Dendrocalamus asper and Related Bamboos
Subjects: Plant Sciences

Bamboos represent an emerging forest resource of economic significance and provide an avenue for sustainable development of forest resources. The development of the commercial bamboo industry is founded upon efficient molecular and technical approaches for the selection and rapid multiplication of elite germplasm for its subsequent propagation via commercial agro-forestry business enterprises. 

  • bamboo
  • Dendrocalamus asper
  • micropropagation
  • plant tissue culture
  • DNA barcoding
  • genetic stability

1. Introduction

Bamboo is the fastest-growing flowering perennial grass and considered as one of the world’s most important tree species [1]. Bamboos belong to the largest family of grasses, the Poaceae (Gramineae), and constitute the Bambusoideae subfamily [2]. With 121 genera and 1662 species [3], the bamboo population can be divided into three zones geographically: the American zone, the Asian Pacific zone and the African zone [4], and according to reference [5], about 80% of bamboo forest lands and species in the world are distributed across the Asian Pacific region. Bamboo, in general, plays an important role in human life, mainly in terms of meeting the current economic, ecological, and human essential needs [6,7]. Several studies have shown that bamboos cultivated commercially are more renewable and sustainable than other woody plants, as the inefficient harvesting and use of bamboo has become a major focus worldwide [8,9]. A current report by reference [10] stated that the global demand for bamboo is expected to reach a revenue of USD 98.3 billion with a Computed Annual Growth Rate (CAGR) of 5% by 2025. The same study predicted that the biomass energy market will reach USD 98.0 billion by 2027 with a CAGR of 9.2% from 2020 to 2027. Since bamboo is undeniably the most important non-woody forest resource in Malaysia and some Southeast Asian countries, the traditional timber industry needs to develop the use of non-timber bamboo into a value-added material such as floorboards, building materials, composite boards and furniture, as well as biomass products [11].

2. Dendrocalamus asper

Taxonomically, Dendrocalamus belongs to the Bambuseae tribe and comprises about 35 species. In 2017, a study on Dendrocalamus and Bambusa conducted by reference [12] reported a higher similarity between these two genera when compared to other bamboo species. This finding supported the interpretation made by reference [13] that Dendrocalamus belongs to the same tribe as Bambusa. Besides, this similarity can be linked with their chromosome number, as with most species of the tropical bamboo genera, like Bambusa, Cephalostychum, Dendrocalamus, Gigantochloa and Melocanna reported to have a chromosome number of 72 (2n) [14]. D. asper, which is commonly referred to as sweet bamboo, is a multipurpose tropical clumping bamboo with high economic value [15,16]. Known also as rough bamboo, black bamboo or giant bamboo, D. asper grows to a height of 20–30 m, with a diameter of 8–20 cm and 20–45-cm-long internodes, and has relatively thick walls [17]. The origins of D. asper are not definitive, but according to reference [18], they are distributed across India and South East Asia, including Thailand, Vietnam, Malaysia, Indonesia and the Philippines. Recently, D. asper has been introduced in other tropical countries, including Ghana, Benin, DR Congo, Kenya and Madagascar. Figure 1 shows the distribution map of D. asper based on their endemic origin and subsequent introduction as an exotic species. Within tropical Asia, D. asper grows ideally in humid regions with rich, heavy soils, from lowlands to a 1500-m altitude, with an average annual rainfall of about 2400 mm. It can also survive well in semiarid environments with proper management. The mature stems are used to create furniture, musical instruments, household utensils, handicrafts and paper, while the upper internodes are used to make containers and cooking pots [19]. The tender young shoots are consumed as a vegetable and are thought to be the finest of all tropical Asiatic bamboos [20]. The rhizome, stems and branch cuttings can all be used to propagate D. asper. The propagules are grown in a nursery and then planted out in the field before or during the first half of the monsoon season after the roots have emerged. The best time to harvest stems is during the dry season; it is recommended to harvest mature stems that are 5–7 years old, while retaining some mature tillers in the clump.
Figure 1. Range and distribution of D. asper in its native and introduced habitats.

4. Bamboo Propagation and Diseases

4.1. Traditional Propagation of Bamboos and Tissue Culture

Conventionally, bamboos are propagated through seeds. Short seed viability periods of 3–6 months, long-term gregarious flowering, the monocarpic nature of the plant, poor seed set and large-scale seed consumption by pests are all factors that restrict the use of seeds as a reliable resource of propagation [23,64]. Owing to the segregation of their traits, the genetic homogeneity of seed-based progenies is also in question. As a consequence, vegetative propagation from layering, off-set and rhizome planting, marcotting and branch and culm cuttings are used for propagating the bamboos [17,65,66]. The traditional bamboo propagation methods, on the other hand, are detrimental to mother plants during collection, involving high labor costs, transportation difficulties, bulky materials and seasonal dependence, which is typically limited to a short period of time, and these techniques are only effective for small-scale production [67,68]. The first report on a successful tissue culture of bamboo was done by reference [69], who described the embryo culture of D. strictus on a sucrose-enriched medium. In vitro propagation provides the ability to acquire large progenies from elite genotypes, since it was believed that it could solve most of the problems associated with conventional propagation [70]. In most cases, when designing protocols for in vitro plant propagation, trial-and-error experiments are needed to identify specific conditions for individual species, genotypes and even the donor plant development stages [25]. The aim of bamboo tissue culture regeneration protocols is to achieve the large-scale production of plants for operational planting, to produce disease-free and genetically uniform planting material and to provide material for breeding programs, as well as germplasm conservation [71].

4.2. Bamboo Diseases

Tissue culture has become a platform to confer resistance against specific diseases by manipulating the genetics of the plant systems. Bamboo tissue is composed primarily of Hemicellulose, Cellulose and Lignin [72], and microbes that rely on these as a source of carbon represent potential pathogens. Investigations carried out in China [73] in 148 bamboo species over a 11-year period from 1995 to 2006 recorded 208 potential pathogens, the majority of which were fungi (108). Similar studies carried out in Japan [74] reported 257 fungal strains, of which 75 could be identified using 18S rRNA gene and internal transcribed spacer region (ITS) analyses with Xylariales as the major dominant group. Bamboo died back, which was caused by the fungus Aciculosporium take, reported to predominantly infect Phyllostachys bambusoides, with a lower incidence in Phyllostachys pubescens Western Japan [75], leading to phenotypic changes referred to as the ”witches’ broom” of bamboo. Among the pathogens reported from India [76], Bambusa nutan was found to be infected by Nigrospora oryzae, the causative agent of leaf spot disease, whereas Fusarium oxysporum and F. verticillioides were dominant on Bambusa balcooa and D. asper, respectively. Another extensive study carried out in India across 12 phyla and 46 orders identified the pathogens belonging to the phylum Deuteromycota and Ascomycota as causative agents for foliage-related diseases. Basidiomycota was found to be associated with culm diseases, which is supported by the evidence that white rot fungi belong to this phylum and are involved actively in the degradation of lignin [77] and the utilization of carbohydrate complexes [78] that constitute the structural elements of bamboo. Interestingly, not all microbiota associated with bamboos have been reported to be pathogenic, with reports providing evidence of endophytic bacterial communities [79] associated with the rhizomes of tropical bamboos that share a unique symbiotic relationship and may also serve as a means of host defense [80] and biological control. Recent reports of the new fungal pathogen Arthrinium bambusicola in Thailand [81] and novel techniques such as high-throughput genome sequencing have provided new tools for the discovery and diagnosis of fungal pathogens [82], the early detection of which is critical to their control.
The Bamboo Mosaic Virus (BaMV) is one of the most well-documented and studied among the viruses associated with bamboos [83], although many individuals may be asymptomatic carriers with no physical evidence of viral infection. The mode of transmission of the virus appears to be mechanical injury, either via routine farming operations or insect vectors [84]. Recent reports have emerged of etic recombination events in Indonesia [85], which indicate Taiwan as the origin of the virus. Molecular data has provided evidence of the factors involved in the intracellular movement of the virus, which is mediated by movement proteins [86], and measurements for the containment and eradication of the BaMV have included treatments with abscisic acid [87], which has been reported to induce resistance and improve the host defense, as well as the application of interfering satellite RNA [88] in transgenic bamboo plants. The adoption of pertinent biosecurity measures during import of the germplasm, as well as the monitoring of invasive pathogens in commercial plantations, is currently the best available measure for the control of BaMV and other pathogens.

5. Regeneration of D. asper

In any plant tissue culture, choosing the appropriate propagation method is crucial. Different routes such as direct shoot induction (axillary shoot proliferation), the production of adventitious buds through organogenesis and somatic embryogenesis are pathways of choice for the rapid and large-scale propagation of bamboo using both juvenile and mature explants [89]. Reference [90] stated that callus have three basic developmental ways: somatic embryo development, shoot organ differentiation and a mixed development pathway that includes both somatic embryogenesis and shoot organogenesis. A developed in vitro culture of D. asper was successfully established from various explants. Seeds [91], mature plants of nodal explants [16,19,91,92,93,94,95,96], stem cuttings [97], small branch cuttings [98], nodal and leaf bases [99], inter node segments [100] and clump [101] were successfully used for the mass propagation of D. asper in vitro. Some researchers also used inflorescence explants for establishing protocols for the multiple shoot proliferation in D. asper [102] and in vitro flowering studies [103]. Most of the research available in D. asper used juvenile and mature tissues on enhanced axillary branching, with just a few reports on indirect organogenesis. By using nodal explants, the first regeneration of shoots and roots from D. asper callus was carried out by reference [92]. Moreover, several authors published studies incorporating both in vitro and in vivo multiplications of D. asper to improve the multiplication rate and measure the quality of plantlets in the field. Table 1 and Table 2 below respectively show the in vitro regeneration of D. asper through organogenesis and somatic embryogenesis using different explants. According to reference [25], because of the size and diversity of this plant family, establishing the best culture medium, combinations of plant growth regulators and other compounds in promoting the growth of explants will usually take several months. Therefore, to reduce the current gap between demand and supply, cost-effective methods for planting large-scale bamboo propagation in new bamboo forests must be established.

6. Bamboo Dormancy and Bud Breaking

6.1. Seed Dormancy

The word “dormancy” refers to the temporary stop of plant growth. It comprises true dormancy, known as (“rest” or “endodormancy”) triggered by internal factors and climatic dormancy (“quiescence” or “ecodormancy”) controlled by external factors [198]. As mentioned by reference [194], dormancy and the breaking of dormancy in buds of bamboos vary with their position on the plant, the season of the year and the species, while seed dormancy is known to occur in many tropical tree species. In seeds, several methods are known to be involved in the induction of dormancy to the germinating state. In this section, the role of plant hormones, various treatments available are discussed for bamboo seed dormancy. Important factors influencing seed germination include the seed quality and their viability. Major causes linked to the loss of seed viability are the endogenous levels of auxins and abscisic acid (ABA) during prolonged storage [199]. Besides, bamboo seeds are short-lived, germinate within 3–7 days and the germination potential is season-dependent [200]. To preserve the viability for a longer period of time, seeds are usually stored at 4 °C in desiccators with anhydrous calcium chloride. Furthermore, reference [201] revealed that prechilling the seeds (4 to 5 °C) for 4 weeks could be the most effective way to extend their life. This process is known as vernalization, and it involves exposing seeds to low temperatures in order to stimulate or to enhance seed development [198]. For instance, reference [106] stored D. asper seeds at 4 °C for 3 months before undergoing surface sterilization. However, degradation can occur during storage. Depending on the predominant causes of dormancy, some authors [202,203,204] have suggested various approaches to break the seed dormancy in order to improve the germination rate and speed up the germination process. Besides, the breaking of seed dormancy varies from species to species. Therefore, it is very important to determine which method and condition are the best for each plant species. Various techniques are available that enhance the vigor of seeds, and these technologies are termed as seed invigoration/seed enhancement techniques [205]. Seed invigoration is a postharvest treatment that enhances seed production by ameliorating the germinability, storability and yield performance of the seeds [199]. Hydropriming, seed hardening, on-farm priming, osmo-priming, osmo-hardening, humidification, priming with plant growth regulators, polyamines, ascorbate, salicylate, ethanol, osmolytes, coating technologies and, more recently, pre-sowing dry heat treatments are some of the treatments used to invigorate seeds [200]. These strategies provide high-value crops with value-added solutions that improve the yield and quality. Generating greater emergence rates, rapid seedling growth and better stand developmental rates are the results of seeds priming [206]. However, no treatments have been applied to D. asper seeds in order to break their dormancy and improve their viability. In terms of plant growth regulators, reference [207] indicated that the major gibberellins formed by the germinating embryo are GA1 and GA3. Furthermore, GA3 and GA7 are thought to activate aleurone cells, and GA1 and GA4 are thought to regulate embryo development. GA2 and GA22 are two other active gibberellins, while others like GA12, GA17 and GA26 show no sign of reaction. The importance of endogenous GAs as a seed germination enhancer has also been earlier emphasized by reference [208]. When the seeds of D. membranaceus Munro were soaked in GA3 solution (50 ppm) overnight, a high percent of seed germination was stimulated, with a corresponding increase in shoot length (2.70 mm) and number of sprouts (7) per explant during culture initiation [141]. Similarly, reference [209] discovered that 0.5-mg/L GA3 supplemented in media promotes the germination of D. giganteus Munro seeds under light better than BAP and Kn. In addition, GA3 at 50 ppm was found to be the best pre-sowing treatment on D. hamiltonii seeds, with a statistically significant improvement in seed viability [200]. Furthermore, seed primed with 1% KNO3 solution increased the germination of D. strictus (Roxb.) by 80.4% at the fastest rate, and no mortality was recorded when transferred to soil [210]. However, reference [211] observed that osmopriming with KCl (10%) resulted in a maximum germination percentage of 83.1% when compared to KNO3 and PEG-6000 on D. strictus seeds. Meanwhile, reference [212] soaked the D. sinicus seeds in 0.5% (v/v) potassium permanganate (KMnO4) for 12 h and resulted in a high germination rate.

