of depression and unsatisfactory outcomes of currently available treatments, there is an urgent need to develop alternative therapeutic options for the treatment of depression.
Neuromodulation is a technology which utilizes electrical stimulation to modulate the nervous system functioning [26]. It is emerging as a promising therapeutic approach against various psychiatric and neurological disorders [20]. Among the different types of neuromodulation-based techniques, transcorneal electrical stimulation (TES) is a non-invasive treatment that is reported to improve visual functions in various ophthalmological conditions [27]. Although current studies on TES mostly focus on its use in ophthalmology, TES is also demonstrated to induce neurobehavioural changes including antidepressant-like behaviour in corneally kindled models [28]. Surprisingly, apart from activating the retina and associated downstream visual structures, enhanced activities are additionally reported in the prefrontal cortex (PFC) and parahippocampal gyrus (PHG) following TES application [29][30][31]. Although the modulation effects of TES in these non-visual brain regions have yet to be confirmed, both PFC and PHG are involved in mood alterations [32], suggesting that TES may have a role in regulating emotion. The potential neuroprotective properties of TES are possibly achieved through regulating neuroplasticity [30][33], neurotrophic expression [34][35][36][37][38][39][40] , inflammatory responses [39][41][42][43][44], apoptosis [36][45][46][47], glutamate metabolism [48], and retinal blood flow [49][50]. The putative neuroprotective effects of TES on mood control are further supported by its shared mechanisms of action with current antidepressant treatments, including its neuroprotective effects against apoptosis and inflammation, as well as its ability to promote neurotrophic expression.
The application of TES as a treatment for vision restoration was widely investigated. Interestingly, TES was shown to stimulate not only brain regions related to visual processing, but also other unrelated brain regions. A human study utilizing 18F-fluorodeoxyglucose positron emission tomography examined brain regions stimulated during TES [29], which showed activation in the occipital cortex, including Brodmann’s Area (BA) 17 in the primary visual cortex, and BA 18 and BA 19 in the secondary visual cortex. There was also activation in the inferior temporal gyrus, which is part of the ventral visual stream involved in visual processing. Aside from the visual cortex activation, enhanced brain activity was also recorded in the bilateral PFC and PHG. Rodent electrophysiological studies found that prolonged TES led to a sustained excitation of the PFC, suggesting that the stimulating effects of TES could diffuse beyond the visual pathway [30][31]. Although the functional implications of increased activity in PFC and PHG by TES remain obscure, they suggest that TES may exert effects on emotional regulation by activating brain regions highly associated with depression. Indeed, antidepressant treatments or psychotherapy were shown to normalize the PFC glucose hypometabolism observed in depressed patients [51][52], suggesting a positive association between PFC activity and the remission of depressive symptoms. A functional magnetic resonance imaging study demonstrated the involvement of the PFC in emotional control, as indicated by an increase in PFC activity during voluntary suppression of negative emotions [53][54]. Similarly, the PHG was shown to have a pathophysiological role in depression, as indicated by the high discriminative power of its functional connectivity in identifying depressed patients from healthy controls [55].
The effects of TES on behavioural alterations were previously demonstrated in corneally kindled rodent models [28][56][57]. Corneal kindling is an epileptic model generated through repeated TES at sub-convulsive doses until a generalized seizure is achieved. Wlaź et al. reported that TES induced a significant reduction in despair-like behaviour in fully kindled rats, as demonstrated by a decrease in force swim immobility [28]. Interestingly, such an antidepressant-like response was accompanied by an increase in anxiety-like behaviour in the elevated plus maze test. On the contrary, 6 Hz corneal kindling did not produce an anxiety-like response, instead it resulted in anhedonic-like behaviour in both saccharin preference and novelty suppressed feeding tests [56]. Furthermore, results reported by Wlaź et al. contradicted the findings of another study by Koshal et al., which showed corneally kindled mice had depressive-like behaviour in the tail suspension test [57]. Although TES was shown to induce behavioural changes in kindled models, its prodepressant or antidepressant effects remains unclear due to inconsistent results among studies. More importantly, these investigations were conducted in a fully kindled model, which is not a proper animal model of depression, and could display abnormal behavioural phenotypes that would confound the effects of TES on regulating mood-related behaviour. Moreover, the high stimulation intensities of TES (up to 19 mA amplitude) used to trigger epileptic seizures were inappropriate for examining the antidepressant potential of TES, as such extreme stimulation parameters could lead to tissue damage. Although TES was demonstrated to alter behaviour, its potential therapeutic use in depression needs to be investigated further in a proper animal model of depression using appropriate stimulation parameters.
