Seed Geometry in the Vitaceae: History
Please note this is an old version of this entry, which may differ significantly from the current revision.
Subjects: Agronomy
Contributor:

The Vitaceae Juss., in the basal lineages of Rosids, contains sixteen genera and 950 species, mainly of tropical lianas. The family has been divided in five tribes: Ampelopsideae, Cisseae, Cayratieae, Parthenocisseae and Viteae. Seed shape is variable in this family and is described based on the comparison of bi-dimensional seed images with geometric models. 

Ten morphological types are described in the Vitaceae. Seven of them are general and three specific. Among the general types, three are shared with the Arecaceae and correspond to geometric figures well described (lenses, superellipses and elongated waterdrops). Four additional groups include waterdrops, normal or rounded, heart curves, normal or rounded, elongated heart curves and other elongated curves, respectively. Finally, the three specific types correspond to heart curves of the Cayratia and Pseudocayratia types, heart curves of the Squared Heart Curve (SqHC) type of Ampelocissus and Ampelopsis, and Elongated Superellipse-Heart Curves (ESHCs), frequent in Tetrastigma species and observed also in Cissus species and R. rhomboidea. All these groups are defined by geometric models obtained by the representation of algebraic equations. Modifications in the equations result in models adjusting to the shape of seeds for each species.

  • endosperm
  • geometry
  • morphology
  • seed shape
  • Vitaceae

1. Introduction

The Vitaceae Juss. contains sixteen genera with ca. 950 species of lianas primarily distributed in the tropics with some genera in the temperate regions [1][2].
The Vitaceae has been divided in five tribes[3] (Table 1): (I) Ampelopsideae J. Wen and Z. L. Nie (Ampelopsis Michx., Nekemias Raf., Rhoicissus Planch., Clematicissus Planch.); (II) Cisseae Rchb. (Cissus L.); (III) Cayratieae J.Wen and L.M.Lu (Cayratia Juss. Ex Guill, Causonis Raf., Acareosperma Gagnep., Afrocayratia, Cyphostemma (Planch.) Alston, Pseudocayratia J.Wen, L.M.Lu and Z.D.Chen, Tetrastigma Planch.); (IV) Parthenocisseae J.Wen and Z.D.Chen (Parthenocissus Planch.) and (V) Viteae Dumort (Ampelocissus Planch., and Vitis L.). 
Table 1. A summary of the taxonomy of the Vitaceae. The approximate number of species in each tribe and genus is given between parentheses. Data adapted from [3].
Tribe Genera
I. Ampelopsideae (47) Ampelopsis Michx. (18)Nekemias Raf. (9)
  Rhoicissus Planch. (14)
  Clematicissus Planch. (6)
II. Cisseae (300) Cissus L. (300)
III. Cayratieae (368) Cayratia Juss. (25)
  Causonis Raf. (30)
  Acareosperma Gagnep. (1)
  Afrocayratia (7)
  Cyphostemma (Planch.) Alston (200)
  Pseudocayratia J. Wen,L.M.Lu and Z.D. Chen (5)
  Tetrastigma (Miq.) Planch. (100)
IV. Parthenocisseae (16) Parthenocissus Planch. (14)
  Yua C.L.Li (2)
V. Viteae (190) Ampelocissus Planch. (115)
  Vitis L. (75)
 
Cissus is the largest genus in the family with 300 species of complex classification[4]. Cyphostemma is second, with 200 species of an interesting diversity in their range of distribution as well as in growth habits (vines and lianas, herbs, stem succulents and a tree)[5]. Vitis has seventy-five inter-fertile wild species distributed in three continents under subtropical, Mediterranean and continental-temperate climatic conditions. Vitis vinifera L. is the species with highest economic importance in the family with some taxonomic uncertainty about the differentiation between V. vinifera L. subsp. vinifera and V. vinifera L. subsp. sylvestris (Willd.) Hegi[6][7]. Thousands of cultivars of V. vinifera are used worldwide in Viticulture. Species of other genera are widely cultivated, such as Parthenocissus quinquefolia (L.) Planch., the Virginia creeper, in temperate areas, and Cissus incisa Des Moul., the grape ivy, in tropical areas. 
The taxonomy and phylogenetic relationships of the Vitaceae are far from complete and will benefit from an accurate description of seeds in the unambiguous terms of geometry. From a practical point of view, the classification based on geometric models may contribute to the distinction between wild and crop grapes of Vitis vinifera[7].