6.2. Bud Position on the Bamboo Plants

The position of explants was found to affect the culture initiation and the quality of the shoots formed under in vitro conditions. During in vitro bamboo propagation, the top and bottom portions of the nodal segment in culm bamboo can hardly regenerate. The initiation of the culture is more efficient when nodal segments from a healthy mature mother plant with disinfected lateral branches are used [19]. According to reference [175], the juvenility of lateral shoots, the season of the cultures initiated and the position of axillary bud on the branch highly affect the bud break frequency in D. longispathus. Moreover, reference [213] reported that nodal segments from mature clumps of B. bambos with pre-existing axillary buds were primarily preferred as explants due to their sufficient availability all-year-round to initiate in vitro cultures, while reference [214] reported that explants from young lateral buds showed a bud break in B. tulda. Besides, explants from healthy mother stock were found to be good for the regeneration of new plants in D. hamiltonii [125], P. stocksii Munro [192], G. angustifolia and D. giganteus [119]. Explants taken from higher branches were found to respond better to a multiplication medium with an early bud break than explants from lower branches [94]. In Arundinaria callosa, the position of the nodal buds in the lateral branches affected the efficiency of the bud breaks, resulting in a higher bud break when nodal explants are taken from the basal and middle nodes compared to the distal part of the secondary branches [215]. Reference [137] illustrated that the 5th–7th positions of B. nutans explants from the mother stock culm were the best for the maximum regeneration in the vitro culture in bud breaking, while reference [149] found the best regeneration for D. strictus taken from the 1st and 2nd positions of the base of the secondary branches. Similar findings have also been reported in D. longispathus [175] and B. vulgaris [216], which mid-culm nodes of secondary branches are in the best position for axillary shoot initiation explants. Furthermore, reference [110] stated that the best explants for axillary shoot proliferation in D. asper were taken from the mid-culm nodes of tertiary branches.

6.3. Season Collection of Explants

The period of explant collection for culture initiation was found to play an important role in reducing the level of contamination, increasing the bud break and increasing the number of shoots per explant [132]. The environmental conditions during different periods of the year varied the maturity status of the explants, hence influencing the response of explants to the culture initiation [110]. D. asper responded best to the culture conditions during the pre-monsoon season (May to June) but with a higher contamination rate [16], while references [19,132] stated that young branches (nodal segments) of D. asper collected in the spring (February–April) gave a better response in terms of lower contamination, early bud break and a higher number of shoots. On the other hand, reference [110] stated that the best time in initiating aseptic cultures for D. asper was in January and February, when the maximum bud break was achieved. In the spring, an increased cell division has been observed in trees as young buds produce auxins, which stimulates cell division in the cambium [217]. Moreover, the months of July–December were discovered to be unsuitable for optimal D. asper bud induction. Reference [19] found that during the rainy season (July–September), almost 50% of the contamination with moderate bud breaks was due to strong fungal and bacterial contaminants remaining underneath the leaf sheaths, while a poor response during the winter (October–December) was primarily due to the plant’s dormant and slow development. According to reference [110], the highest rate of contamination was also observed during the time of maximum rainfall (June–August). In a study of B. balcooa by reference [218], the explants collected during the rainy season in India (June–September) resulted in a high presence of contaminated explants. Furthermore, the establishment of B. oldhamii in vitro was a success when reference [135] collected the explant material by the end of the rainy season (June and July) in the Central-West Region of Brazil. Therefore, it is important to understand that bud break responsiveness is normally associated with the rainy season of different locations. Similar seasonal effects on bud breaks were also observed in D. giganteus and B. vulgaris [144], B. nutans [137,178], B. balcoa [162], D. hamiltonii Arn. Ex Munro [132] and B. Bambos [151].

