Mycosporine-like amino acids, commonly known as “MAAs” represent a diverse family of more than 40, small <400 Da, water-soluble, colorless UV-absorbing compounds that protect against highly energetic UV photons. They have a unique absorption spectrum with a single, narrow band with an absorption maximum between 309 and 362 nm. Structurally, MAAs are divided into two groups; (i) the mycosporines, which have a single modified amino acid residue connected to a cyclohexenone core, and (ii) MAAs, have two such amino acids substituents [71]. MAAs have a 5-hydroxy-5-hydroxymethyl-cyclohex-1, 2-ene ring structure, and a methoxy-substituent in C2 position. In the MAA structure, the C3 position is always substituted with an amino group, whereas the C1 position can be substituted with either an oxo- or an imino-moiety. In some instances, the term ‘mycosporine’ refers to those with a ketone group at the C1 position, known as oxo-mycosporines or mono-substituted mycosporines.
3.5. Mycosporine-Like Amino Acids and Their Applications
MAAs are considered multipurpose metabolites with various functions, including antioxidant and anti-inflammatory activities, accessory pigments in photosynthesis, nitrogen storage, thermal protection, osmotic stress protection, anti-aging, anti-cancer, and wound healing. They have also been widely accepted as UV-A and UV-B photoprotection agents [93]. The evidence supporting these functions of MAAs is mostly indirect and is based on induction of MAA production following stress conditions. MAAs have well-documented applications in cosmetics, toiletries, as UV protectors, and activators of cell proliferation and as suppressors of UV-induced aging in human skin [66,67]. MAAs appear to be promising compounds in artificial sunscreens for future biotechnological research [117]. Some of their properties are briefly discussed below, and shows a diagrammatic representation MAA applications.
Figure 4. A scheme to represent MAA-producing organisms, biological functions of MAAs and their cosmetic applications.
3.5.1. Antioxidative Properties of MAAs
UV radiation interacts with oxygen and other organic compounds and can generate oxidative stress by producing highly reactive oxygen intermediates such as superoxide (O2.-), hydroxyl radical (OH) or hydrogen peroxide (H2O2). To counteract the damaging effects of oxidative stress, cyanobacteria exhibit several defence mechanisms, such as the production of MAAs [68]. Several in vitro analyses of MAAs suggest that different abiotic stresses such as temperature, salinity, desiccation and acidity may significantly increase their antioxidative properties [81,93,118]. Oren [94] has clearly described an osmotic role of MAAs in a hypersaline environment. The antioxidative activities of mycosporine-Gly and shinorine have been very effective against ROS scavenging, although mycosporine-Gly has the highest antioxidative activity among several naturally occurring compounds. Compared with ascorbic acid, an eight-fold higher antioxidant activity has been reported at pH 8.5 for mycosporine-Gly, which was isolated from the marine lichen Lichina pygmaea [84,119]. The activity of porphyra-334, as an antioxidant on human skin fibroblasts, was also studied, and results showed a dose-dependent reduction in intracellular UV-A-induced ROS generation based on a modified DCF-DA fluorescence assay [119]. Recently, Kageyama and Waditee-Sirisattha [118] compiled a list of a few mono- and di-substituted MAAs as ROS scavengers, both in vitro and in vivo. Mycosporine-2-glycine has antioxidative effects in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages by down-regulated Sod1, Cat, and Nrf2 expression [120]. Ryu et al. [119] showed that treatment of porphyra-334 decreased the UV-A-induced intracellular ROS generation in human skin fibroblasts in a dose-dependent manner. Likewise, palythine isolated from the red alga Chrondus yendoi significantly reduced SSR-irradiated (20 J cm?2) production of oxidizing species in Ha- CaT immortal human keratinocytes [68]. Recently, RNA-sequencing analysis of human follicle dermal papilla (HFDP) cells following treatment with porphyra-334 proved the antioxidant role of porphyra-334 by upregulating metallothionein (MT)-associated gene expression [121].