2. Seed Morphology in the Vitaceae

2.1. Quantification of Seed Shape by Geometric Models

The silhouettes of bi-dimensional images of seeds often resemble geometric figures that can be used as models for the description and quantification of seed shape. A recent review of the geometry of seeds in the Arecaceae described a series of models useful for the analysis of seed shape in this family. Geometric models included the ellipses (the circle is a particular type of ellipse), ovals, lemniscates, superellipses, cardioid and derivatives, lenses and the water drop curve[8]. The application of geometric models in morphometry is based on the comparison of bi-dimensional images of well oriented seeds with these figures by means of image programs working in two layers (Adobe Photoshop, Corel Photo Paint…). The two images (seed and model) can be superimposed searching for a maximum similarity and the ratio between shared and total surface areas, that we have termed J index, is calculated with the data obtained in ImageJ[9]. J index measures the percent of similarity between two images (the seed and the model) and provides information on overall seed shape[10] [11]. Bidimensional seed images of many plant species adjust well to one of three morphological types: the ellipse, the oval and the cardioid[12]. The seeds of the model plant Arabidopsis thaliana (L.) Heynh., those of the model legumes Lotus japonicus (Regel) K.Larsen and Medicago truncatula Gaertn., Capparis spinosa L., in the Capparaceae , Rhus tripartita DC. in the Anacardiaceae, and species of Silene adjust well to cardioids or modified cardioids [13][14][15][16][17][18]. The seeds of Ricinus communis L. and Jatropha curcas L. in the Euphorbiaceae and those of cultivars of Triticum sp. in the Poaceae adjust well to ellipses of varied x/y ratio[19][20][21]. Oval shaped seeds occur frequently in the Cucurbitaceae, Berberidaceae, Eupteleaceae and Lardizabalaceae[22][23], while the cardioid is more common in Papaveraceae[23]. A given geometric type is sometimes associated with morphological or ecological characteristics. For example, cardioid-type seeds are frequently small-sized, while elliptic shape is more frequent in larger seeds[12]. In the Malvaceae, cardioid type seeds are associated with small herbs of annual cycle[24].

2.2. Seed Morphology in the Vitaceae

The seeds of the Vitaceae share structural characteristics. The endosperm presents in transversal section a typical “M” shape coincident with a pair of ventral in-folds and a dorsal chalaza knot allowing the identification of fossil seeds in this family[25].
Seed shape in the Vitaceae is variable and seeds resembling geometric figures are frequent in this family. The seeds of Ampelocissus are pyriform, oval, or round in dorsal or ventral view[26]. The seeds of Cissus species are often described as globose with a pointed base, elliptic in outline or oblong . These adjectives and other like sub-globose or terete are also applied to seed descriptions in other genera suggesting two important points: (1) The seeds of the Vitaceae are suitable for the comparison with geometric figures used as models. (2) The comparison may be quantitative, yielding measures that contribute to taxonomy. Table 2 contains a list of 131 species in the Vitaceae whose seeds have been observed for this work.
Table 2. A summary of the 131 species for which seed shape has been analysed in this work.

Tribe

(Species Observed/Total)

Genera

(Species Observed/Total)

Species (References for the Images)

I. Ampelopsideae

(15/47)

Ampelopsis Michx.

(13/18)

Ampelopsis aconitifolia [36], A. arborea [37], A. bodinieri [36], A. cantoniensis [31,36], A. cordata [38], A. chaffanjoni [36], A. delavayana [31], A. denudata [30], A. glandulosa [39], A. grossedentata [31], A. humulifolia [36], A. japonica [36], A. megalophylla [31,36]

 

Rhoicissus Planch.

(2/14)

Rhoicissus revoilii [31], R. rhomboidea [31]

II. Cisseae

(33/300)

Cissus L.

(33/300)

Cissus antarctica [31], C. aralioides [35,40], C. barbeyana [40], C. bosseri [40], C. cactiformis [40], C. campestris [31,41,42], C. cornifolia [40], C. descoingsii, [31,41], C. diffusiflora [40], C. elongata [40], C. erosa [43], C. floribunda [40], C. fuliginea [31], C. granulosa [31], C. hastata [40], C. hypoglauca [31], C. integrifolia [40,42], C. leucophlea [40], C. penninervis [31], C. petiolata [40], C. pileata [40], C. populnea [40], C. quadrangularis [44], C. reniformis [31,41], C. repens [40], C. sciaphila [40], C. smithiana [40], C. sterculiifolia [31], C. subtetragona [40], C. trianae [31], C. tuberosa [42], C. verticillata [31,41,42,45], C. willardii [42],

III. Cayratieae

(40/365)

Causonis Raf. (1/9)

Causonis sp. [46]

 

Cayratia Juss.