9. Bamboo Genomics

Genome and transcriptome sequencing of commercially important plant species has led to the discovery of novel genes, the elucidation of biosynthetic pathways and the identification of genomic loci linked to quantitative traits. Bamboo occupies an important phylogenetic node in the grass family and the first attempt to compare the genomes of Oryza sativa and Zea mays was made by estimating the genome size of the tetraploid Moso bamboo (Phyllostachys pubescens) which was determined to be 2034 Mb following which, approximately 1000 genome survey sequence for the analysis of synteny [274]. Molecular markers from O. sativa were successfully applied and were able to resolve bamboo species into two major groups which concurred with the morphological classification as rhizome type, runner and clumper [275]. The first high quality of the draft genome of P. heterocycla var. Pubescens provided evidence of genome duplication and led to the identification of 31,967 genes [276]. The Bamboo genome database (Bamboo GDB) which has been developed as a direct result of multiple genome sequencing projects now provides researchers with a library of functionally annotated genes and pathways as well as tools for analysis and graphical representation of data sets [277]. Since then, transcriptome analysis of P. edulis has led to the discovery of genes linked to floral transition and flower development in bamboo, both of which are pertinent to the breeding industry [278]. The cumulative data provides an important resource for the development of molecular markers for the characterization of genome variation in bamboo via genome resequencing [279]. The wealth of information related to microsatellites has facilitated the reconstruction of high-resolution phylogenetic maps of bamboos [227]. The discovery of transposable genetic elements within the bamboo genome, which are responsible for somaclonal variation, has also provided insights into the phylogeny of Asian bamboos [280]. Transcription factors are important for the regulation of genes and their role in growth and development makes them of importance to genetic engineering, the characterization of these transcription factors in P. edulis has provided the foundation for the discovery and application of novel transcription factors for downstream applications in genetic modification [280]. The recent publication of the draft genome sequence of the diploid, herbaceous bamboo Raddia distichophylla (Schrad. ex Nees) Chase, has provide a clearer understanding of the process of lignification and the genes associated with this biosynthetic pathway [281]. The increase in the availability of both genome sequencing data from multiple projects when integrated with transcriptomic data from different developmental stages [282,283] will provide researchers and commercial breeders with data that can be applied for the improvement of bamboo via the application of Marker Assisted Breeding (MAS) program and genetic engineering of important regulatory pathways.
    1. Tanaka, E.; Tanaka, C.; Mori, N.; Kuwahara, Y.; Tsuda, M. Phenylpropanoid amides of serotonin accumulate in witches’ broom diseased bamboo. Phytochemistry. 2003, 64, 965–969. DOI: 10.1016/S0031-9422(03)00429-1
    2. Yeasmin, L.; Ali, M.N.; Gantait, S.; Chakraborty, S. Bamboo: An overview on its genetic diversity and characterization. 3 Biotech 2015, 5, 1–11, doi:10.1007/s13205-014-0201-5.
    3. Canavan, S.; Richardson, D.M.; Visser, V.; Roux, J.J.; Vorontsova, M.S.; Wilson, J.R. The global distribution of bamboos: Assessing correlates of introduction and invasion. AoB Plants 2016, 9, 78, doi:10.1093/aobpla/plw078.
    4. Clark, L.G.; Londoño, X.; Ruiz-Sanchez, E. Bamboo taxonomy and habitat. In Bamboo, Tropical Forestry; Liese, W., Kohl, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; Volume 10, pp. 1–30, doi:10.1007/978-3-319-14133-6_1.
    5. Mera, F.A.T.; Xu, C. Plantation management and bamboo resource economics in China. Cienc. Tecnol. 2014, 7, 1–12.
    6. Hoogendoorn, J.C.; Benton, A. 13 Bamboo and rattan production and the implications of globalization. In Forests and Globalization: Challenges and Opportunities for Sustainable Development; Nikolakis, W., Innes, J., Eds.; Routledge: United Kingdom, London, 2014, pp. 166–184.
    7. Liese, W.; Kohl, M. Bamboo: The Plant and Its Uses (Tropical Forestry); Springer: Basel, Switzerland, 2015; p. 356.
    8. Bansal, A.K.; Zoolagud, S.S. Bamboo composites: Material of the future. J. Bamboo Ratt. 2002, 1, 119–130, doi:10.1163/156915902760181595.
    9. Song, X.; Zhou, G.; Jiang, H.; Yu, S.; Fu, J.; Li, W.; Wang, W.; Ma, Z.; Peng, C. Carbon sequestration by Chinese bamboo forests and their ecological benefits: Assessment of potential, problems, and future challenges. Environ. Rev. 2011, 19, 418–428, doi:10.1139/a11-015.
    10. Grand View Research. Bamboos Market Size Worth $98.3 Billion by 2025|CAGR: 5.0%. 2020. Available online: (accessed on 20 August 2020).
    11. MTIB, Malaysian Timber Industry Board. Sabah Bamboo Industry Has Huge Potential, Sabah News, Daily Express. 2020. Available online: (accessed on 8 October 2020).
    12. Konzen, E.R.; Peron, R.; Ito, M.A.; Brondani, G.E.; Tsai, S.M. Molecular identification of bamboo genera and species based on RAPD-RFLP markers. Silva Fenn. 2017, 51, 1–16, doi:10.1139/a11-015.
    13. Kelchner, S.A.; Group, B.P. Higher level phylogenetic relationships within the bamboos (Poaceae: Bambusoideae) based on five plastid markers. Mol. Phylogenet. Evol. 2013, 67, 404–413, doi:10.1016/j.ympev.2013.02.005.
    14. Thakur, A.; Barthwal, S.; Ginwal, H.S. Genetic diversity in bamboos: Conservation and improvement for productivity. ENVIS For. Bull. 2016, 131–146.
    15. Ahmed, M.F. In Keynote Address, Proceedings of the National Seminar on Bamboo, Bamboo Society in India, Bangalore, India, 28–29 November 1996; pp. 6–8.Narin, C.; Kanokporn, P. Effect of thickness on qualities of dried sweet bamboo shoots (Dendrocalamus asper Backer) products. J.Food Health Bioenv Sci. 2021, 12, 1-8.
    16. Banerjee, M.; Gantait, S.; Pramanik, B.R. A two step method for accelerated mass propagation of Dendrocalamus asper and their evaluation in field. Physiol. Mol. Biol. Plants 2011, 17, 387–393, doi:10.1007/s12298-011-0088-0.
    17. Hossain, M.A.; Kumar, S.M.; Seca, G.; Maheran, A.A.; Aini, A.S.N. Mass Propagation of Dendrocalamus asper By Branch Cutting. J. Trop. For. Sci. 2018, 30, 82–88, doi:10.26525/jtfs2018.30.1.8288.
    18. Benton, A. Priority Species of Bamboo. In Bamboo (Tropical Forestry); Liese, M., Kohl, M., Eds.; Springer: Cham, Switzerland, 2015; Volume 10, pp. 31–41, doi:10.1007/978-3-319-14133-6_2.
    19. Singh, S.R.; Dalal, S.; Singh, R.; Dhawan, A.K.; Kalia, R.K. Micropropagation of Dendrocalamus asper {Schult. & Schult. F.} Backer ex k. Heyne): An exotic edible bamboo. J. Plant Biochem. Biotechnol. 2012, 21, 220–228, doi:10.1007/s13562-011-0095-9.
    20. Sowmya, C.; Jagadish, M.R.; Syam, V. Cultivation prospects of Dendrocalamus asper backer for edible shoots in semiarid and humid tropics of peninsular India. Int. J. Plant Anim. Environ. Sci. 2015, 5, 95–101.
    21. Partey, S. T.; Sarfo, D. A.; Frith, O.; Kwaku, M.; Thevathasan, N. V. Potentials of Bamboo- Based Agroforestry for sustainable development in Sub – Saharan Africa: A review. Agric. Res. J. 2017, 6, 22-32.
    22. Emamverdian, A.; Ding, Y.; Ranaei, F.; Ahmad, Z. Application of Bamboo Plants in Nine Aspects. Sci. World J. 2020, 2020, 7284203, doi:10.1155/2020/7284203.
    23. Mudoi, K.D.; Saikia, S.P.; Goswami, A.; Gogoi, A. Micropropagation of important bamboos: A review. Afr. J. Biotechnol. 2013, 12, doi:10.5897/AJB12.2122.
    24. Verma, P.; Mishra, N. A Review In Vitro Regeneration of Bamboo Plants by Plant Tissue Culture Techniques. Int. J. Adv. Sci. Eng. Inf. Technol. 2018, 6, 58–67.
    25. Sandhu, M.; Wani, S.H.; Jiménez, V.M. In vitro propagation of bamboo species through axillary shoot proliferation: A review. Plant Cell Tissue Organ Cult. 2018, 132, 27–53, doi:10.1007/s11240-017-1325-1.
    26. Yuan, J.; Yue, J.; Gu, X.; Lin, C.; Lin, C. Flowering of Woody Bamboo in Tissue Culture Systems. Front. Plant Sci. 2017, 8, 1589, doi:10.3389/fpls.2017.01589.
    27. Singh, S.R.; Singh, R.; Kalia, S.; Dalal, S.; Dhawan, A.K.; Kalia, R.K. Limitations, progress and prospects of application of biotechnological tools in improvement of bamboo—A plant with extraordinary qualities. Physiol. Mol. Biol. Plants 2013, 19, 21–41, doi:10.1007/s12298-012-0147-1.
    28. Jiang, K.; Zhou, M. Recent advances in bamboo molecular biology. J. Trop. Subtrop. Bot. 2014, 22, 632–642, doi:10.5483/BMBRep.2011.44.11.705.
    29. Bhandari, S.; Tyagi, K.; Singh, B.; Goutam, U. Role of Molecular Markers To Study Genetic Diversity In Bamboo: A Review. Plant Cell Biotechnol. Mol. Biol. 2021, 22, 86–97.
    30. Nabilah, M.K.; Wilson, T.L.Y.; Julius, K.; Kenneth, F.R. A Glance at Molecular Identification of Bamboo (Poaceae: Bambusoideae). Borneo Int. J. Biotechnol. 2020, 1, 19–33, doi:10.51200/
    31. Goyal, A.K.; Kar, P.; Sen, A. Advancement of bamboo taxonomy in the era of molecular biology: A review. In Biology of Useful Plants and Microbes; Narosa Publication House: New Delhi, India, 2013, pp. 197–208.
    32. Sijimol, K.; Dev, S.A.; Muralidharan, E.M.; Sreekumar, V.B. DNA barcoding: An emerging tool for precise identification and certification of planting stock in taxonomically challenging bamboo species. J. Bamboo Ratt. 2014, 13, 29–33.
    33. Thapa, P.; Kaur, D.; Sood, P.; Mehta, R.; Brar, J.; Naddha, H.; Ogra, R.K.; Prakash, O.; Bhattacharya, A.; Sood, A. Biotechnology of Bamboos; Publisher: 2018; pp. 147–186.Thapa, P.; Amita, B.; Priyanka, S.; Kiran, D. Advances in Bamboo Biotechnology: Present Status and Future Perspective. In Biotechnologies of Crop Improvement; Springer, India, 2018; volume 1, pp. 243 – 265. doi: 10.1007/978-3-319-78283-6-7.
    34. Ramakrishnan, M.; Yrjälä, K.; Vinod, K.K.; Sharma, A.; Cho, J.; Satheesh, V.; Zhou, M. Genetics and genomics of moso bamboo (Phyllostachys edulis): Current status, future challenges, and biotechnological opportunities toward a sustainable bamboo industry. Food Energy Secur. 2020, 9, 1–36, doi:10.1002/fes3.229.
    35. Choudhury, D; Sahu, J.K.; Sharma, G.D. Value addition to bamboo shoots: A review. J.Food Sci. Technol. 2012, 49, 407 – 414. doi: 10.1007/s13197-011-0379-z.
    36. Lu, B.; Wu, X.; Tie, X.; Zhang, Y. Toxicology and safety of anti – oxidant of bamboo leaves. Part 1: Acute and subchronic toxicity studies on anti-oxidant of bamboo leaves. Food Chem. Toxicol. 2005, 43, 783-792, doi:10.1016/j.fct.2005.01.019.
    37. Etxeberria, U.; De La Garza, A.L.; Campin, J.; Martnez, J. A.; Milagro, F. I. Antidiabetic effects of natural plant extracts via inhibition of carbohydrate hydrolysis enzymes with emphasis on pancreatic alpha amylase. Expert Opin. Ther. Targets. 2012, 16, 269-297. doi:10.1517/14728222.2012.664134.