3.5.2. Anti-Inflammatory Properties of MAAs
Inflammation is a physiological defense mechanism to fight against molecular and cellular damage caused by oxidative stress or UV irradiation. UV mediated inflammatory responses includes synthesis of inducible NO synthase (iNOS), nitric oxide (NO),
cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), tumor necrosis factor- (TNF- ), and other cytokines, such as interleukin-1 (IL-1) and interleukin-6 (IL-6) [118]. Expression of the COX-2 protein, linked with PGE2 production, is upregulated by UV-B exposure and ROS generation in both human skin and cultured human keratinocytes [118]. Suh et al. [69] studied the anti-inflammatory response of mycosporine-Gly, porphyra-334 and shinorine against UV exposure on HaCaT cell lines. They evaluated expression levels of the COX-2 gene (linked with tissue inflammation) under three different concentrations of MAAs (0.03, 0.15, or 0.3 mM). Results showed that mycosporine-Gly and shinorine can inhibit the expression of the COX-2 gene, whereas porphyra did not show any significant effect [69]. Becker et al. [122] studied the immunomodulatory effects of shinorine and porphyra-334 in the human myelomonocytic cell line THP-1 and their descendent reporter line THP-1-Blue by observing activation of transcription factor NF-B. Both cells were exposed to the MAAs in the presence or absence of lipopolysaccharide (LPS). They observed that both MAAs had immunomodulatory effects on NF-B activity in unstimulated THP-1-Blue cells, whereas the activity of NF-B was increased by shinorine in a more pronounced and dose-dependent manner. In contrast to this, the activity of NF-B was reduced following porphyra-334 treatment and confirmed its anti-inflammatory potential. Likewise, Tarasuntisuk et al. [120] also reported anti-inflammatory activity in mycosporine- 2-glycine lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Transcriptional analyses of this study showed that mycosporine-2-glycine significantly repressed the expression of iNOS and COX-2. Consequently, it also inhibited the generation of inflammatory intermediaries by suppressing the NF-B pathway. Similarly, aqueous extracts of Gracilariopsis longissima and Hydropuntia cornea induced both TNF- and IL-6 production in macrophages of cell line RAW264.7. These results demonstrate the anti-inflammatory properties of MAAs, particularly palythine, asterina-330, shinorine, porphyra-334, and palythinol, which are present in cell extracts of H. cornea and G. longissima [123].
3.5.3. Anti-Aging and Wound Healing Properties of MAAs
Prolonged UV exposure leads to skin aging by degrading collagen fiber and reducing elastin content. Like anti-inflammatory activity, Suh et al. [69] also demonstrated MAAs efficacy against aging. They found that UV irradiation strongly suppressed expression of elastin and the procollagen c-endopeptidase enhancer (PCOLCE) gene, which binds to procollagen and enhances procollagen c-proteinase activity. However, the presence of mycosporine-Gly, porphyra-334, and shinorine elevated the UV-suppressed levels of PCOLCE and elastin in a concentration-dependent manner and also showed their wound healing properties [69]. Recently, Rui et al. [124] studied the anti-aging properties of a mixture of porphyra-334 and shinorine on ICR mice and demonstrated that MAAs havethe potential to suppress collagen and elastin degradation; this could therefore be an
effective treatment against skin aging. Similarly, Ryu et al. [119] showed that porphyra- 334 suppressed ROS generation and the expression of matrix metalloproteinases (MMPs) that are linked with connective tissue degradation during photo-aging. At the same time, it increases the levels of procollagen, type I collagen and elastin to help maintain healthy skin cell and the healing of fibroblasts [119]. They found that porphyra-334 can suppress the expression of MMP in a dose-dependent manner. The highest concentration of porphyra-334 (40 M) inhibited up to 56.2% MMP-1 mRNA expression in UV-A exposed human skin fibroblasts [119]. Recently, Kim et al. [121] proved the role of porphyra-334 as an anti-aging agent, including the promotion of collagen formation, improvement of periorbital wrinkles, and promotion of cell proliferation, in the human cell lines human Detroit 551 fibroblast cells, HaCaT cells, and HFDP cells derived mainly from normal human scalp hair follicles [121]. They observed that procollagen expression levels (PIP) increased in Detroit 551 cells with increasing levels of porphyra extract and porphyra-334. One ppm of porphyra extract and porphyra-334 increased the PIP content by 121% and 130%, respectively. In contrast, 10 ppm of porphyra extract and porphyra-334 increased PIP content by 147% and 154%, respectively. The in vitro efficacy of few common MAAs against UV-induced damage are listed in Table 2.
