Prevention of Heat-Related Illnesses: History
Please note this is an old version of this entry, which may differ significantly from the current revision.
Contributor:

Extreme temperatures are known to have negative consequences on the environment and the ecosystem. Already more frequent and intense heat waves are likely to increase in the future due to a projected 0.1–0.2-degree Celsius rise in temperature by 2100. Extreme heat can lead to a spectrum of health-related conditions that range from mild to severe and include, but are not limited to, heat dehydration, cramps, exhaustion syncope and stroke; these are referred to as heat-related illnesses (HRIs).

  • heat wave
  • heat-related illnesses
  • urban settings
  • heat warning system

1. Introduction

Extreme temperatures are known to have negative consequences on the environment and the ecosystem [1]. Already more frequent and intense heat waves are likely to increase in the future due to a projected 0.1–0.2-degree Celsius rise in temperature by 2100 [2,3,4]. Extreme heat can lead to a spectrum of health-related conditions that range from mild to severe and include, but are not limited to, heat dehydration, cramps, exhaustion syncope and stroke; these are referred to as heat-related illnesses (HRIs) [5]. Without appropriate cooling strategies, extreme heat overextends the body’s capability to regulate its temperature, which can then lead to cardiovascular and/or respiratory compromise, multi-organ failure, impaired coagulation, loss of consciousness, stroke and even death [6].

The World Health Organization (WHO) estimates that 166,000 deaths have occurred from 1998–2017 due to heat-related illnesses [7,8,9,10]. The 2003 heat wave in Europe increased this number alone with an estimate of 70,000 deaths, while Russia saw 56,000 deaths in the heat wave of 2010 [11]. Other parts of the world have seen similar trends due to heat waves, especially in countries closer to the equator. These countries already experience higher temperatures at baseline, making them more likely to bear the impacts of even small increases in average temperature [12]. Countries in South Asia such as India and Pakistan have experienced heat waves that resulted in thousands of excess deaths [13,14].

The WHO and World Meteorological Organization (WMO) collaborated to produce a technical guide as an aid for governments to set up an early warning system for heat waves [20]. While governments in some HICs were able to implement these, other countries, especially those in low resource settings, have not been able to set up systems to mitigate the impacts of extreme heat. In areas where governments do not have resources to drive heat response, communities must make changes to their environment and behaviors to reduce the impact of extreme heat exposure.

2. Results

Of the 17 articles that were included in the final review, 14 articles were based in HICs, while three were based in LMIC settings. Most (10 out of 17) articles covered community-based interventions in the form of heat action plans and six were from Europe, which had been established by respective local and national governments in response to the 2003 heat wave. The studies ranged from randomized trials ( n = 2), non-randomized or quasi-experimental analyses ( n = 6) to observation or secondary data analyses. Variations in health outcomes reported, the assessment of knowledge, attitude and practices, sample populations, and data sources were observed ( Table 2 ).

The chosen articles elaborate on (1) the establishment of heat action plans and (2) education and awareness campaigns while accommodating age and need-appropriate dissemination of heat-specific preventive actions as effective interventions in reducing the burden of heat-related illnesses.

Heat action plans were implemented mostly in high-income countries across Europe, in Canada and in Japan, and comprised of activities including, but not limited to, establishing a heat monitoring system, also known as the heat health watch warning system, informative campaigns for the general population, the mobilization of health care professionals, volunteers, social workers and trained caregivers in the surveillance and management of individuals with known vulnerabilities, as well as the provision of required infrastructure to cope with extreme temperatures. One study reported the implementation and evaluation of a heat action plan in a low- and middle-income country, India [24].

Some studies conducted awareness sessions within the community settings that contained guidelines on preventing heat stress, providing information on high-risk population groups (vulnerable groups such as children and the elderly) and provisions for resources to use to prevent heat illness, among other topics, aiming to improve the community’s knowledge, attitudes and perceptions towards the prevention of heat stress. Like heat action plans, these studies were also administered in high- and middle-income countries such as China, the United States and Australia, but the medium used to disseminate the information differed from study to study, as highlighted below, with varying efficacy.

3. Discussion

This review aimed to determine the effectiveness of community-based heat prevention programs in urban settings of both high- and low-income countries. Heat prevention programs were seen to focus on the development and implementation of heat action plans that required multi-sectoral engagement. The studies highlight the fact that local, regional, and national governmental agencies need to take ownership of heat action plans and lead other relevant institutions such as health care facilities, community homes, volunteer and social networks, among others, to manage multiple components of a multi-pronged heat action plan.

Another important aspect in the prevention of HRIs and successful heat prevention plans is the regular surveillance of variable temperatures throughout the year. Prior knowledge of impending extreme temperatures can facilitate the initiation of prevention strategies as well as early installment of programs such as relief camps. We encourage more collaboration of governments with the World Meteorological Organization to determine appropriate heat health warning systems to better classify and forecast heat emergencies on a more consistent and reliable basis [51].

While this review provides a menu of sorts on the packages of interventions that can be created to have a mitigating effect on the impact of extreme heat on human health, the lack of evidence around the effectiveness of these interventions in low-resource settings cannot be undermined. It is worthwhile to investigate the real-time impact of such interventions in low-resource settings as well as conduct studies to tease out the most beneficial package of interventions that are most effective, both in health outcomes and cost structures.

4. Conclusions

For heat prevention plans to be implementable and successful, they need to be cost-effective, easy to maintain, ideally should not rely on a mass effort from people and should be specifically structured to meet the local needs and resources of the community. Most robust programs and their associated effectiveness as well as cost-effectiveness studies are needed, specifically in low-resource settings, to mitigate the effect of extreme heat conditions as well as understand the health and economic impacts of such interventions in the long term.

This entry is adapted from the peer-reviewed paper 10.3390/ijerph18168362

This entry is offline, you can click here to edit this entry!