    38. Pohl, F.; Lin, P. K. T. The potential use of plant natural products and plant extracts with antioxidant properties for the prevention/treatment of neurodegenerative diseases: In vitro, in vivo and clinical trials. Molecules. 2018, 23, 3283. doi:10.3390/mole-cules23123
    39. Galeotti, F.; Barile, E.; Curir, P.; Dolci, M.; lanzotti, v. Flavonoids from carnation (Dianthus caryophyllus) and their antifungal activity. Phytochem. Lett. 2008, 1, 44-48. doi:10.1016/j.phytol.2007.10.001.
    40. Matilla, P.; Hellstrom, J. Phenolic acids in potatoes, vegetables, and some of their products. J. Food Compos. Anal. 2007, 20, 152-160. doi: 10.1016/j.jfca.2006.05.007.
    41. Galeotti, F.; Barile, E.; Curir, P.; Dolci, M.; Lanzotti, V. Flavonoids from carnation (Dianthus caryophyllus) and their antifungal activity. Phytochem. Lett. 2008, 1, 44–48, doi:10.1016/j.phytol.2007.10.001.Pandey, A.K.; Ojha, V. Precooking, processing of bamboo shoots for removal of anti – nutrients. J. Food Sci. Technol. 2012,49, 407 -414. doi: 10.1007/s131997-011-0379-z.
    42. Mattila, P.; Hellström, J. Phenolic acids in potatoes, vegetables, and some of their products. J. Food Compos. Anal. 2007, 20, 152–160.doi:10.1016/j.jfca.2006.05.007. Choudhury, D.; Sahu, J. K.; Sharma, G. D. Bamboo shoot: Microbiology, biochemistry and technology of fermentation – A review. Indian J. Tradit. Knowl. 2012, 11, 242 -249.
    43. Kong, C.K.; Tan, Y.N.; Chye, F.Y.; Sit, N.W. Nutritional compositions, biological activities, and phytochemical contents of the edible bamboo shoot, Dendrocalamus asper, from Malaysia. Int. Food Res. J. 2020, 27, 546–556.
    44. Nirmala, C.; Sharma, M.L.; David, E. A comparative study of nutrient components of freshly harvested and canned bamboo shoots of D. giganteus Munro, bamboo science and culture. J. Am. Bamboo Soc. 2008, 21, 41–47.
    45. Bender, D.A. Micronutrients: Vitamins and minerals. In Harper’s Illustrated Biochemistry; Murray, R.K., Botham, K.M., Kennelly, P.J., Rodwell, V.W., Weil, P.A., Eds.; McGraw-Hill Medical: New York,  USA, 2012; pp. 525–542.
    46. Zhang, J.; Mohamad, F.H.; Wong, J.H.; Mohamad, H.; Ismail, A.H.; Yusoff, A.A.M.; Osman, H.; Wong, K.T.; Idris, Z.; Abdullah, J.M. The effects of 4-hydroxybenzoic acid identified from bamboo (Dendrocalamus asper) shoots on Kv1. 4 channel. Malays. J. Med. Sci. 2018, 25, 104–116, doi:10.21315/mjms2018.25.1.13.
    47. Malanit, P.; Barbu, M.C.; Frühwald, A. The gluability and bonding quality of an Asian bamboo (Dendrocalamus asper) for the production of composite lumber. J. Trop. For. Sci. 2009, 21, 361–368.
    48. Vogtländer, J.; Van Der Lugt, P.; Brezet, H. The sustainability of bamboo products for local and Western European applications. LCAs and land-use. J. Clean. Prod. 2010, 18, 1260–1269, doi:10.1016/j.jclepro.2010.04.015.
    49. Ogunbiyi, M.A.; Olawale, S.O.; Tudjegbe, O.E.; Akinola, S.R. Comparative analysis of the tensile strength of bamboo and reinforcement steel bars as structural member in building construction. Int. J. Sci. Technol. Res. 2015, 4, 551–553.
    50. Dixon, P.; Ahvenainen, P.; Aijazi, A.; Chen, S.; Lin, S.; Augusciak, P.; Borrega, M.; Svedström, K.; Gibson, L. Comparison of the structure and flexural properties of Moso, Guadua and Tre Gai bamboo. Constr. Build. Mater. 2015, 90, 11–17, doi:10.1016/j.conbuildmat.2015.04.042.
    51. Amatosa, T.A.; Loretero, M.E. Analytical Behaviour in Mechanical Properties of Dendrocalamus asper Bamboo as Construction Building Materials in the Philippines. Glob. J. Eng. Technol. Rev. 2016, 1, 114–121, doi:10.35609/gjetr.2016.1.1(16).
    52. Awalluddin, D.; Ariffin, M.M.; Osman, M.; Hussin, M.; Ismail, M.; Lee, H.; Lim, N.A.S. Mechanical properties of different bamboo species. MATEC Web Conf. 2017, 138, 1024, doi:10.1051/matecconf/201713801024
    53. Chin, K.L.; Ibrahim, S.; Hakeem, K.R.; H’ng, P.S.; Lee, S.H.; Lila, M.A.M. Bioenergy production from bamboo: Potential source from Malaysia’s perspective. BioResources 2012, 12, 6844–6867.
  • Rusch, F.; Lúcio, D.D.M.; De Campos, R.F. Potential of bamboo for energy purposes. Res. Soc. Dev. 2020, 9, e40973537, doi:10.33448/rsd-v9i7.3537.
    1. Sathitsuksanoh, N.; Zhu, Z.; Templeton, N.; Rollin, J.A.; Harvey, S.P.; Zhang, Y.P. Saccharification of a potential bioenergy crop, Phragmites australis (common reed), by lignocellulose fractionation followed by enzymatic hydrolysis at decreased cellulase loadings. Ind. Eng. Chem. Res. 2009, 48, 6441–6447, doi:10.1021/ie900291s.
    2. Zhang, Y.H.P. Reviving the carbohydrate economy via multi-product lignocellulose biorefineries. J. Ind. Microbiol. Biotechnol. 2008, 35, 367–375.doi:10.1007/s10295-007-0293-6.
    3. Chin, K.L.; H’ng, P.S.; Chai, E.W.; Tey, B.T.; Chin, M.J.; Paridah, M.T.; Luqman, A.C.; Maminski, M. Fuel characteristics of solid biofuel derived from oil palm biomass and fast growing timber species in Malaysia. Bioenergy Res. 2013, 6, 75–82, doi:10.1007/s12155-012-9232-0.
    4. International Energy Outlook. Report Number: DOE/EIA-0383(2015). U.S. Department of Energy: Washington. Available online: (accessed on 18 November 2020).
    5. Hakeem, K.R.; Jawaid, M.; Alothman, O.Y. Agricultural biomass based potential materials. Agric. Biomass Based Potential Mater. 2015, 3, 1–505, doi:10.1007/978-3-319-13847-3.
    6. Sette, C.R., Jr.; de Castro, P.; Freitas, V.P.; Yamaji, F.M.; Almeida, R.d.A. Production and characterization of bamboo pellets. Biosci. J. 2016, 32, 922–930, doi:10.14393/BJ-v32n4a2016-32948.
    7. Freitas, P.; Silva, M.F.; Silva, R.T.; Coneglian, A.; Sette, C.R., Jr. Evaluation of briquettes from bamboo species produced under different temperatures. Int. J. Curr. Res. 2016, 8, 39260–39265.
    8. Santos, D.R.D.S.; Junior, C.R.S.; da Silva, M.F.; Yamaji, F.M.; Almeida, R.d.A. Potencial de espécies de Bambu como fonte energética Bamboo species potential as energy source. Sci. For. 2016, 44, 751–758.
    9. Sritong, C.; Kunavongkrit, A.; Piumsombun, C. Bamboo: An Innovative Alternative Raw Material for Biomass Power Plants. Int. J. Innov. Manag. Technol. 2012, 3, 759–762, doi:10.7763/IJIMT.2012.V3.333.
    10. Ayana, A.D.A.; Tadesse, Z.; Kebede, Y.; Ayana, D.A. Effect of Storage Media and Storage Time on Germination and Field Emergence of Oxytenanthera abyssinica Seeds. Int. J. Basic Appl. Sci. 2012, 1, 218–226.
    11. Singh, S.; Kumar, P.; Ansari, S.A. A simple method for large-scale propagation of Dendrocalamus asper. Sci. Hortic. 2004, 100, 251–255, doi:10.1016/j.scienta.2003.08.006.
    12. Seethalakshmi, K.; Jijeesh, C.M.; Unni, K.K. Traditional methods for bamboo propagation in nursery. In Proceedings of the International Conference on Improvement of Bamboo Productivity and Marketing for Sustainable Livelihood, New Delhi, Cane and Bamboo Technology Centre, Guwahati, India, 15–17 April 2008; pp. 28–36.
    13. Pasqualini, A.P.D.A.; Schneider, G.X.; Fraga, H.P.D.F.; Biasi, L.A.; Quoirin, M. In vitro establishment of Bambusa oldhamii Munro from fieldgrown matrices and molecular identification of endophytic bacteria. Pesqui. Agropecu. Trop. 2019, 49, e53673, doi:10.1590/1983-40632019v4953673.
    14. Embaye, K.; Weih, M.; Ledin, S.; Christersson, L. Biomass and nutrient distribution in a highland bamboo forest in southwest Ethiopia: Implications for management. For. Ecol. Manag. 2005, 204, 159–169, doi:10.1016/j.foreco.2004.07.074.
    15. Alexander, M.P.; Rao, T.C. In vitro culture of bamboo embryo. Curr. Sci. 1968, 37, 415.
    16. Nadha, H.K.; Salwan, R.; Kasana, R.C.; Anand, M.; Sood, A. Identification and elimination of bacterial contamination during in vitro propagation of Guadua angustifolia Kunth. Pharmacogn. Mag. 2012, 8, 93–97, doi:10.4103/0973-1296.96547.
    17. Gielis, J.; Peeters, H.; Gillis, K.; Oprins, J.; Debergh, P.C. Tissue culture strategies for genetic improvement of bamboo. Acta Hortic. 2001, 552, 195–204, doi:10.17660/ActaHortic.2001.552.22.
    18. Li, X.; Sun, C.; Zhou, B.; He, Y. Determination of Hemicellulose, Cellulose and Lignin in Moso Bamboo by Near Infrared Spectroscopy. Sci. Rep. 2015, 5, 172101–11, doi:10.1038/srep17210.
    19. Xu, M.Q.; Dai, Y.C.; Fan, S.H.; Jin, L.X.; Lu, Q.; Tian, G.Z.; Wang, L.F. Records of bamboo diseases and the taxonomy of their pathogens in China (II). For. Res. 2007, 20, 45-52.
    20. Morakotkarn, D.; Kawasaki, H.; Seki, T. Molecular diversity of bamboo-associated fungi isolated from Japan. FEMS Microbiol. Lett. 2007, 266, 10–19, doi:10.1111/j.1574-6968.2006.00489.x.
    21. Hashimoto, Y.; Hattori, T.; Iwakiri, K.; Tamura, K.; Kuroda, A.; Sawada, Y. Current status of bamboo die back caused by the destructive disease ‘witches’-broom of bamboo’ in western Japan. Jpn. J. Conserv. Ecol. 2008, 13, 151–160, doi:10.18960/hozen.13.2_151.
    22. Sharada, P.; Nagaveni, H.C.; Remadevi, O.K.; Jain, S.H. Toximetric studies on some major bamboo pathogens. Indian For. 2013, 139, 814–820
    23. Zhang, X.; Yu, H.; Huang, H.; Liu, Y. Evaluation of biological pretreatment with white rot fungi for the enzymatic hydrolysis of bamboo culms. Int. Biodeter. Biodegr. 2007, 60, 159–164, doi:10.1016/j.ibiod.2007.02.003.
    24. Xu, G.; Shi, Z.; Zhao, Y.; Deng, J.; Dong, M.; Liu, C.; Murugadoss, V.; Mai, X.; Guo, Z. Structural characterization of lignin and its carbohydrate complexes isolated from bamboo (Dendrocalamus sinicus). Int. J. Biol. Macromol. 2019, 126, 376–384, doi:10.1016/j.ijbiomac.2018.12.234.
    25. Singh, L.; Ruprela, N.; Dafale, N.; Thul, S.T. Variation in Endophytic Bacterial Communities Associated with the Rhizomes of Tropical Bamboos. J. Sustain. For. 2021, 40, 1–13, doi:10.1080/10549811.2020.1745655.
    26. Shen, X.Y.; Cheng, Y.L.; Cai, C.J.; Fan, L.; Gao, J.; Hou, C.L. Diversity and antimicrobial activity of culturable endophytic fungi isolated from moso bamboo seeds. PLoS ONE 2014, 9, e95838, doi:10.1371/journal.pone.0095838.
    27. Tang, X.; Goonasekara, I.D.; Jayawardena, R.; Jiang, H.B.; Li, J.; Hyde, K.; Kang, J. Arthrinium bambusicola (Fungi, Sordariomycetes), a new species from Schizostachyum brachycladum in northern Thailand. Biodivers. Data J. 2020, 23, e58755, doi:10.3897/BDJ.8.E58755.
    28. Geng, X.S.; Shu, J.P.; Peng, H.; Zhang, W. Fungal communities in twigs of three bamboo species based on high-throughput sequencing technology. Chin. J. Ecol. 2018, 37, 3493–3498, doi:10.13292/j.1000-4890.201811.011.
  • Meng, M.; Lee, C.C. Function and structural organization of the replication protein of Bamboo mosaic virus. Front. Microbiol. 2017, 8, 522, doi:10.3389/fmicb.2017.00522.
  • Chang, K.C.; Chang, L.T.; Huang, Y.W.; Lai, Y.C.; Lee, C.W.; Liao, J.T.; Lin, N.S.; Hsu, Y.H.; Hu, C.C. Transmission of bamboo mosaic virus in bamboos mediated by Insects in the order Diptera. Front. Microbiol. 2017, 8, 870, doi:10.3389/fmicb.2017.00870.