3.5.4. Photo-Protective Properties of MAAs
Over recent years, the application of MAAs in sunscreen products has attracted increasing interest. Various properties of MAAs, such as strong UV-absorption maxima (310–365 nm), high molar extinction coefficients (" = 28,100–50,000 M?1cm?1), photostability, ability to prevent UV-induced thymine dimer formation and resistance to several abiotic stressors demonstrates that MAAs are potent photo-absorbing compounds [72,73,117]. The ability of MAAs to absorb UV radiation and dissipate energy as heat without generating reactive photoproducts makes it significant photoprotective compounds (Figure 5). Torres et al. [86] demonstrated the UV-B photoprotective activity of a novel mycosporine collemin A isolated from Collema cristatum, a lichenized ascomycete [86]. The photoprotective roles of porphyra-334, shinorine, and mycosporine-Gly isolated from Patinopecten yessoensis ovaries has been studied in human skin fibroblast cells by Oyamada et al. [80]. They found that all three MAAs can protect the cells against UV-induced cell death, but the most substantial effect was shown by mycosporine-Gly. Besides this, MAAs also promoted the proliferation of human skin fibroblast cells [80]. Lately, another interesting study conducted by de la Coba et al. [125] showed that natural sunscreen formulations combining porphyra-334 and shinorine act nearly as well as OMC synthetic UV-A filters and mycosporine-serinol as a UV-B filter. The results showed that each natural and artificial sunscreen formulation exhibited comparable SPFs when applied in identical concentrations as UV-A and UV-B filters [125].
Similarly, Moline et al. [85] showed that the photoprotective activity of yeast involved the synthesis of mycosporine-glutaminol glucoside (MGG). In this work, they analyzed the relationship between MGG production, cell survival after UV-B irradiation, formation of CPDs, photostability and singlet oxygen quenching activity of MGG [85]. Their results showed that CPD accumulation and MGG accumulation were inversely related. The conclusion of their work was that MGG plays an important role as a UV-B photoprotective metabolite in yeasts by protecting against direct DNA damage and probably against indirect damage by singlet oxygen quenching. Likewise, porphyra-334 isolated from Porphyra yezoensis exhibited a protective effect on human skin fibroblasts against exposure to UV-A radiation. Cell viability was increased in a dose dependent manner similar to 40 Mporphyra-334 that increased cell viability by up to 88% [119]. Recently, Suh et al. [70] used porphyra-334 to minimize the UV-induced apoptosis of HaCaT cell lines. Likewise, they also showed that UV-absorbing compounds (M-Gly, shinorine and porphyra-334) modulated gene expression associated with oxidative stress, inflammation, and skin aging caused by UV [69]. Álvarez-Gómez et al. [123] have investigated the effect of algal cellextracts of G. longissima and H. cornea on two human and one murine cell lines and found that they had no cytotoxic effects on human cell lines. Nevertheless, murine cell lines exhibited cytotoxic effects linked to immunomodulatory roles. The algal extracts included five different MAAs: palythine, asterina-330, shinorine, porphyra-334, and palythinol. They also found that the photoprotective capacity of the algal extracts in terms of SPF values showed a gradual increase with extract concentration. Both algal extracts induced the production of TNF- and IL-6 [123].