(7/60)

Cayratia cheniana [46], C. geniculata [31], C. imerinensis [47], C. japonica [31,48], C. oligocarpa [31], C. saponaria [31], C. sp. [African, 46]

 

Cyphostemma

(Planch.) Alston

(3/200)

Cyphostemma elephantopus [49], C. laza [31], C. junceum [31]

 

Pseudocayratia J. Wen, L.M.Lu and Z.D.Chen

(3/5)

Pseudocayratia dichromocarpa [50], P. pengiana [50], P. speciosa [50,52]

 

Tetrastigma

(Miq.) Planch.

(26/100)

Tetrastigma campylocarpum [51], T. cauliflorum [51], T. caudatum [51], T. delavayi [51], T. dichotomum [52], T. formosanum [51], T. harmandi [31], T. hemsleyanum [31,51], T. henryi [51], T. hypoglaucum [51], T. jinghongense [51], T. kwangsiense [30,31], T. lanceolarium [30], T. laoticum [51], T. obovatum [51,52], T. obtectum [51,52], T. pachyllylum [51], T. pedunculare [31,51,52], T. petraeum [51], T. retinervum [51], T. rumicispermum [31,51,52], T. serrulatum [51], T. sichouense [51], T. thorsborneorum [51], T. triphyllum [31,51], T. xishuangbannaense [31,51]

IV. Parthenocisseae

(11/16)

Parthenocissus Planch.

(9/14)

Parthenocissus dalzielii [36], P. heptaphylla [31], P. henryana [36], P. heterophylla [36], P. himalayana [53], P. laetevirens [36], P. quinquefolia [54], P. tricuspidata [36,37,45], P. vitacea [31]

 

Yua C.L.Li (2/2)

Yua austro-orientalis [31], Y. chinensis [31]

V. Viteae

(32/190)

Ampelocissus Planch.

(13/115)

Ampelocissus acapulcensis [30], A. bombycina [30], A. bravoi [42], A. cavicaulis [30], A. erdvendbergiana [30], A. grantii [30], A. javalensis [30,42], A. latifolia [30], A. macrocirrha [30], A. martinii [42], A. obtusata [30], A. ochracea [30], A. robinsonii [30]

 

Vitis L.

(19/75)

Vitis aestivalis [55], V. amurensis [45,56], V. brandoniana [54], V. cinerea [57], V. eolabrusca [54], V. flexuosa [54], V. grayensis [58], V. labrusca [45,54,62], V. lanatoides [58], V. latisulcata [58], V. palmata [59], V. pseudorotundifolia [54], V. rostrata [54], V. rotundifolia [31,41,54], V. rupestris [45], V. tiliifolia [60], V. tsoi [31,41], V. vulpina [61,62], V. wilsoniae [31,41]

Table 3 contains a summary of groups based on morphological seed types for the analysed species .

Table 3. A summary of groups based on morphological seed types for the analysed species in the Vitaceae. The number of cases found in each group is given between dashes.

Group (Geometric Model)

Examples

Group I (Lenses)-3-

Cissus quadrangularis [44], C. sterculiifolia [31], Tetrastigma petraeum [51]

Group II (Superellipses)-7-

Ampelocissus bravoi [42], C. reniformis [31,41], Cyphostemma elephantopus [49], C. laza [31], Tetrastigma campylocarpum [51], T. caudatum [51], T. henryi [51]

Group III (Elongated water drops)-15-

Ampelopsis arborea [37], Cayratia imerinensis [47], Cissus aralioides [35,40], C. cornifolia [40], C. erosa [43], C. integrifolia [40,42], C. petiolata [40], C. pileata [40], C. populnea [40], C. verticillata [31,41,42,45], C. sciaphila [40], C. smithiana [40], C. willardii [42], Cyphostemma junceum [31], V. vulpina [61,62]