    1. Abe, S.; Neriya, Y.; Noguchi, K.; Hartono, S.; Sulandari, S.; Somowiyarjo, S.; Natsuaki, T. First report of the complete genomic sequences from Indonesian isolates of bamboo mosaic virus and detection of genomic recombination events. J. Gen. Plant Pathol. 2019, 85, 158–161, doi:10.1007/s10327-018-0830-3.
    2. Cheng, C.P. Host factors involved in the intracellular movement of Bamboo mosaic virus. Front. Microbiol. 2017, 8, 759, doi:10.3389/fmicb.2017.00759.
    3. Alazem, M.; He, M.H.; Moffett, P.; Lin, N.S. Abscisic acid induces resistance against Bamboo mosaic virus through argonaute 2 and 3. Plant Physiol. 2017, 174, 339–355, doi:10.1104/pp.16.00015.
    4. Lin, K.Y.; Hsu, Y.H.; Chen, H.C.; Lin, N.S. Transgenic resistance to Bamboo mosaic virus by expression of interfering satellite RNA. Mol. Plant Pathol. 2013, 14, 693–707, doi:10.1111/mpp.12040.
    5. Viswanath, S.; Sreekumar, V.B.; Sruth, S. Bambusa Balcoa Roxb.: A Multi-Utility Bamboo for Demostication; Kerala Forest Research Institute: Peechi, Kerala, India, 2021.
    6. Che, P.; Lall, S.; Nettleton, D.; Howell, S.H. Gene expression programs during shoot, root, and callus development in Arabidopsis tissue culture. Plant Physiol. 2006, 141, 620–637, doi:10.1104/pp.106.
    7. Arya, I.D.; Satsangi, R.; Arya, S. Rapid micropropagation of edible bamboo Dendrocalamus asper. J. Sustain. For. 2001, 14, 103–114, doi:10.1300/J091v14n02_06.
    8. Ali, A.H.; Nirmala, C.; Badal, T.; Sharma, M.L. In-vitro organogenesis and simultaneous formation of shoots and roots from callus in Dendrocalamus asper. In Proceedings of the 8th World Bamboo Congress, Bangkok, Thailand, 16–18 September 2009; pp. 31–40.
    9. Kumar, V.; Singh, S.; Banerjee, M. Albino Regenerants Proliferation of Dendrocalamus asper in vitro. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 5027–5033.
  • Nadha, H.K. In Vitro Clonal Propagation of Some Important Woody Bamboos and Ascertaining Their Clonal Fidelity. Ph.D. Thesis, Department of Biotechnology and Environmental Sciences, Thapar University Patiala-147004, Punjab, India, 3 March 2013.
    1. Ojha, A.; Verma, N.; Kumar, A. In vitro micropropagation of economically important edible bamboo (Dendrocalamus asper) through somatic embryos from root, leaves and nodal segments expiants. Res. Crop. 2009, 10, 430–436.
    2. Gusmiaty; Restu, M.; Larekeng, S.H.; Setiawan, E. The optimization of in vitro micropropagation of betung bamboo (Dendrocalamus asper backer) by medium concentrations and plant growth regulators. IOP Conf. Ser. Earth Environ. Sci. 2020, 575, 12024, doi:10.1088/1755-1315/575/1/012024.
    3. Suwannamek, A. In Vitro Culture of Dendrocalamus asper Backer. Level ofMaster’s Thesis, Department of Horticulture, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand, 1992.
    4. Vongvijitra, R. Traditional vegetative propagation and tissue culture of some Thai bamboos. In Proceedings of the International Bamboo Workshop, Conchin, India, 14–18 November 1988; pp. 148–150.
    5. Arya, S.; Satsangi, R.; Arya, I.D. Large scale plant production of edible bamboo Dendrocalamus asper through somatic embryogenesis. Bamboo Sci. Cult. 2008, 21, 21–31.
    6. Shroti, K.; Upadhyay, R.; Niratkar, C.; Singh, M. Micropropagation of Dandrocalamus asper through Inter Nodal Segment. Bull. Environ. Pharmacol. Life Sci. 2012, 1, 58–60.
    7. Ornellas, T.S.; Werner, D.; Holderbaum, D.F.; Scherer, R.F.; Guerra, M.P. Effects of Vitrofural, BAP and meta-Topolin in the in vitro culture of Dendrocalamus asper. Acta Hortic. 2015, 1155, 285–292, doi:10.17660/ActaHortic.2017.1155.41.
    8. Arya, S.; Satsangi, R.; Arya, I.D. Direct regeneration of shoots from immature inflorescences in Dendrocalamus asper (edible bamboo) leading to mass propagation. Bamboo Soc. 2008, 21, 14–20.
    9. Satsangi, R.; Kalia, S.; Arya, I.D.; Arya, S. Flowering in exotic bamboo Dendrocalamus asper in India. Indian For. 2001, 127, 1053–1057.
    10. Arya, I.D.; Arya, S. In vitro culture establishment of exotic bamboo Dendrocalamus asper. Indian J. Exp. Biol. 1997, 35, 1252–1255.
    11. Arya, S.; Sharma, S.; Kaur, R.; Arya, I.D. Micropropagation of Dendrocalamus asper by shoot proliferation using seeds. Plant Cell Rep. 1999, 18, 879–882.
    12. Semsuntud, N.; Ponoy, B.; Pattanaviboo, R.; Sathitviboo, R.; Nitiwatta-nachai, W.; Ramyangsi, S. Micropropagation of Dendrocalamus asper Backer. In Bamboo; Puangchit, L., Thaiutsi, B., Thamincha, S., Eds.; Publisher: Chiangmai, Thailand, 2000, pp. 81–93.
    13. Rathore, T.S.; Kabade, U.; Jagadish, M.R.; Somashekar, P.V.; Viswanath, S. Micropropagation and evaluation of growth performance of the selected industrially important bamboo species in southern India. In Proceedings of the 8th World Bamboo Congress, Bangkok, Thailand, 16–19 September 2009; pp. 41–55.
    14. Nirmala, C.; Ali, A.; Badal, T. De novo organogenesis in the form of rhizome in Dendrocalamus asper and D. membranaceus. Curr. Sci. 2011, 100, 468–470.
    15. Tuan, T.T.; Tu, H.L.T.; Giap, D.D.; Du, T.X. The increase in in vitro shoot multiplication rate of Dendrocalamus asper (Schult. f.) Back. ex Heyne. TAP CHI SINH HOC 2012, 34, 257–264, doi:10.15625/0866-7160/v34n3se.1790.
    16. Nadha, H.K.; Rahul, K.; Sharma, R.K.; Anand, M.; Sood, A. In vitro propagation of Dendrocalamus asper and testing the clonal fidelity using RAPD and ISSR markers. Int. J. Curr. Res. 2013, 5, 2060–2067.
    17. Arya, I.D.; Arya, S. In vitro shoot proliferation and somatic embryogenesis: Means of rapid bamboo multiplication. In Proceedings of the 10th World Bamboo Congress, Propagation, Plantation and Management, Damnyang, Korea, 17–22 September 2015.
    18. Zang, Q.; Lui, Q.; Zhuge, F.; Wang, X.; Lin, X. In Vitro Regeneration Via Callus Induction in Dendrocalamus asper (Schult.) Backer. Propag. Ornam. Plants 2019, 19, 66–71.
    19. Singh, V.; Tyagi, A.; Chauhan, P.K.; Kumari, P.; Kaushal, S. Identification and prevention of bacterial contimination on explant used in plant tissue culture labs. Int. J. Pharm. Pharm. Sci. 2011, 3, 160–163.
    20. Oprins, J.; Grunewald, W.; Gillis, K.; Delaere, P.; Peeters, H.; Gielis, J. Micropropagation: A general method for commercial bamboo production. In Proceedings of the 7th World Bamboo Congress, New Delhi, India, 27 February–4 March 2004.
    21. Ray, S.S.; Ali, N. Biotic Contamination and Possible Ways of Sterilization: A Review with Reference to Bamboo Micropropagation. Braz. Arch. Biol. Technol. 2018, 60, 1–12, doi:10.1590/1678-4324-2016160485.
    22. Thakur, R.; Sood, A. An efficient method for explant sterilization for reduced contamination. Plant Cell Tissue Organ Cult. 2006, 84, 369–371, doi:10.1007/s11240-005-9034-6.
    23. Sen, M.K.; Hassan, M.; Nasrin, S.; Mostofa, M.A.H.; Dash, B.K. In vitro sterilization protocol for micropropagation of Achyranthes aspera L. node. Int. Res. J. Biotechnol. 2013, 4, 89–93.
    24. Venturieri, G.A.; Venturieri, A.R.; Leopoldo, G. Sterilization of culture media for orchids using a microwave oven. Vitr. Cell Dev. Biol. Plant 2013, 49, 137–144, doi:10.1007/s11627-012-9470-z.
    25. Jiménez, V.M.; Guevara, E. Micropropagation of bamboo species through axillary shoot proliferation. In Protocols for Micropropagation of Woody Trees and Fruits; Jain, S.M., Häggman, H., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 465–476, doi:10.1007/978-1-4020-6352-7_43.
    26. Ray, S.S.; Ali, M.N.; Mukherjee, S.; Chatterjee, G.; Banerjee, M. Elimination and molecular identification of endophytic bacterial contaminants during in vitro propagation of Bambusa balcooa. World J. Microbiol. Biotechnol. 2017, 33, doi:10.1007/s11274-016-2196-z.
    27. Mehta, R.; Sharma, V.; Sood, A.; Sharma, M.; Sharma, R.K. Induction of somatic embryogenesis and analysis of genetic fidelity of in vitro-derived plantlets of Bambusa nutans Wall, using AFLP markers. Eur. J. For. Res. 2011, 130, 729–736, doi:10.1007/s10342-010-0462-4.
    28. Admas, A.; Kidane, B.; Admasu, M.; Misge, T. Develope Micro clonal -propagation protocol for Oxytenanthera abyssinica A. Rich. Munro to large scale micro-propagation. bioRxiv 2020, doi:10.1101/2020.04.28.063883.
    29. Chaitali, M.; Meshram, M.P.; Baviskar, S.P.; Shanti, R.P. Identification of suitable surface sterilization method for bamboo (Dendrocalamus stocksii (Munro.)). J. Soils Crops 2021, 31, 99–101.
    30. Goyal, A.K.; Sen, A. In vitro regeneration of bamboos, the ‘Green Gold’: An overview. Indian J. Biotechnol. 2016, 15, 9–16.
    31. Sood, A.; Ahuja, P.S.; Sharma, M.; Sharma, O.P.; Godbole, S. In vitro protocols and field performance of elites of an important bamboo Dendrocalamus hamiltonii nees Et Arn. Ex Munro. Plant Cell Tissue Organ Cult. 2002, 71, 55–63, doi:10.1023/A:1016582732531.
    32. Bag, N.; Chandra, S.; Palni, L.M.S.; Nandi, S.K. Micropropagation of Dev-ringal [Thamnocalamus spathiflorus (Trin.) Munro]—A temperate bamboo, and comparison between in vitro propagated plants and seedlings. Plant Sci. 2000, 156, 125–135, doi:10.1016/S0168-9452(00)00212-0.
    33. Arshad, S.M.; Kumar, A.; Bhatnagar, S.K. Micropropagation of Bambusa wamin through shoot proliferation of mature nodal explants. J. Biol. Res. 2005, 3, 59–66.
    34. Srivastava, N.; Kamal, B.; Sharma, V.; Negi, Y.K.; Dobriyal, A.K.; Gupta, S.; Jadon, V.S. Standardization of Sterilization Protocol for Micropropagation of Aconitum heterophyllum—An Endangered Medicinal Herb. Acad. Areana 2010, 2, 37–42.
    35. Waikhom, S.D.; Louis, B. An effective protocol for micropropagation of edible bamboo species (Bambusa tulda and Melocanna baccifera) through nodal culture. Sci. World J. 2014, 8, 345794, doi:10.1155/2014/345794.
    36. Choudhary, A.K.; Priyanka, K.; Ashish, R. Refinement of protocol for rapid clonal regeneration of economical bamboo, Bambusa balcooa in the agroclimatic conditions of Bihar, India. Afr. J. Biotechnol. 2017, 16, 450–462, doi:10.5897/AJB2016.15771.
    37. Wei, Q.; Cao, J.; Qian, W.; Xu, M.; Li, Z.; Ding, Y. Establishment of an efficient micropropagation and callus regeneration system from the axillary buds of Bambusa ventricosa. Plant Cell Tissue Organ Cult. 2015, 122, 1–8, doi:10.1007/s11240-015-0743-1.
    38. Singh, S.R.; Dalal, S.; Singh, R.; Dhawan, A.K.; Kalia, R.K. Seasonal influences on in vitro bud break in Dendrocalamus hamiltonii Arn. ex Munro nodal explants and effect of culture microenvironment on large scale shoot multiplication and plantlet regeneration. Indian J. Plant Physiol. 2012, 17, 9–21.
    39. Lin, C.S.; Chang, W.C. Micropropagation of Bambusa edulis through nodal explants of field-grown culms and flowering of regenerated plantlets. Plant Cell Rep. 1998, 17, 617–620, doi:10.1007/s.
    40. Ogita, S.; Kashiwagi, H.; Kato, Y. In vitro node culture of seedlings in bamboo plant, Phyllostachys meyeri McClure. Plant Biotechnol. 2008, 25, 381–385, doi:10.5511/plantbiotechnology.25.381.
    41. Silveira, A.A.D.C.; Lopes, F.J.F.; Sibov, S.T. Micropropagation of Bambusa oldhamii Munro in heterotrophic, mixotrophic and photomixotrophic systems. Plant Cell Tissue Organ Cult. 2020, 141, 1–12, doi:10.1007/s11240-020-01788-4.