Figure 5. Use of natural eco-friendly mycosporine-like amino acids (MAAs) as a green sunscreen to protect skin against UV-induced skin damage. Created with BioRender (https://biorender.com/ accessed on 15 April 2021).
4. Stability and Enhanced Effectiveness of MAA-Based Sunscreens, and MAA-Conjugates
Fernandes et al. [126] made an effort to enhance the UV protective properties of MAAs by grafting them with a chitosan (CS) matrix through amide bond formation based on carbodiimide coupling. Results showed that CS-MAA conjugates, as an extraordinarily stable combination of natural biological molecules, exhibited various benefits such as being biodegradable, biocompatible, thermoresistant, photoresistant, and with increased efficacy against both UV-A and UV-B radiation compared to individual MAAs [127]. This provides an opportunity to further engineer conjugates to generate new multifunctional materials through the modification of several remaining free amino groups on a CS matrix. It also fulfills the current requirements for cosmetic products or biopharmaceutical agents because the carbodiimide-based grafting procedure and products are already used extensively in these fields. This study provides more emphasis on the applicability of CS-MAA conjugates to a wide range of applications in fields such as cosmetics, artificial skin, wound healing, contact lenses, artificial cornea, textiles, food, drug packaging, and coatings [126]. Similarly, Singh et al. [79] have attempted to synthesize a stable ZnONPs conjugate with the UV-absorbing compound shinorine (10 mM concentration) at pH-7. They found that ZnONPs shinorine conjugate treatment reduced in vivo ROS generation by up to 75% in Anabaena strain L31. Schmid et al. [128] introduced a Helioguard®365 commercialized natural sunscreen formulation of porphyra-334 and shinorine, extracted from the red alga Porphyra umbilicalis. Helioguard®365 has anti-aging as well as photoprotective capacity against UV-A induced skin or DNA damage. It improved cell viability in a dose-dependent manner; for example, 0.25% Helioguard®365 increased cell viability by up to 97.8%. In addition, 3% and 5% of Helioguard®365 reduced DNA damage of IMR- 90 human fibroblasts following exposure to UV-A radiation. A study conducted in vivo on ten human subjects showed that Helioguard®365 (2% concentration) boosted the SPF value of sunscreen from 7.2 to 8.2 [129]. Likewise, twenty women volunteers applied a 5% concentration of Helioguard®365 twice a day. After four weeks this treatment prevented the appearance of lines and wrinkles on the skin and improved firmness and smoothness by 10% and 12%, respectively. This commercial product has broad stability such that it can be stable for 3 months at temperatures ranging from 4 to 37 C [66,128]. In addition, Torres et al. [86] determined the SPF value of a formulation of collemin A and olive oil, in a ratio of 1:10, on the inside forearm of a volunteer at a concentration of 6 gcm?2. Fifteen minutes after application, the treated area was exposed to four MEDs (360 mJ cm?2) of UV-B radiation and 24 h later erythema was observed. They observed that in comparison to the positive control, i.e., octinoxate commercial sunscreen, this formulation was equally effective. However, the reliability of this study is low because only a single volunteer was involved. de la Coba et al. [125] studied the SPF value of a sunscreen formulation containing porphyra-334 (+shinorine) as a UV-A filter, and mycosporine-serinol as a UV-B filter in the ratio of 4.1:2.9%, respectively. They observed that separately these MAAs had SPF values between 4 and 6. However, in combination, the value increased to 8.37 2.12, which is quite similar to the value of 9.54 1.53 for the reference sunscreen formulation of avobenzone (UV-A) and octinoxate (UV-B) in a ratio of 4.5:2.6%, respectively. This study was performed in vitro [125]. Likewise, the SPF values of the algal extracts (containing palythine, asterina-330, shinorine, porphyra-334 and palythinol) of H. cornea and G. longissima showed a gradual increase with increasing concentration of extract. The highest values of SPF were recorded at 13.9 mg DW of algae per cm?2 which was 7.5 for G. longissima and 4.8 for H. cornea [123]. Helionori® is another commercially active natural sunscreen product that includes palythine, porphyra-334 and shinorine and was extracted from the red algae P. umbilicalis. This product exhibited UV-A protective effects on human fibroblasts and keratinocytes cell lines, and, like 2% Helionori®, increased cell viability by up to 57 and 135% in cultures of human keratinocytes and fibroblast cell lines, respectively. This product has excellent stability against exposure to light and temperature and it can also provide a maximum level of protection to DNA by preserving membrane lipids [66,82,130]. By making comparisons over the past few decades, it is clear that the use of naturally synthesized products has significantly augmented and replaced chemical-based products. Along with other bio-based products, MAAs have also gained the attention of several researchers and industries. The application of MAA-based sunscreens may be an efficient and safer alternative for health products and cosmetics. As discussed in the previous paragraph, there are very few commercial MAA-based sunscreens on the market, so thereis still a long way to go to gain acceptance of naturally derived sunscreens such as MAAs.