Group IV (Water drops, normal or rounded)-14-

Ampelopsis bodinieri [36], A. glandulosa [36,39], A. humulifolia [36], Cayratia cheniana [46], Cissus campestris [31,41,42], C. fuliginea [31], C. tuberosa [42], C. granulosa [31], Parthenocissus dalzielii [36], Tetrastigma triphyllum [31,51], Vitis amurensis [45,56], V. labrusca [45,54,62], V. palmata [59], V. rupestris [45]

Group V (Heart curves normal or rounded)-19-

Ampelopsis aconitifolia [36], A. chaffanjoni [36], A. cordata [38], A. japonica [36], Parthenocissus heptaphylla [31], P. heterophylla [36], P. henryana [36], P. himalayana [51,53], P. quinquefolia [54], P. vitacea [31], P. tricuspidata [36,37,45], Rhoicissus revoilii [31], T. lanceolarium [30], Vitis cinerea [57], V. flexuosa [54], V. lanatoides [58], V. latisulcata [58], V. tsoi [31,41], V. wilsoniae [31,41]

Group VI (Elongated Heart curves)-6-

Ampelocissus acapulcensis [30], Cissus oligocarpa [31]. V. eolabrusca [54], V. grayensis [58], V. pseudorotundifolia [54], V. tiliifolia [60]

Group VII (Other elongated types)-11-

Ampelopsis megalophylla [31,36], Causonis sp. [46], Cayratia saponaria [31], Cissus trianae [31], C. hypoglauca [31], Parthenocissus laetevirens [36], T. hypoglaucum [51] Vitis aestivalis [55], V. rotundifolia [31,41,54], Yua austro-orientalis [31], Y. chinensis [31]

Group VIII (Heart curves of the Cayratia and Pseudocayratia types)-7-

Cayratia japonica [31,48], Cayratia sp. [African, 46], Pseudocayratia dichromocarpa [50], P. pengiana [50], P. speciosa [50,52], Tetrastigma formosanum [51], T. pedunculare [31,51,52]

Group IX (Heart curves of the SqHC type of Ampelocissus and Ampelopsis)-15-

Ampelocissus bombycina [30], A. cavicaulis [30], A. erdvendbergiana [30], A. grantii [30], A. javalensis [30,42], A. latifolia [30], A. macrocirrha [30], A. martinii [42], A. obtusata [30], A. ochracea [30], A. robinsonii [30], Ampelopsis cantoniensis [31,36], A. delavayana [31], A. denudata [30], A. grossedentata [31]

Group X Elongated Superellipse-heart curves-16-

Cissus elongata [40], C. penninervis [31], Rhoicissus rhomboidea [31], Tetrastigma hemsleyanum [31,51], T. jinghongense [51], T. laoticum [51], T. cauliflorum [51], T. dichotomum [52], T. harmandi [31], T. pachyllylum [51], T. kwangsiense [30,31], T. obovatum [51,52], T. obtectum [51,52], T. retinervum [52], T. serrulatum [51], T. sichouense [51]

Undefined-18-

Cayratia geniculata [31], Cissus antarctica [31], C. barbeyana [40], C. bosseri [40], C. cactiformis [40], C. descoingsii, [31,41], C. diffusiflora [40], C. floribunda [40], C. hastata [40], C. leucophlea [40], C. repens [40], C. subtetragona [40], T. delavayi [51], T. rumicispermum [31,51,52], T. thorsborneorum [51], T. xishuangbannaense [31,51], V. brandoniana [54], V. rostrata [54]

 

Figure 1. A summary of the models found for the description and quantification of seed shape in the Vitaceae. G I, G II and G III are lenses, superellipses and elongated water drops, respectively; G IV, G V and G VI correspond to water drops, heart curves and elongated heart curves , respectively; G VII contains four models corresponding to other elongated curves; G VIII presents an example of the heart curves of the Cayratia and Pseudocayratia types; G IX, heart curves of the Squared Heart Curves (SqHCs) type in Ampelocissus and broadened models of Ampelocissus and Ampelopsis, and G X, Elongated Superellipse-Heart Curves (ESHCs), frequent in Tetrastigma species and observed also in Cissus species and R. rhomboidea. Labelled as M7 and M6 are two models used in the description of seeds of grape varieties and as precursors for other models[27][28].