    42. Chambers, S.M.; Heuch, J.H.R.; Pirrle, A. Micropropagation and in vitro flowering of the bamboo Dendrocalamus hamiltonii Munro. Plant Cell Tissue Organ Cult. 1991, 27, 45–48, doi:10.1007/BF00048205.
    43. Kalpataru, D.M.; Siddhartha, P.S.; Mina, B. Effect of nodal positions, seasonal variations, shoot clump and growth regulators on micropropagation of commercially important bamboo, Bambusa nutans Wall. ex. Munro. Afr. J. Biotechnol. 2014, 13, 1961–1972, doi:10.5897/ajb2014.13659.
    44. Rather, M.M.; Thakur, A.; Panwar, M.; Sharma, S. In Vitro Sterilization Protocol for Micropropagation of Chimonobambusa jaunsarensis (Gamble) Bahadur and Naithani-A Rare and Endangered Hill Bamboo. Indian For. 2016, 142, 871–874.
    45. Sood, A.; Nadha, H.K.; Sood, S.; Walia, S.; Parkash, O. Large scale propagation of an exotic edible bamboo, Phyllostachys pubescens Mazel ex H. De Lehale (Moso Bamboo) using seeds. Indian J. Exp. Biol. 2014, 52, 755–758.
    46. Malini, N.; Anandakumar, C.R. Micropropagation of bamboo (Bambusa vulgaris) through nodal segment. Int. J. For. Crop Improv. 2013, 4, 36–39.
    47. Brar, J.; Anand, M.; Sood, A. In vitro seed germination of economically important edible bamboo Dendrocalamus membranaceus Munro. Indian J. Exp. Biol. 2013,51, 88–96.
    48. Ali, H.; Nirmala, C.; Sharma, M.L. Control of in vitro contamination in Bamboos. Plant Cell Biotechnol. Mol. Biol. 2009, 10, 119–124.
    49. Ahmadi, E.; Nasr, S.M.H.; Jalilvand, H.; Savadkoohi, S.K. Contamination control of microbe Ziziphus spina [christti] seed in vitro culture. Trees Struct. Funct. 2012, 26, 1299–1304, doi:10.1007/s00468-012-0705-8.
    50. Ramanayake, S.M.S.D.; Yakandawala, K.; Deepika, P.K.D.N.; Ikbal, M.C.M. Studies on micropropagation of Dendrocalamus gigateus and Bambusa vulgaris var. striata. Popul. Environ. 1995, 1, 75–85.
    51. Ramanayake, S.M.S.D.; Yakandawala, K. Micropropagation of the giant bamboo (Dendrocalamus giganteus Munro) from nodal explants of field grown culms. Plant Sci. 1997, 129, 213–223, doi:10.1016/S0168-9452(97)00185-4.
    52. Ramanayake, S.M.S.D.; Meemaduma, V.N.; Weerawardene, T.E. In vitro shoot proliferation and enhancement of rooting for the large-scale propagation of yellow bamboo (Bambusa vulgaris ’Striata’). Sci. Hortic. 2006, 110, 109–113, doi:10.1016/j.scienta.2006.06.016.
    53. Jiménez, V.M.; Castillo, J.; Tavares, E.; Guevara, E.; Montiel, M. In vitro propagation of the neotropical giant bamboo, Guadua angustifolia Kunth, through axillary shoot proliferation. Plant Cell Tissue Organ Cult. 2006, 86, 389–395, doi:10.1007/s11240-006-9120-4.
    54. Pratibha, S.; Sarma, K.P. In vitro Propagation of Bambusa pallida on Commercial Scale in Assam, India. J. Environ. Res. Dev. 2014, 8, 895–902.
    55. Chowdhury, P.; Das, M.; Sikdar, S.R.; Pal, A. Influence of the physiological age and position of the nodal explants on micropropagation of field-grown Dendrocalamus strictus nees. Plant Cell Biotechnol. Mol. Biol. 2004, 5, 45–50.
    56. Bisht, P.; Pant, M.; Kant, A. In vitro propagation of Gigantochloa atroviolaceae Widjaja through nodal explants. J. Am. Sci. 2010, 6, 1019–1026.
    57. Anand, M.; Brar, J.; Sood, A. In Vitro Propagation of an Edible Bamboo Bambusa Bambos and Assessment of Clonal Fidelity through Molecular Markers. J. Med. Bioeng. 2013, 2, 257–261, doi:10.12720/jomb.2.4.257-261.
    58. Mishra, Y.; Patel, P.K.; Yadav, S.; Shirin, F.; Ansari, S.A.A. micropropagation system for cloning of Bambusa tulda Roxb. Sci. Hortic. 2008, 115, 315–318, doi:10.1016/j.scienta.2007.10.002.
    59. Kulkarni, A.A.; Kelkar, S.M.; Watve, M.G.; Krishnamurthy, K.V. Characterization and control of endophytic bacterial contaminants in in vitro cultures of Piper spp., Taxus baccata subsp. wallichiana, and Withania somnifera. Can. J. Microbiol. 2007, 53, 63–74, doi:10.1139/W06-106.
    60. Orlikowska, T.; Zawadzka, M.; Zenkteler, E.; Sobiczewski, P. Influence of the biocides PPMTM and Vitrofural on bacteria isolated from contaminated plant tissue cultures and on plant microshoots grown on various media. J. Hortic. Sci. Biotechnol. 2012, 87, 223–230, doi:10.1080/14620316.2012.11512856.
    61. Wang, P.J.; Charles, A. Micropropagation Through Meristem Culture. In High-Tech and Micropropagation I. Biotechnology in Agriculture and Forestry; Bajaj, Y.P.S., Ed.; Springer: Berlin/Heidelberg, Germany, 1991; Volume 17, pp. 32–52, doi:10.1007/978-3-642-76415-8_3.
    62. George, E.F.; Hall, M.A.; De Klerk, G.J. Propagation by Tissue Culture, 3rd ed.; Springer: Dordrecht, The Netherlands, 2008; p. 501, doi:10.1007/978-1-4020-5005-3.
    63. Iliev, I.A. Factors affecting the axillary and adventitious shoot formation in woody plants in vitro. Acta Hortic. 2017, 1155, 15–28, doi:10.17660/ActaHortic.2017.1155.2.
    64. Ngomuo, M.; Mneney, E.; Ndakidemi, P. The Effects of Auxins and Cytokinin on Growth and Development of (Musa sp.) Var. “Yangambi” Explants in Tissue Culture. Am. J. Plant Sci. 2013, 4, 2174–2180, doi:10.4236/ajps.2013.
    65. Arya, S.; Rana, P.K.; Sharma, R.; Arya, I.D. Tissue culture technology for rapid multiplication of Dendrocalamus giganteus Munro. Indian For. 2006, 132, 345–357.
    66. Nogueira, J.S.; Gomes, H.T.; Scherwinski-Pereira, J.E. Micropropagation, plantlets production estimation and ISSR marker-based genetic fidelity analysis of Guadua magna and G. angustifólia. Pesqui. Agropecuária Trop. 2019, 49, doi:10.1590/1983-40632019v4953743.
    67. Shirin, F.; Rana, P.K. In vitro plantlet regeneration from nodal explants of field-grown culms in Bambusa glaucescens Wild. Plant Biotechnol. Rep. 2007, 1, 141–147, doi:10.1007/s11816-007-0020-9i:.
    68. Mudoi, K.D.; Borthakur, M. In vitro micropropagation of Bambusa balcooa Roxb through nodal explants from field-grown culms and scope for upscaling. Curr. Sci. 2009, 96, 962–966.
    69. Carimi, F.; Zottini, M.; Formentin, E.; Terzi, M.; Lo Schiavo, F. Cytokinins: New apoptotic inducers in plants. Planta 2003, 216, 413–421, doi:10.1007/s00425-002-0862-x.
    70. Chaturvedi, H.C.; Sharma, M.; Sharma, A.K. In vitro regeneration of Dendrocalamus strictus nees through nodal segments taken from field-grown culms. Plant Sci. 1993, 91, 97–101, doi:10.1016/0168-9452(93)90192-3.
    71. Das, P.; Rout, G.R. Analysis of current methods and approaches on the micropropagation of bamboo. Proc. Natl. Acad. Sci. USA Sect. B Biol. Sci. 1994, 64, 235–246.
    72. Saikat, G.; Nirmal, M. Tissue culture of Anthurium andreanum: A significant review and future prospective. Int. J. Bot. 2010, 6, 207–219, doi:10.3923/ijb.2010.207.219.
    73. Lin, C.S.; Kalpana, K.; Chang, W.C.; Lin, N.S. Improving multiple shoot proliferation in bamboo mosaic virus-free Bambusa oldhamii Munro propagation by liquid culture. HortScience 2007, 42, 1243–1246, doi:10.21273/hortsci.42.5.1243.
    74. Singh, M.; Jaiswal, U.; Jaiswal, V.S. Thidiazuron-induced shoot multiplication and plant regeneration in bamboo (Dendrocalamus strictus nees). J. Plant Biochem. Biotechnol. 2001, 10, 133–137, doi:10.1007/BF03263122.
    75. Malabadi, R.B.; Mulgund, G.S.; Nataraja, K. Thidiazuron induced shoot regeneration of Costus speciosus (Koen.) Sm using thin rhizome sections. S. Afr. J. Bot. 2004, 70, 255–258, doi:10.1016/S0254-6299(15)30243-X.
    76. Kaur, P.; Singh, K. Influence of growth regulators on physiology and senescence of cut stems of chrysanthemum (Chrysanthemum morifolium Ramat) Var. Thai Ching Queen. Int. J. Allied Pract Res. Rev. 2015, 2, 31–41.
    77. Aremu, A.O.; Bairu, M.W.; Doležal, K.; Finnie, J.F.; Van Staden, J. Topolins: A panacea to plant tissue culture challenges? Plant Cell Tissue Organ Cult. 2012, 108, 1–16, doi:10.1007/s11240-011-0007-7.
    78. Ramanayake, S.M.S.D.; Wanniarachchi, W.A.V.R.; Tennakoon, T.M.A. Axillary shoot proliferation and in vitro flowering in an adult giant bamboo, Dendrocalamus giganteus Wall. Ex Munro. Vitr. Cell Dev. Biol. 2001, 37, 667–671, doi:10.1079/IVP2001227.
    79. Do Vale, P.A.A.; Júnior, J.B.D.O.; Costa, F.H.D.S.; Scherwinski-Pereira, J.E. Height and number of shoots on the survival and development of micropropagated bamboo plantlets during pre-acclimatization. Pesqui. Agropecu. Trop. 2019, 49, 1–8, doi:10.1590/1983-40632019v4953751.
    80. Saxena, S. In vitro propagation of the bamboo (Bambusa tulda Roxb.) through shoot proliferation. Plant Cell Rep. 1990, 9, 431–434, doi:10.1007/BF00232266.
    81. Saxena, S.; Bhojwani, S.S. In vitro clonal multiplication of 4-year-old plants of the bamboo, Dendrocalamus longispathus kurz. Vitr. Cell Dev. Biol. Plant 1993, 29, 135–142, doi:10.1007/BF02632285.
    82. Chongtham, N.; Bisht, M.S.; Premlata, T. In vitro Propagation of an Edible Bamboo Dendrocalamus latiflorus Munro Using Nodal Explants. In Proceedings of the 11th World Bamboo Congress, Xalapa, Veracruz, Mexico, 14–18 August 2018.
    83. Agnihotri, R.K.; Mishra, J.; Nandi, S.K. Improved in vitro shoot multiplication and rooting of Dendrocalamus hamiltonii Nees et Arn. Ex Munro: Production of genetically uniform plants and field evaluation. Acta Physiol. Plant. 2009, 31, 961–967, doi:10.1007/s11738-009-0311-6.
    84. Thorpe, T.A.; Harvy, I.S.; Kumar, P.P. Application of micropropagation to forestry. In Micropropagation: Technology and Application; Debergh, P.C., Zimmerman, R.H., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1991; pp. 311–336.
    85. Leva, A.; Petruccelli, R.; Rinaldi, L.M.R. Somaclonal Variation in Tissue Culture: A Case Study with Olive. Recent Adv. Plant Vitr. Cult. 2012, 123–150, doi:10.5772/52760.
    86. Bairu, M.W.; Aremu, A.O.; Van Staden, J. Somaclonal variation in plants: Causes and detection methods. Plant Growth Regul. 2011, 63, 147–173, doi:10.1007/s10725-010-9554-x.
    87. Huang, L.C.; Huang, B.L.; Chen, W.L. Tissue culture investigations of bamboo—IV. Organogenesis leading to adventitious shoots and plants in excised shoot apices. Environ. Exp. Bot. 1989, 29, 307–315, doi:10.1016/0098-8472(89)90004-X.
    88. Sood, A.; Palni, L.M.S.; Sharma, M.; Sharma, O.P. Improved methods of propagation of Maggar bamboo (Dendrocalamus hamiltonii Nees et. Arn. Ex Munro). In Biotechnology in India; Dwivedi, B.K., Ed.; Bioved Research Society: Allahabad, India, 1994; pp. 199–212.
    89. Mohanty, S.; Panda, M.K.; Subudhi, E.; Nayak, S. Plant regeneration from callus culture of Curcuma aromatica and in vitro detection of somaclonal variation through cytophotometric analysis. Biol. Plant. 2008, 52, 783–786, doi:10.1007/s10535-008-0153-x.
    90. Lin, S.; Liu, G.; Guo, T.; Zhang, L.; Wang, S.; Ding, Y. Shoot proliferation and callus regeneration from nodular buds of Drepanostachyum luodianense. J. For. Res. 2009, 30, 1997–2005, doi:10.1007/s11676-018-0772-9.
    91. Ye, S.; Cai, C.; Ren, H.; Wang, W.; Xiang, M.; Tang, X.; Zhu, C.; Yin, T.; Zhang, L.; Zhu, Q. An efficient plant regeneration and transformation system of Ma Bamboo (Dendrocalamus latiflorus munro) started from young shoot as explant. Front. Plant Sci. 2017, 8, 1–12, doi:10.3389/fpls.2017.01298.