5. Conclusions
A rapid increase in skin damage in humans due to UV radiation has been reported over the past few decades, which has led to the use of many chemical/physical UV filters in order to protect skin against damage. However, a wide range of chemicals that are used to treat skin damage also have harmful effects on human health, the environment and damage to aquatic life, eventually disturbing the whole ecosystem through their bioaccumulation. In this review, we considered the use of MAAs as a natural sunscreen against skin damage, and which can be used as an adequate substitute for damaging and harmful chemicals. MAAs are known to be a functionally very diverse group of natural compounds that effectively absorb UV rays. Apart from functioning as a photo protectant, MAAs also act as anti-photoaging compounds, cell proliferation activators, anti-inflammatory or anticancer agents, and skin cell renewal stimulators. MAAs are now attracting commercial attention since they can provide a wide range of protection against UV rays. They conjugate with biopolymers or nanoparticles, eventually increasing their stability and effectiveness. Despite having extensive literature on the extraction and characterization of MAAs from their sources, the critical mechanisms involved in their protection against UVR has yet to be clearly addressed and is a topic for further research. Ultimately, they may become commercially available as a personalized natural sunscreen.
References
1. Frederick, J.; Snell, H.; Haywood, E. Solar ultraviolet radiation at the earth’s surface. Photochem. Photobiol. 1989, 50, 443–450.[CrossRef]
2. Madronich, S.; McKenzie, R.L.; Björn, L.O.; Caldwell, M.M. Changes in biologically active ultraviolet radiation reaching the
Earth’s surface. J. Photochem. Photobiol. B Biol. 1998, 46, 5–19. [CrossRef]
3. Frederick, J.E.; Qu, Z.; Booth, C.R. Ultraviolet radiation at sites on the Antarctic coast. Photochem. Photobiol. 1998, 68, 183–190.[CrossRef]
4. McKenzie, R.L.; Björn, L.O.; Bais, A.; Ilyasd, M. Changes in biologically active ultraviolet radiation reaching the Earth’s surface.Photochem. Photobiol. Sci. 2003, 2, 5–15. [CrossRef] [PubMed]
5. Kerr, J.; McElroy, C. Evidence for large upward trends of ultraviolet-B radiation linked to ozone depletion. Science 1993, 262,1032–1034. [CrossRef] [PubMed]
6. Frederick, J.E.; Lubin, D. Solar ultraviolet irradiance at Palmer station, Antarctica. Ultrav. Radiat. Antarct. Meas. Biol. Eff. 1994, 62,43–52.
7. Weihs, P.; Schmalwieser, A.W.; Schauberger, G. UV effects on living organisms. In Environmental Toxicology; Springer: New York, NY, USA, 2013; pp. 609–688.