Interestingly, TES shares several mechanisms of action with some of the existing antidepressant treatments, which can provide a basis for identifying its putative antidepressant properties and the underlying molecular pathways. We compared selective serotonin reuptake inhibitors (SSRIs), repetitive transcranial magnetic stimulation (rTMS), and ECT. These depression treatments are approved by the United States Food and Drug Administration (FDA) and are representative therapeutic options for major depression and TRD. Among the different SSRIs options, fluoxetine and escitalopram act to increase serotonin activity by maintaining its extracellular concentration. They are the most commonly prescribed first-line antidepressants with proven safety and efficacy for use in paediatric and adult patients [58][59]. As a non-surgical, non-convulsive brain stimulation therapy, rTMS utilizes a time-varying magnetic field to modulate cortical plasticity and excitability [60][61]. Another non-invasive neuromodulation technique is ECT, which is conducted under general anaesthesia. It intentionally triggers a brief generalized cerebral seizure via the delivery of a small electrical charge to the patient’s scalp [62]. It is speculated that the neurotrophic, anti-apoptotic, and anti-inflammatory activities of TES greatly resemble the biomarker changes observed in the aforementioned antidepressant pharmacological and neuromodulation interventions.
A growing body of evidence suggests the regulation of neurotrophic signalling has tremendous potential for treating depression. Impaired neuroplasticity is thought to arise from the dysregulated expression of neurotrophins, which have dual roles in regulating neuronal survival and activity-dependent synaptic plasticity [63][64]. Specifically, it has long been speculated that BDNF, a major neurotrophic factor that supports the growth, maturation, and maintenance of nerve cells, plays a direct role in the pathophysiology of depression [65]. A decreased plasma BDNF level was found to be significantly associated with suicidal behaviour in major depression [66]. Similar to TES, the administration of rTMS, ECT, and SSRIs in depressed subjects also led to a neurotrophic enhancement, particularly the enhanced expression of BDNF. Indeed, a 12-week escitalopram treatment in depressed patients reversed the downregulated BDNF mRNA levels in peripheral leukocytes, which normalised serum BDNF levels and alleviated depressive symptoms [67]. Similarly, a small cohort of depressed older patients was treated with escitalopram for 2 months, which resulted in a significant increase in BDNF serum level associated with improvements in the geriatric depression score [68]. Likewise, prolonged rTMS administration in a chronic unpredictable mild stress (CUMS) model of depression upregulated hippocampal BDNF expression for up to 2 weeks after treatment discontinuation and reversed the stress-induced depressive-like behavioural changes [69][70]. Concordantly, several lines of evidence demonstrated that TRD patients who received rTMS showed remarkable increases in peripheral BDNF levels [71][72][73]. Similarly, ECT was shown to upregulate BDNF expression in depressed subjects in both preclinical and clinical studies [74][75][76]. A recent meta-analysis showed that ECT increased peripheral BDNF levels in depressed patients consistent with pharmacological antidepressant interventions, and further highlighted the association between BDNF and the risk of depression [75]. Although the effects of TES on enhancing BDNF levels in the retina are consistently reported [36][38][39][46], its effects on regulating neurotrophin expression in various brain regions involved in emotional regulation, and its associated therapeutic potential, require further investigation.
In major depression, chronic stress can induce excessive apoptotic cell death leading to neurodegeneration in the central nervous system [77]. A balance between pro-apoptotic factors (e.g., Bax and Bak) and anti-apoptotic factors (e.g., Bcl-2 and Bcl-xl) plays a crucial role in controlling the activation of apoptotic pathways [78]. Studies showed that TES could upregulate anti-apoptotic Bcl-2 expression and downregulate pro-apoptotic Bax expression [36][45][46]. Similarly, SSRIs were shown to protect neurons from apoptosis by modulating the expression of the Bcl-2 gene family members that regulate caspase activation and cell death [79]. Fluoxetine treatment in a CUMS model enhanced Bcl-2 expression in the central nucleus of the amygdala, frontal, and cingulate cortices, and reduced Bax expression in the hippocampus, which are all critical brain regions implicated in depression [80][81]. Concordantly, changes in apoptotic markers such as the downregulation of Bcl-2 and upregulation of caspase-3 were remarkably attenuated in CUMS rats after 3 weeks of fluoxetine treatment, further supporting an anti-apoptotic mechanism of SSRIs [82]. Similarly, ECT was found to positively affect Bcl-2 mRNA expression in various sub-regions of the limbic system, while also selectively increasing Bcl-xl mRNA expression in the hippocampus [80]. On the other hand, rTMS was able to repress Bax and augment Bcl-2 expression levels in the hippocampus of CUMS rats, which were accompanied by the amelioration of depression-like behaviour [70][83]. Although TES was also shown to possess anti-apoptotic properties, whether these resulted in antidepressant activity remains an interesting topic for future investigation.