    92. Zang, Q.; Zhou, L.; Zhuge, F.; Yang, H.; Wang, X.; Lin, X. Callus induction and regeneration via shoot tips of Dendrocalamus hamiltonii. SpringerPlus 2016, 5, 1–7, doi:10.1186/s40064-016-3520-7.
    93. Godbole, S.; Sood, A.; Thakur, R.; Sharma, M.; Ahuja, P.S. Somatic embryogenesis and its conversion into plantlets in a multipurpose bamboo, Dendrocalamus hamiltonii Nees et Arn. Ex Munro. Curr. Sci. 2002, 83, 885–889.
    94. Bag, N.; Palni, L.M.S.; Chandra, S.; Nandi, S.K. Somatic embryogenesis in ‘maggar’ bamboo (Dendrocalamus hamiltonii) and field performance of regenerated plants. Curr. Sci. 2012, 102, 1279–1287, doi:10.13140/RG.2.2.13665.81763.
    95. Islam, S.A.M.N.; Rahman, M.M. Micro-cloning in commercially important six bamboo species for mass propagation and at a large scale cultivation. Plant Tissue Cult. Biotechnol. 2005, 15, 103–111.
    96. Mishra, Y.; Patel, P.; Ansari, S.A. Acclimatization and Macroproliferation of Micropropagated Plants of Bambusa tulda Roxb. Asian J. Exp. Biol. Sci. 2011, 2, 498–501.
    97. Somashekar, P.V.; Rathore, T.S.; Shashidhar, K.S. Rapid and simplified method of micropropagation of Pseudoxytenanthera stocksii. In Forest Biotechnology in India; Ansari, S.A., Narayanan, C., Mandal, A.K., Eds.; Satish Serial Publishing House: Delhi, India, 2008; pp. 165–182.
    98. Rathore, T.S.; Rai, V.R. Micropropagation of Pseudoxytenanthera stocksii munro. Vitr. Cell. Dev. Biol. Plant. 2005, 41, 333–337, doi:10.1079/ivp2004625.
    99. Arya, S.; Kaur, B.; Arya, I.D. Micropropagation of economically important bamboo Dendrocalamus hamiltonii through axillary bus and seed culture. In Proceedings of the 8th World Bamboo Congress, Bangkok, Thailand, 16–19 September 2009; pp. 122–130.
    100. Suwal, M.M.; Lamichhane, J.; Gauchan, D.P. Regeneration Technique of Bamboo Species through Nodal Segments: A Review. Nepal J. Biotechnol. 2020, 8, 54–68, doi:10.3126/njb.v8i1.30209.
    101. Adarsh, K.; Gupta, B.B.; Negi, D.S. Vegetative propagation of Dendrocalamus strictus through macro-proliferation-II. Ind. For. 1991, 117, 621–623.
    102. Banik, R.L. A Manual for Vegetative Propagation of Bamboos, International Network for Bamboo and Rattan (INBAR)Technical Report No. 6; Bangladesh Forest Research Institute: Chattogram, Bangladesh, 1995; pp. 1–66.
    103. Adarsh, K.; Mohinder, P.; Shiv, K. Mass production of field planting stock of Dendrocalamus hamiltonii vegetatively through macro-proliferation. Ind. For. 1992, 118, 638–645.
    104. Considine, M.J.; Considine, J.A. On the language and physiology of dormancy and quiescence in plants. J. Exp. Bot. 2016, 67, 3189–3203, doi:10.1093/jxb/erw138.
    105. Sharma, M.L.; Bala, N. Endogenous Levels of Plant Growth Substances in Seeds of Five Bamboo Species in Relation To Seed Viability. Indian J. Plant Physiol. 2006, 11, 358–363.
    106. Geetika, S.R.; Sharma, M.L. Effect of Pre-Sowing Invigouration Treatments on Performance of Ageing Dendrocalamus Hamiltonii Seeds. Int. J. Sci. Res. 2015, 4, 2277–8179.
    107. Chaiyarat, R. The effects of different treatments on seed germination and growth monastery Bamboo, Thyrsostachys siamensis. J. Bamboo Ratt. 2018, 17, 61–71.
    108. Airi, S.; Bhatt, I.D.; Bhatt, A.; Rawal, R.S.; Dhar, U. Variations in seed germination of Hippophae salicifolia with different presoaking treatments. J. For. Res. 2009, 20, 27–30, doi:10.1007/s11676-009-0005-3.
    109. Azad, M.S.; Zedan-Al-Musa, M.; Matin, M.A. Effects of pre-sowing treatments on seed germination of Melia azedarach. J. For. Res. 2010, 21, 193–196, doi:10.1007/s11676-010-0031-1.
    110. Azad, S.; Paul, N.K.; Matin, A. Do pre-sowing treatments affect seed germination in Albizia richardiana and Lagerstroemia speciosa? Front. Agric. China 2010, 4, 181–184, doi:10.1007/s11703-010-0100-4.
    111. Moghadam, A.K.; Mohammadi, K. Different priming treatments affected germination traits of safflower. Appl. Sci. Rep. 2013, 2, 22–25.
    112. Acharya, P.; Jayaprakasha, G.K.; Crosby, K.M.; Jifon, J.L.; Patil, B.S. Nanoparticle-Mediated Seed Priming Improves Germination, Growth, Yield, and Quality of Watermelons (Citrullus lanatus) at multi-locations in Texas. Sci. Rep. 2020, 10, 1–16, doi:10.1038/s41598-020-61696-7.
    113. Kucera, B.; Cohn, M.A.; Leubner-Metzger, G. Plant hormone interactions during seed dormancy release and germination. Seed Sci. Res. 2005, 15, 281–307, doi:10.1079/ssr2005218.
    114. Karssen, C.M.; Zagorski, S.; Kepczynski, J.; Groot, S.P.C. Key role for endogenous gibberellins in the control of seed germination. Ann. Bot. 1989, 63, 71–80, doi:10.1093/oxfordjournals.aob.a087730.
    115. Devi, W.S.; Bengyella, L.; Sharma, G.J. In vitro seed germination and micropropagation of edible bamboo Dendrocalamus giganteus Munro using seeds. Biotechnology 2012, 11, 74–80, doi:10.3923/biotech.2012.74.80.
    116. Sarkar, P.K.; Kumar, P.R.; Singh, A.K.; Bhatt, B.P. Effect of priming treatments on seed germination and seedling growth in bamboo [Dendrocalamus strictus (Roxb.) Nees]. Acta Ecol. Sin. 2020, 40, 128–133, doi:10.1016/j.chnaes.2018.11.004.
    117. Singh, G.; Sharma, M.L. Effect of pre-sowing invigouration treatments on performance of ageing Dendrocalamus strictus seeds. Int. J. Adv. Res. 2015, 3, 1521–1526.
    118. Li, J.; Gao, C.; Miao, Y.; Liu, Z.; Cui, K. Development of a highly efficient callus induction and plant regeneration system for Dendrocalamus sinicus using hypocotyls as explants. Plant Cell Tissue Organ Cult. 2021, 145, 117–125, doi:10.1007/s11240-020-01996-y.
    119. Raju, R.I.; Roy, S.K. Mass propagation of Bambusa bambos (L.) Voss through in vitro culture. Jahangirnagar Univ. J. Biol. Sci. 2017, 5, 15–26, doi:10.3329/jujbs.v5i2.32514.
    120. Pratibha, S.; Sarma, K.P. In vitro propagation of Bambusa tulda: An important plant for better environment. J. Environ. Res. Dev. 2013, 7, 1216–1223.
    121. Devi, W.S.; Sharma, G.J. In Vitro Propagation of Arundinaria callosa Munro—An Edible Bamboo from Nodal Explants of Mature Plants. Open Plant Sci. J. 2014, 3, 35–39, doi:10.2174/1874294700903010035.
    122. Hirimburegama, K.; Gamage, N. Propagation of Bambusa vulgaris (yellow bamboo) through nodal bud culture. J. Hortic. Sci. 1995, 70, 4469–4475, doi:10.1080/14620316.1995.11515317.
    123. Funada, R.; Kubo, T.; Tabuchi, M.; Sugiyama, T.; Fushitani, M. Seasonal variations in endogenous indole-3-acetic acid and abscisic acid in the cambial region of Pinus densiflora Sieb. et Zucc. stems in relation to earlywood-latewood transition and cessation of tracheid production. Holzforschung 2001, 55, 128–134, doi:10.1515/HF.2001.021.
    124. Das, M.; Pal, A. In vitro regeneration of Bambusa balcooa Roxb.: Factors affecting changes of morphogenetic competence in the axillary buds. Plant Cell Tissue Organ Cult. 2005, 81, 109–112, doi:10.1007/s11240-004-3017-x.
    125. Rangsiruji, A.; Binchai, S.; Pringsulaka, O. Species identification of economic bamboos in the genus dendrocalamus using SCAR and multiplex PCR. Songklanakarin J. Sci. Technol. 2018, 40, 640–647, doi:10.14456/sjst-psu.2018.86.
    126. Das, M.; Bhattacharya, S.; Singh, P.; Filgueiras, T.S.; Pal, A. Bamboo Taxonomy and Diversity in the Era of Molecular Markers. Adv. Bot. Res. 2008, 47, 225–268, doi:10.1016/S0065-2296(08)00005-0.
    127. Moges, A.D.; Admassu, B.; Belew, D.; Yesuf, M.; Njuguna, J.; Kyalo, M.; Ghimire, S.R. Development of microsatellite markers and analysis of genetic diversity and population structure of Colletotrichum gloeosporioides from Ethiopia. PLoS ONE 2016, 11, 1–18, doi:10.1371/journal.pone.0151257.
    128. Amom, T.; Tikendra, L.; Rahaman, H.; Potshangbam, A.; Nongdam, P. Evaluation of genetic relationship between 15 bamboo species of North-East India based on ISSR marker analysis. Mol. Biol. Res. Commun. 2018, 7, 7–15, doi:10.22099/mbrc.2018.28378.1303.
    129. Desai, P.; Gajera, B.; Mankad, M.; Shah, S.; Patel, A.; Patil, G.; Narayanan, S.; Kumar, N. Comparative assessment of genetic diversity among Indian bamboo genotypes using RAPD and ISSR markers. Mol. Biol. Rep. 2015, 42, 1265–1273, doi:10.1007/s11033-015-3867-9.
    130. Friar, E.; Kochert, G. A study of genetic variation and evolution of Phyllostachys (Bambusoideae: Poaceae) using nuclear restriction fragment length polymorphisms. Theor. Appl. Genet. 1994, 89, 265–270, doi:10.1007/BF00225152.
    131. Nayak, S.; Rout, G.R.; Das, P. Evaluation of the genetic variability in bamboo using RAPD markers. Plant Soil Environ. 2003, 49, 24–28, doi:10.17221/4085-pse.
    132. Das, M.; Bhattacharya, S.; Pal, A. Generation and characterization of SCARs by cloning and sequencing of RAPD products: A strategy for species-specific marker development in bamboo. Ann. Bot. 2005, 95, 835–841, doi:10.1093/aob/mci088.
    133. Zhao, H.; Yang, L.; Peng, Z.; Sun, H.; Yue, X.; Lou, Y.; Dong, L.; Wang, L.; Gao, Z. Developing genome-wide microsatellite markers of bamboo and their applications on molecular marker assisted taxonomy for accessions in the genus Phyllostachys. Sci. Rep. 2015, 5, 1–10, doi:10.1038/srep08018.
    134. Isagi, Y.; Oda, T.; Fukushima, K.; Lian, C. Predominance of a single clone of the most widely distributed bamboo species Phyllostachys edulis in East Asia. J. Plant Res. 2016, 129, 21–27, doi:10.1007/s10265-015-0766-z.
    135. Jiang, W.; Bai, T.; Dai, H.; Wei, Q.; Zhang, W.; Ding, Y. Microsatellite markers revealed moderate genetic diversity and population differentiation of moso bamboo (Phyllostachys edulis)—A primarily asexual reproduction species in China. Tree Genet. Genomes 2017, 13, 1–4, doi:10.1007/s11295-017-1212-2.
    136. Rossarolla, M.D.; Tomazetti, T.C.; Vieira, L.N.; Guerra, M.P.; Klabunde, G.H.; Scherer, R.F.; Pescador, R.; Nodari, R.O. Identification and characterization of SSR markers of Guadua chacoensis (Rojas) Londoño & PM Peterson and transferability to other bamboo species. 3 Biotech 2020, 10, 1–9, doi:10.1007/s13205-020-02268-4.
    137. Cai, K.; Zhu, L.; Zhang, K.; Li, L.; Zhao, Z.; Zeng, W.; Lin, X. Development and characterization of EST-SSR markers from RNA-Seq data in Phyllostachys violascens. Front. Plant Sci. 2019, 10, 50, doi:10.3389/fpls.2019.00050.
  • Kanok-Orn, S. The Study of Genetic Relationship and Molecular Markers Identification of SUT Dendrocalamus asper (Pai Tong Keaw). Master’s Thesis, Faculty of Science in Biotechnology, Suranaree University of Technology, Nakhon Ratchasima, Thailand, 2002.
  1. Rimbawanto, A. Genetic Diversity of Dendrocalamus asper in Java Revealed By Rapd Markers. Indones. J. For. Res. 2006, 3, 67–74, doi:10.20886/ijfr.2006.3.1.67-74.
  2. Singh, S.R.; Dalal, S.; Singh, R.; Dhawan, A.K.; Kalia, R.K. Evaluation of genetic fidelity of in vitro raised plants of Dendrocalamus asper (Schult. & Schult. F.) Backer ex K. Heyne using DNA-based markers. Acta Physiol. Plant 2013, 35, 419–430, doi:10.1007/s11738-012-1084-x.