8. Crutzen, P.J. Ultraviolet on the increase. Nature 1992, 356, 104–105. [CrossRef]
9. Narayanan, D.L.; Saladi, R.N.; Fox, J.L. Ultraviolet radiation and skin cancer. Int. J. Dermatol. 2010, 49, 978–986. [CrossRef]
10. Lee, C.-H.;Wu, S.-B.; Hong, C.-H.; Yu, H.-S.;Wei, Y.-H. Molecular mechanisms of UV-induced apoptosis and its effects on skin residential cells: The implication in UV-based phototherapy. Int. J. Mol. Sci. 2013, 14, 6414–6435. [CrossRef]
11. Reichrath, J.; Reichrath, S. Hope and challenge: The importance of ultraviolet (UV) radiation for cutaneous vitamin D synthesis and skin cancer. Scand. J. Clin. Lab. Investig. 2012, 72, 112–119.
12. Bosset, S.; Bonnet-Duquennoy, M.; Barre, P.; Chalon, A.; Kurfurst, R.; Bonte, F.; Schnebert, S.; Le Varlet, B.; Nicolas, J. Photoageing shows histological features of chronic skin inflammation without clinical and molecular abnormalities. Br. J. Dermatol. 2003, 149, 826–835. [CrossRef] [PubMed]
13. Preston, D.; Stern, R. Nonmelanoma skin cancer. N. Engl. J. Med. 1992, 327, 1649–1662. [CrossRef] [PubMed]
14. Cadet, J.; Douki, T. Formation of UV-induced DNA damage contributing to skin cancer development. Photochem. Photobiol. Sci. 2018, 17, 1816–1841. [CrossRef] [PubMed]
15. D’Orazio, J.; Jarrett, S.; Amaro-Ortiz, A.; Scott, T. UV radiation and the skin. Int. J. Mol. Sci. 2013, 14, 12222–12248. [CrossRef]
16. Bruls,W.A.; Slaper, H.; van Der Leun, J.C.; Berrens, L. Transmission of human epidermis and stratum corneum as a function of thickness in the ultraviolet and visible wavelengths. Photochem. Photobiol. 1984, 40, 485–494. [CrossRef]
17. Meinhardt, M.; Krebs, R.; Anders, A.; Heinrich, U.; Tronnier, H.Wavelength-dependent penetration depths of ultraviolet radiation in human skin. J. Biomed. Opt. 2008, 13, 044030. [CrossRef]
18. Britt, A.B. Repair of DNA damage induced by ultraviolet radiation. Plant. Physiol. 1995, 108, 891. [CrossRef]
19. Sinha, R.P.; Häder, D.-P. UV-induced DNA damage and repair: A review. Photochem. Photobiol. Sci. 2002, 1, 225–236. [CrossRef]
20. Lindahl, T.;Wood, R.D. Quality control by DNA repair. Science 1999, 286, 1897–1905. [CrossRef]
21. Mitchell, D.L.; Karentz, D. The induction and repair of DNA photodamage in the environment. In Environmental UV Photobiology; Springer: Boston, MA, USA, 1993; pp. 345–377.
22. Sancar, A. DNA excision repair. Annu. Rev. Biochem. 1996, 65, 43–81. [CrossRef]
23. Matsumura, Y.; Ananthaswamy, H.N. Toxic effects of ultraviolet radiation on the skin. Toxicol. Appl. Pharmacol. 2004, 195, 298–308. [CrossRef]
24. Kemp, M.G.; Spandau, D.F.; Travers, J.B. Impact of age and insulin-like growth factor-1 on DNA damage responses in UVirradiated human skin. Molecules 2017, 22, 356. [CrossRef] [PubMed]
25. Marrot, L.; Meunier, J.-R. Skin DNA photodamage and its biological consequences. J. Am. Acad. Dermatol. 2008, 58, S139–S148. [CrossRef]
26. Schuch, A.P.; Moreno, N.C.; Schuch, N.J.; Menck, C.F.M.; Garcia, C.C.M. Sunlight damage to cellular DNA: Focus on oxidatively generated lesions. Free Radic. Biol. Med. 2017, 107, 110–124. [CrossRef] [PubMed]