The inflammatory hypothesis of depression is supported by the heightened inflammatory responses found in a significant proportion of the depressed population [84], including increased levels of neuroinflammatory cytokines, which are believed to cause serotonin and melatonin depletion via the neurotoxic kynurenine pathway [85]. Interestingly, changes in the pro- and anti-inflammatory profile of TES greatly paralleled that of rTMS, ECT, and SSRIs. A meta-analysis reported SSRIs to have suppressive effects on inflammatory factors in depressed patients who exhibited increased serum levels of major inflammatory cytokines such as IL-6, IL-1β, and TNF-α [86]. The anti-inflammatory role of SSRIs was further supported by a clinical study on 98 depressed patients which found that treatment with either fluoxetine or escitalopram for 2 months significantly reduced inflammatory markers [87]. Notably, TRD patients treated with rTMS had gradually attenuated serum levels of pro-inflammatory IL-1β and TNF-α accompanied by positive changes in Hamilton Depression Rating Scale-24 scores [73]. Moreover, rTMS exerted antidepressant-like effects in a CUMS model via a nuclear factor-E2-related factor 2 (Nrf2)-dependent anti-inflammatory mechanism, which suppressed the production of pro-inflammatory TNF-α, iNOS, IL-1β, and IL-6 in hippocampal regions [88]. A substantial body of evidence consistently showed that ECT could alleviate pro-inflammatory cytokine secretion in depressed patients, as indicated by a notable reduction in peripheral TNFα, IL-6, eotaxin-3, and IL-5 levels [89][90][91][92]. Moreover, ECT was also reported to increase the level of blood IL-10 [93], which is a well-established anti-inflammatory cytokine that prevents neuronal and glial cell death [94]. Given that TES was demonstrated to reduce inflammatory responses via regulating cytokine expression and suppressing microglial activation [39][42][43][44], its putative anti-depressant effects on inflammation warrant investigation in the future.
A major advantage of TES is that it is a non-invasive, reversible, and highly adjustable stimulation method. Numerous pre-clinical and clinical studies demonstrated an excellent safety profile of TES and no serious adverse side effects were reported. On the contrary, invasive neuromodulation approaches such as deep brain stimulation carry a risk of infection and haemorrhage during invasive neurosurgery [95][96][97]. Moreover, there is a risk of seizure during stimulation in rTMZ [98], while ECT has potential cognitive side effects including retrograde and anterograde amnesia [99][100]. Compared with conventional antidepressant drugs that affect the entire body, TES can deliver its effects in specifically targeted brain regions [101]. Furthermore, TES avoids the common side effects of antidepressants such as weight change, hepatotoxicity, and gastrointestinal problems [102][103]. The adjustable nature of TES allows the stimulation parameters to be fine-tuned depending on the individual patient’s condition and disease progression. The stimulator can be quickly turned off if an adverse event occurs and the stimulating electrodes can be easily removed. Additionally, the simple administration of TES could allow for self-administration by patients, which greatly enhances its flexibility throughout the treatment period [104].
Although TES is well tolerated in humans with only mild and transient side effects, even after prolonged use, there are some commonly observed side effects, including foreign body sensation, dry eye symptoms, and corneal punctate keratopathy, which can be mostly resolved without further treatment [105][104][106][107]. Other infrequent adverse events include unilateral cataracts, the sensation of flashing lights, muscle twitching, vomiting, and a tingling sensation on the side of the head [104]. Moreover, there were two reported cases of retinal perforation in rats, possibly as a result of mechanical pressure or high charge density stimulation [36]. Considering the potential ocular damage caused by high amplitude stimulation, the optimal stimulation parameters need to be well validated. Furthermore, both antidepressant-like and depressive-like behaviour was reported in the corneal kindling model, and it raised the possibility that TES could resolve or exacerbate depressive-like symptoms. It is therefore important to examine the therapeutic effects of TES using an animal model of depression with proper control, and further investigate of the putative TES-induced activation in brain structures associated with depression in order to delineate the underlying mechanisms of action.
This entry is adapted from the peer-reviewed paper 10.3390/cells10092492