  3. Gillis, K.; Gielis, J.; Peeters, H.; Dhooghe, E.; Oprins, J. Somatic embryogenesis from mature Bambusa balcooa Roxburgh as basis for mass production of elite forestry bamboos. Plant Cell Tissue Organ Cult. 2007, 91, 115–123, doi:10.1007/s11240-007-9236-1.
  4. Palombi, M.A.; Damiano, C. Comparison between RAPD and SSR molecular markers in detecting genetic variation in kiwifruit (Actinidia deliciosa A. Chev). Plant Cell Rep. 2002, 20, 1061–1066, doi:10.1007/s00299-001-0430-z.
  5. Das, M.; Pal, A. Clonal propagation and production of genetically uniform regenerants from axillary meristems of adult bamboo. J. Plant Biochem. Biotechnol. 2005, 14, 185–188, doi:10.1007/BF03355956.
  6. Negi, D.; Saxena, S. Ascertaining clonal fidelity of tissue culture raised plants of Bambusa balcooa Roxb. using inter simple sequence repeat markers. New For. 2010, 40, 1–8, doi:10.1007/s11056-009-9182-3.
  7. Brar, J.; Shafi, A.; Sood, P.; Anand, M.; Sood, A. In-vitro propagation, biochemical studies and assessment of clonal fidelity through molecular markers in Bambusa balcooa. J. Trop. For. Sci. 2014, 26, 115–124.
  8. Lee, P.C.; Muniandi, S.K.; Shukor, N.A. In vitro regeneration of Bamboo species. Pertanika J. Sci. Technol. 2018, 4, 80–88.
  9. Goyal, A.K.; Pradhan, S.; Basistha, B.C.; Sen, A. Micropropagation and assessment of genetic fidelity of Dendrocalamus strictus (Roxb.) nees using RAPD and ISSR markers. 3 Biotech 2015, 5, 473–482, doi:10.1007/s13205-014-0244-7.
  10. Negi, D.; Saxena, S. In vitro propagation of Bambusa nutans Wall. ex Munro through axillary shoot proliferation. Plant Biotechnol. Rep. 2011, 4, 35–43, doi:10.1007/s11816-010-0154-z.
  11. Nadha, H.K.; Kumar, R.; Sharma, R.K.; Anand, M.; Sood, A. Evaluation of clonal fidelity of in vitro raised plants of Guadua angustifolia Kunth using DNA-based markers. J. Med. Plant Res. 2011, 5, 5636–5641, doi:10.5897/JMPR.9000620.
  12. Singh, S.R.; Dalal, S.; Singh, R.; Dhawan, A.K.; Kalia, R.K. Ascertaining clonal fidelity of micropropagated plants of Dendrocalamus hamiltonii Nees et Arn. ex Munro using molecular markers. Vitr. Cell. Dev. Biol. Plant 2013, 49, 572–583, doi:10.1007/s11627-013-9520-1.
  13. Chen, S.; Yao, H.; Han, J.; Liu, C.; Song, J.; Shi, L.; Zhu, Y.; Ma, X.; Gao, T.; Pang, X.; et al. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS ONE 2010, 5, 1–8, doi:10.1371/journal.pone.0008613.
  14. Gu, W.; Song, J.; Cao, Y.; Sun, Q.; Yao, H.; Wu, Q.; Chao, J.; Zhou, J.; Xue, W.; Duan, J. Application of the ITS2 region for barcoding medicinal plants of Selaginellaceae in Pteridophyta. PLoS ONE 2013, 8, 2–9, doi:10.1371/journal.pone.0067818.
  15. Hebert, P.D.N.; Penton, E.H.; Burns, J.M.; Janzen, D.H.; Hallwachs, W. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc. Natl. Acad. Sci. USA 2014, 101, 14812–14817, doi:10.1073/pnas.0406166101.
  16. Bruni, I.; De Mattia, F.; Galimberti, A.; Galasso, G.; Banfi, E.; Casiraghi, M.; Labra, M. Identification of poisonous plants by DNA barcoding approach. Int. J. Leg. Med. 2010, 124, 595–603, doi:10.1007/s00414-010-0447-3.
  17. He, J.; Wong, K.L.; Shaw, P.C.; Wang, H.; Li, D.Z. Identification of the medicinal plants in Aconitum L. by DNA barcoding technique. Planta Med. 2010, 76, 1622–1628, doi:10.1055/s-0029-1240967.
  18. Valentini, A.; Pompanon, F.; Taberlet, P. DNA barcoding for ecologists. Trends Ecol. Evol. 2009, 24, 110–117, doi:10.1016/j.tree.2008.09.011.
  19. Janzen, D.H.; Hajibabaei, M.; Burns, J.M.; Hallwachs, W.; Remigio, E.; Hebert, P.D. Wedding biodiversity inventory of a large and complex Lepidoptera fauna with DNA barcoding. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2005, 360, 1835–1845, doi:10.1098/rstb.2005.1715.
  20. Smith, M.A.; Fisher, B.L.; Hebert, P.D. DNA barcoding for effective biodiversity assessment of a hyperdiverse arthropod group: The ants of Madagascar. Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 1825–1834, doi:10.1098/rstb.2005.1714.
  21. Cho, Y.; Mower, J.P.; Qiu, Y.L.; Palmer, J.D. Mitochondrial substitution rates are extraordinarily elevated and variable in a genus of flowering plants. Proc. Natl. Acad. Sci. USA 2004, 101, 17741–17746.
  22. Fazekas, A.J.; Burgess, K.S.; Kesanakurti, P.R.; Graham, S.W.; Newmaster, S.G.; Husband, B.C.; Percy, D.M.; Hajibabaei, M.; Barrett, S.C. Multiple multilocus DNA barcodes from the plastid genome discriminate plant species equally well. PLoS ONE 2008, 3, e2802, doi:10.1371/journal.pone.0002802.
  23. Liu, J.I.E.; Moeller, M.; Gao, L.M.; Zhang, D.Q.; Li, D.Z. DNA barcoding for the discrimination of Eurasian yews (Taxus L., Taxaceae) and the discovery of cryptic species. Mol. Ecol. Res. 2011, 11, 89–100, doi:10.1111/j.1755-0998.2010.02907.x.
  24. Maloukh, L.; Kumarappan, A.; Jarrar, M. Discriminatory power of rbcL barcode locus for authentication of some of United Arab Emirates (UAE) native plants. 3 Biotech 2017, 7, 1–7, doi:10.1007/s13205-017-0746-1.
  25. Gao, T.; Yao, H.; Song, J.; Liu, C.; Zhu, Y.; Ma, X.; Pang, X.; Xu, H.; Chen, S. Identification of medicinal plants in the family Fabaceae using a potential DNA barcode ITS2. J. Ethnopharmacol. 2010, 130, 116–121.doi:10.1016/j.jep.2010.04.026.
  26. Yao, H.; Song, J.; Liu, C.; Luo, K.; Han, J.; Li, Y.; Pang, X.; Xu, H.; Zhu, Y.; Xiao, P.; et al. Use of ITS2 region as the universal DNA barcode for plants and animals. PLoS ONE 2010, 5, e13102, doi:10.1371/journal.pone.0013102.
  27. Hollingsworth, P.M.; Graham, S.W.; Little, D.P. Choosing and using a plant DNA barcode. PLoS ONE 2011, 6, e19254, doi:10.1371/journal.pone.0019254.
  28. Yu, W.B.; Huang, P.H.; Ree, R.H.; Liu, M.L.; Li, D.Z.; Wang, H. DNA barcoding of Pedicularis L.(Orobanchaceae): Evaluating four universal barcode loci in a large and hemiparasitic genus. J. Syst. Evol. 2011, 49, 425–437, doi:10.1111/j.1759-6831.2011.00154.x.
  29. Li, H.Q.; Chen, J.Y.; Wang, S.; Xiong, S.Z. Evaluation of six candidate DNA barcoding loci in Ficus (Moraceae) of China. Mol. Ecol. Resour. 2012, 12, 783–790, doi:10.1111/j.1755-0998.2012.03147.x.
  30. Little, D.P.; Knopf, P.; Schulz, C. DNA barcode identification of Podocarpaceae—The second largest conifer family. PLoS ONE 2013, 8, e81008, doi:10.1371/journal.pone.0081008.
  31. Hai-Fei, Y.; Yun-Jiao, L.; Xie, X.F.; Cai-Yun, Z.; Hu, C.M.; Hao, G.; Xue-Jun, G. DNA Barcoding Evaluation and Its Taxonomic Implications in the Species-Rich Genus Primula L. in China. PLoS ONE 2015,10, e0122903, doi:10.1371/journal.pone.0122903.
  32. Saarela, J.M.; Sokoloff, P.C.; Gillespie, L.J.; Consaul, L.L.; Bull, R.D. DNA Barcoding the Canadian Arctic Flora: Core Plastid Barcodes (rbcL + matK) for 490 Vascular Plant Species. PLoS ONE 2013, 8, 1–36, doi:10.1371/journal.pone.0077982.
  33. Zhang, W.; Fan, X.; Zhu, S.; Zhao, H.; Fu, L. Species-specific identification from incomplete sampling: Applying DNA barcodes to monitoring invasive Solanum plants. PLoS ONE 2013, 8, 367–375, doi:10.1371/journal.pone.0055927.
  34. Lee, S.Y.; Ng, W.L.; Mahat, M.N.; Nazre, M.; Mohamed, R. DNA barcoding of the endangered Aquilaria (Thymelaeaceae) and its application in species authentication of agarwood products traded in the market. PLoS ONE 2016, 11, 1–21, doi:10.1371/journal.pone.0154631.
  35. Costion, C.M.; Kress, W.J.; Crayn, D.M. DNA barcodes confirm the taxonomic and conservation status of a species of tree on the brink of extinction in the Pacific. PLoS ONE 2016, 11, 1–14, doi:10.1371/journal.pone.0155118.
  36. Zhao, M.C.; Yu, X.Z.; Li, N.Z.; Lian-Ming, G.; De Zhu, L. Testing four candidate barcoding markers in temperate woody bamboos (Poaceae: Bambusoideae). J. Syst. Evol. 2012, 50, 527–539.
  37. Steven, G.N.; Subramanyam, R. Testing plant barcoding in a sister species complex of pantropical Acacia (Mimosoideae, Fabaceae). Mol. Ecol. Resour. 2019, 9, 172–180, doi:10.1111/j.1755-0998.2009.02642.x.
  38. Das, M.M.; Mahadani, P.; Singh, R.; Karmakar, K.; Ghosh, S.K. matK sequence based plant DNA barcoding failed to identify Bambusa (Family: Poaceae) species from Northeast India. J. Environ. Sociobiol. 2013, 10, 49–54.
  39. Leelavathy, S.; Sankar, P.D. Maturase K (matK) as a Barcode in Bamboos. Res. J. Pharm. Technol. 2021, 14, 955–958, doi:10.5958/0974-360X.2021.00170.0.
  40. Yu-xiao, Z.; Yu-xing, X.; Peng-fei, M.; Lina, Z.; De-zhu, L. Selection of potential plastid DNA barcodes for Bambusoideae (Poaceae). Plant Divers. Resour. 2013, 35, 743–750, doi:10.7677/ynzwyj201313199.
  41. Dev, S.A.; Sijimol, K.; Prathibha, P.S.; Sreekumar, V.B.; Muralidharan, E.M. DNA barcoding as a valuable molecular tool for the certification of planting materials in bamboo. 3 Biotech 2020, 10, 1–12, doi:10.1007/s13205-019-2018-8.
  42. Gui, Y.; Wang, S.; Quan, L.; Zhou, C.; Long, S.; Zheng, H.; Jin, L.; Zhang, X.; Ma, N.; Fan, L. Genome size and sequence composition of moso bamboo: A comparative study. Science in China Series C. Life Sci. 2007, 50, 700–705, doi:10.1007/s11427-007-0081-6.
  43. Chen, S.Y.; Lin, Y.T.; Lin, C.W.; Chen, W.Y.; Yang, C.H.; Ku, H.M. Transferability of rice SSR markers to bamboo. Euphytica 2010, 175, 23–33, doi:10.1007/s10681-010-0159-2.
  44. Peng, Z.; Lu, Y.; Li, L.; Zhao, Q.; Feng, Q.I.; Gao, Z.; Lu, H.; Hu, T.; Yao, N.; Liu, K.; et al. The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla). Nat. Gen. 2013, 45, 456-461, doi:10.1038/ng.2569.
  45. Zhao, H.; Peng, Z.; Fei, B.; Li, L.; Hu, T.; Gao, Z.; Jiang, Z. BambooGDB: A bamboo genome database with functional annotation and an analysis platform. Database J. Biol. Databases Curation 2014, doi:10.1093/database/bau006.
  46. Gao, J.; Zhang, Y.; Zhang, C.; Qi, F.; Li, X.; Mu, S.; Peng, Z. Characterization of the floral transcriptome of Moso bamboo (Phyllostachys edulis) at different flowering developmental stages by transcriptome sequencing and RNA-seq analysis. PLoS ONE 2014, 9, e98910, doi:10.1371/journal.pone.0098910279.
  47. Zhou, M.B.; Wu, J.J.; Ramakrishnan, M.; Meng, X.W.; Vinod, K.K. Prospects for the study of genetic variation among Moso bamboo wild-type and variants through genome resequencing. Trees 2019, 33, 371–381, doi:10.1007/s00468-018-1783-z280. 
  48. Li, S.; Ramakrishnan, M.; Vinod, K.K.; Kalendar, R.; Yrjälä, K.; Zhou, M. Development and Deployment of High-Throughput Retrotransposon-Based Markers Reveal Genetic Diversity and Population Structure of Asian Bamboo. Forests 2020, 11, 31, doi:10.3390/f11010031.
  49. Liu, H.L.; Wu, M.; Li, F.; Gao, Y.M.; Chen, F.; Xiang, Y. TCP transcription factors in moso bamboo (Phyllostachys edulis): Genome-wide identification and expression analysis. Front. Plant Sci. 2018, 9, 1263, doi:10.3389/fpls.2018.01263.
  50. Li, W.; Shi, C.; Li, K.; Zhang, Q.J.; Tong, Y.; Zhang, Y.; Wang, J.; Clark, L.; Gao, L.Z. Draft genome of the herbaceous bamboo Raddia distichophylla. G3 2021, 11, jkaa049, doi:10.1093/g3journal/jkaa049.

This entry is adapted from 10.3390/plants10091897

This entry is offline, you can click here to edit this entry!