27. Tl, D.; Mahler, V. The epidemiology of skin cancer. Br. J. Derm. 2002, 146, 1–6.
28. Rittié, L.; Kansra, S.; Stoll, S.W.; Li, Y.; Gudjonsson, J.E.; Shao, Y.; Michael, L.E.; Fisher, G.J.; Johnson, T.M.; Elder, J.T. Differential ErbB1 signaling in squamous cell versus basal cell carcinoma of the skin. Am. J. Pathol. 2007, 170, 2089–2099. [CrossRef] [PubMed]
29. Glanz, K.; Buller, D.B.; Saraiya, M. Reducing ultraviolet radiation exposure among outdoor workers: State of the evidence and recommendations. Environ. Health 2007, 6, 1–11. [CrossRef] [PubMed]
30. Kaidbey, K.H.; Agin, P.P.; Sayre, R.M.; Kligman, A.M. Photoprotection by melanin—A comparison of black and Caucasian skin. J. Am. Acad. Dermatol. 1979, 1, 249–260. [CrossRef]
31. Muthumani, T.; Sudhahar, V.; Mukhopadhyay, T. Review on Sunscreens and Sun Protection factor. Res. J. Top. Cosmet. Sci. 2015, 6, 55–65. [CrossRef]
32. Jansen, R.; Osterwalder, U.; Wang, S.Q.; Burnett, M.; Lim, H.W. Photoprotection: Part II. Sunscreen: Development, efficacy, and controversies. J. Am. Acad. Dermatol. 2013, 69, 867.e1–867.e14. [CrossRef]
33. Osterwalder, U.; Herzog, B. Chemistry and properties of organic and inorganic UV filters. Sunscreens Photoprot. 2009. [CrossRef]
34. Shaath, N.A. The chemistry of ultraviolet filters. In Principles and Practice of Photoprotection; Springer: Cham, Switzerland, 2016; pp. 143–157.
35. Chatelain, E.; Gabard, B. Photostabilization of Butyl methoxydibenzoylmethane (Avobenzone) and Ethylhexyl methoxycinnamate by Bis-ethylhexyloxyphenol methoxyphenyl triazine (Tinosorb S), a New UV Broadband Filter. Photochem. Photobiol. 2001, 74, 401–406. [CrossRef]
36. Nguyen, U.; Schlossman, D. Stability study of avobenzone with inorganic sunscreens. In Proceedings of the Kobo Products Poster Presentation, SSC New York Conference, New York, NY, USA, 14 December 2001.
37. Matta, M.K.; Zusterzeel, R.; Pilli, N.R.; Patel, V.; Volpe, D.A.; Florian, J.; Oh, L.; Bashaw, E.; Zineh, I.; Sanabria, C. Effect of sunscreen application under maximal use conditions on plasma concentration of sunscreen active ingredients: A randomized clinical trial. JAMA 2019, 321, 2082–2091. [CrossRef]
38. Ruszkiewicz, J.A.; Pinkas, A.; Ferrer, B.; Peres, T.V.; Tsatsakis, A.; Aschner, M. Neurotoxic effect of active ingredients in sunscreen products, a contemporary review. Toxicol. Rep. 2017, 4, 245–259. [CrossRef]
39. Wang, S.Q.; Burnett, M.E.; Lim, H.W. Safety of oxybenzone: Putting numbers into perspective. Arch. Dermatol. 2011, 147, 865–866. [CrossRef] [PubMed]
40. Fourtanier, A.; Moyal, D.; Seité, S. Sunscreens containing the broad-spectrum UVA absorber, Mexoryl®SX, prevent the cutaneous detrimental effects of UV exposure: A review of clinical study results. Photodermatol. Photoimmunol. Photomed. 2008, 24, 164–174. [CrossRef] [PubMed]