 

In general, the distribution of morphological types is not in close agreement with the current taxonomic classification; nevertheless, some results may be summarized in this aspect. First, the seeds of the Elongated Superellipse-Heart Curves (ESHCs) type (Group X) are more frequent in Tetrastigma and have been observed in Rhoicissus and Cissus, but not in species of other genera. While many seeds in species of Ampelopsis, Parthenocissus and Vitis share the typical shapes of water drop and heart curves, the squared heart curve (SqHC) type (Group IX) has been predominantly observed in Ampelocissus and Ampelopsis. A number of species remain undefined due to one of these two reasons: First, their irregular seed shape making difficult the identification of an adequate model (Cayratia geniculata, Cissus antarctica) and, second, the seed images have geometric shapes but the identification of the model with the corresponding equation is pending (Tetrastigma delavayi, T. rumicispermum). In addition, further work will be done on the seeds of Vitis species.

 

This entry is adapted from the peer-reviewed paper 10.3390/plants10081695

References

  1. Zhang, N.; Wen, J.; Zimmer, E.A.; Congruent deep relationships in the grape family (Vitaceae) based on sequences of chloroplast genomes and mitochondrial genes via genome skimming. PLoS ONE 2015, 10, e0144701, .
  2. Zeng, L.P.; Zhang, N.; Zhang, Q.; Endress, P.K.; Huang, J.; Ma, H.; Resolution of deep eudicot phylogeny and their temporal diversification using nuclear genes from transcriptomic and ge-nomic datasets. New Phytol. 2017, 214, 1338–1354, 10.1111/nph.14503.
  3. 3. Wen, J.; Lu, L.-M.; Nie, Z.-L.; Liu, X.-Q.; Zhang, N.; Ickert-Bond, S.; Gerrath, J.; Manchester, S.R.; Boggan, J.; Chen, Z.-D.; et al. A new phylogenetic tribal classification of the grape family (Vitaceae). J. Syst. Evol. 2018, 56, 262–272, .
  4. Rossetto, M.; Jackes, B.R.; Scott, K.D.; Henry, R.J.; Is the genus Cissus (Vitaceae) monophyletic? Evidence from Plastid and Nuclear Ribosomal DNA. Syst. Bot. 2002, 27, 522–533, 10.1043/0363-6445-27.3.522.
  5. Hearn, D.J.; Evans, M.; Wolf, B.; McGinty, M.; Wen, J; Dispersal is associated with morphological innovation, but not increased diversification, in Cyphostemma (Vitaceae). J. Syst. Evol. 2018, 56, 340–359, 10.1111/jse.12417.
  6. Terral, J.F.; Tabard, E.; Bouby, L.; Ivorra, S.; Pastor, T.; Figueiral, I.; Picq, S.; Chevance, J.-B.; Jung, C.; Fabre, L.; et al. Evolution and history of grapevine (Vitis vinifera) under domestication: New morphometric perspectives to understand seed domestication syndrome and reveal origins of ancient European cultivars. Ann. Bot. 2010, 105, 443–455, 10.1093/aob/mcp298.
  7. This, P.; Lacombe, T.; Thomas, M.R.; Historical origins and genetic diversity of wine grapes. Trends Genet. 2006, 22, 511–519, 10.1016/j.tig.2006.07.008.
  8. Gutiérrez del Pozo, D.; Martín-Gómez, J.J.; Tocino, Á.; Cervantes, E.; Seed geometry in the Arecaceae. Horticulturae 2020, 6, 64, 10.3390/horticulturae6040064.
  9. Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W.; NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675, http://imagej.nih.gov/ij/docs/guide .
  10. Cervantes, E.; Martín-Gómez, J.J.; Saadaoui, E.; Updated methods for seed shape analysis. Scientifica 2016, 5691825, 5691825, 10.1155/2016/5691825.
  11. Cervantes, E.; Martín-Gómez, J.J.; Seed shape description and quantification by comparison with geometric models. Horticulturae , 2019, 5, 60, doi:10.3390/horticulturae5030060.
  12. Cervantes, E.; Martín-Gómez, J.J.; Gutiérrez del Pozo, D.; Silva Días, L.; An angiosperm species dataset reveals relationships between seed size and two-dimensional shape. Horticulturae 2019, 5, 71, horticulturae5040071.
