Nanomaterials Application in Endodontics: History
Please note this is an old version of this entry, which may differ significantly from the current revision.
Contributor:

The medical procedures in endodontics are time-consuming and mostly require several visits to be able to achieve the proper result. In this field of dentistry, there are still major issues about the removal of the mostly bacterial infection from the dental root canals. It has been confirmed that nanoparticles are much more efficient than traditional materials and appear to have superior properties when it comes to surface chemistry and bonding. Their unique antibacterial properties are also promising features in every medical procedure, especially in endodontics. High versatility of use of nanomaterials makes them a powerful tool in dental clinics, in a plethora of endodontic procedures, including pulp regeneration, drug delivery, root repair, disinfection, obturation and canal filling. 

  • nanomaterials
  • endodontics
  • dentistry

1. Introduction

One of the branches of dentistry that deals with the morphology and physiology of the endodontium is endodontics. It combines such aspects of this field as etiology, pathology, epidemiology, prophylaxis and, above all, treatment of endodontic and periapical diseases. Depending on the complexity of the case, the treatment process may be carried out at one or more visits. Due to the difficulty of maintaining the sterility of the operator’s work area, nanomaterials are increasingly used. Thanks to the expanding variety of nanoparticles, such as bioactive glass, zirconia, chitosan, hydroxyapatite, silver particles, zinc oxide, the properties of materials used in dentistry, such as durability, tissue regeneration and bactericidal properties, can be improved. 

2. Classification of Nanomaterials, Materials Modification

Generally, nanoparticles can be divided into naturally occurring and artificial due to their composition. The subgroup of naturally occurring nanoparticles divides into inorganic or organic. As for the shape, nanoparticles can be divided into spherical, tubular, rod-shaped and plate-shaped particles. In addition, functionalized nanoparticles can also be distinguished. They have an inner part-core, that is built of one material with different molecules on its outer surface or enclosed in it. Depending on application, particles in nanomaterials can be modified by using, among many things, drugs or peptides [17]. The mechanism of functionalization is focused on the functioning of linker molecules in which each linker molecule has at both its ends a reactive group that binds different molecules—such as biocompatible materials (dextran), antibodies, fluorophores and others—to the core of the nanoparticle. On the other hand, the core nanoparticle can be used as a surface for assembling particles from inorganic or organic materials [1].
Another classification method for nanomaterials is their division by dimensions, as illustrated in Figure 1; materials can be produced in a nanoscale in either zero (e.g., fullerenes), one (thin surface coatings), two (e.g., graphene), or three dimensions (composite nanomaterials).

This entry is adapted from the peer-reviewed paper 10.3390/ma14185296

This entry is offline, you can click here to edit this entry!
Video Production Service