  13. Cervantes, E.; Martín-Gómez, J.J.; Ardanuy, R.; de Diego, J.G.; Tocino, Á.; Modeling the Arabidopsis seed shape by a cardioid: Efficacy of the adjustment with a scale change with factor equal to the Golden Ratio and analysis of seed shape in ethylene mutants. J. Plant. Physiol. 2010, 167, 408–410, doi:10.1016/j.jplph.2009.09.013.
  14. Martín Gómez, J.J.; Tocino, Á.; Ardanuy, R.; de Diego, J.G.; Cervantes, E.; Dynamic analysis of Arabidopsis seed shape reveals differences in cellulose mutants. Acta Physiol. Plant. 2014, 36, 1585–1592, .
  15. Cervantes, E.; Martín-Gómez, J.J.; Chan, P.K.; Gresshoff, P.M.; Tocino, Á.; Seed shape in model legumes: Approximation by a cardioid reveals differences in ethylene insensitive mutants of Lotus ja-ponicus and Medicago truncatula. . J. Plant. Physiol. 2012, 169, 1359–1365, j.jplph.2012.05.019.
  16. Saadaoui, E.; Martín-Gómez, J.J.; Cervantes, E.; Intraspecific variability of seed morphology in Capparis spinosa L. . Acta Biol. Cracov. Bot. 2013, 55, 99–106, .
  17. Saadaoui, E.; Martín-Gómez, J.J.; Tlili, N.; Khaldi, A.; Cervantes, E.; Effect of climate in seed diversity of wild Tunisian Rhus tripartita (Ucria) Grande. J. Adv. Biol. Biotechnol. 2017, 13, 1–10, 10.9734/JABB/2017/32786.
  18. Martín-Gómez, J.J.; Rewicz, A.; Rodríguez-Lorenzo, J.L.; Janoušek, B.; Cervantes, E.; Seed morphology in Silene based on geometric models. Plants 2020, 9, 1787, 10.3390/plants9121787.
  19. Martín-Gómez, J.J.; Saadaoui, E.; Cervantes, E; Seed shape of castor bean (Ricinus communis L.) grown in different regions of Tunisia. . J. Agric. Ecol. Res. Int. 2016, 8, 1–11, .
  20. Saadaoui, E.; Martín, J.J.; Bouazizi, R.; Chokri, B.R.; Grira, M.; Abdelkabir, S.; Khouja, M.L.; Cervantes, E.; . Phenotypic variability and seed yield of Jatropha curcas L. introduced to Tunisia. Acta Bot. Mex. 2015, 110, 119–134, .
  21. Martín-Gómez, J.J.; Rewicz, A.; Goriewa-Duba, K.; Wiwart, M.; Tocino, Á.; Cervantes, E.; Morphological description and classification of wheat kernels Based on geometric models. Agronomy 2019, 9, 399, 10.3390/agronomy9070399.
  22. Cervantes, E.; Martín-Gómez, J.J.; Seed shape quantification in the order Cucurbitales. Modern Phytomorphol. 2018, 12, 1–13, 10.5281/zenodo.117487.
  23. Martín-Gómez, J.J.; Rewicz, A.; Cervantes, E.; Seed shape diversity in families of the order Ranunculales. Phytotaxa 2019, 425, 193–207, 10.11646/phytotaxa.425.4.1 .
  24. Martín-Gómez, J.J.; Gutiérrez del Pozo, D.; Cervantes, E.; Seed shape quantification in the Malvaceae reveals cardioid-shaped seeds predominantly in herbs.. Bot. Lith. 2019, 25, 21–31, 10.2478/botlit-2019-0003.
  25. Chen, I.; Manchester, S.R.; Seed morphology of modern and fossil Ampelocissus (Vitaceae) and implications for phytogeography. Am. J. Bot. 2007, 94, 1534–1553, 10.3732/ajb.94.9.1534..
  26. Chen, I.; Manchester, S.R.; Seed morphology of modern and fossil Ampelocissus (Vitaceae) and implications for phytogeography. Am. J. Bot. 2007, 94, 1534–1553, 10.3732/ajb.94.9.1534..
  27. Martín-Gómez, J.J.; Gutiérrez del Pozo, D.; Ucchesu, M.; Bacchetta, G.; Cabello Sáenz de Santamaría, F.; Tocino, Á.; Cervantes, E.; Seed morphology in the Vitaceae based on geometric models. Agronomy 2020, 10, 739, 10.3390/agronomy10050739.
  28. Cervantes, E.; Martín-Gómez, J.J.; Espinosa-Roldán, F.E.; Muñoz-Organero, G.; Tocino, Á.; Cabello-Sáenz de Santamaría, F.; Seed morphology in key Spanish grapevine cultivars. Agronomy 2021, 11, 734, 10.3390/agronomy11040734.
More
This entry is offline, you can click here to edit this entry!