41. Brand, R.M.; Pike, J.;Wilson, R.M.; Charron, A.R. Sunscreens containing physical UV blockers can increase transdermal absorption of pesticides. Toxicol. Ind. Health 2003, 19, 9–16. [CrossRef]
42. Sarveiya, V.; Risk, S.; Benson, H.A. Liquid chromatographic assay for common sunscreen agents: Application to In Vivo
assessment of skin penetration and systemic absorption in human volunteers. J. Chromatogr. B 2004, 803, 225–231. [CrossRef] [PubMed]
43. Kim, T.H.; Shin, B.S.; Kim, K.-B.; Shin, S.W.; Seok, S.H.; Kim, M.K.; Kim, E.J.; Kim, D.; Kim, M.G.; Park, E.-S. Percutaneous absorption, disposition, and exposure assessment of homosalate, a UV filtering agent, in rats. J. Toxicol. Environ. Health Part A 2014, 77, 202–213. [CrossRef]
44. Krause, M.; Klit, A.; Blomberg Jensen, M.; Søeborg, T.; Frederiksen, H.; Schlumpf, M.; Lichtensteiger, W.; Skakkebaek, N.;
Drzewiecki, K. Sunscreens: Are they beneficial for health? An overview of endocrine disrupting properties of UV-filters. Int. J.
Androl. 2012, 35, 424–436. [CrossRef] [PubMed]
45. De Groot, A.C.; Roberts, D.W. Contact and photocontact allergy to octocrylene: A review. Contact Dermat. 2014, 70, 193–204. [CrossRef] [PubMed]
46. Park, C.-B.; Jang, J.; Kim, S.; Kim, Y.J. Single-and mixture toxicity of three organic UV-filters, ethylhexyl methoxycinnamate, octocrylene, and avobenzone on Daphnia magna. Ecotoxicol. Environ. Saf. 2017, 137, 57–63. [CrossRef] [PubMed]
47. Zhang, Q.Y.; Ma, X.Y.; Wang, X.C.; Ngo, H.H. Assessment of multiple hormone activities of a UV-filter (octocrylene) in zebrafish (Danio rerio). Chemosphere 2016, 159, 433–441. [CrossRef] [PubMed]
48. Zgadzaj, A.; Skrzypczak, A.;Welenc, I.; Ługowska, A.; Parzonko, A.; Siedlecka, E.; Sommer, S.; Sikorska, K.; Nał˛ecz-Jawecki, G. Evaluation of photodegradation, phototoxicity and photogenotoxicity of ofloxacin in ointments with sunscreens and in solutions. J. Photochem. Photobiol. B Biol. 2015, 144, 76–84. [CrossRef]
49. Frank Gerberick, G.; Ryan, C.A. Contact photoallergy testing of sunscreens in guinea pigs. Contact Dermat. 1989, 20, 251–259. [CrossRef]
50. Nash, J.F.; Tanner, P.R. Relevance of UV filter/sunscreen product photostability to human safety. Photodermatol. Photoimmunol. Photomed. 2014, 30, 88–95. [CrossRef]
51. Darbre, P.D. Environmental oestrogens, cosmetics and breast cancer. Best Pract. Res. Clin. Endocrinol. Metab. 2006, 20, 121–143. [CrossRef]
52. Janjua, N.R.; Mogensen, B.; Andersson, A.-M.; Petersen, J.H.; Henriksen, M.; Skakkebæk, N.E.;Wulf, H.C. Systemic absorption of the sunscreens benzophenone-3, octyl-methoxycinnamate, and 3-(4-methyl-benzylidene) camphor after whole-body topical application and reproductive hormone levels in humans. J. Investig. Dermatol. 2004, 123, 57–61. [CrossRef]
53. Schlumpf, M.; Schmid, P.; Durrer, S.; Conscience, M.; Maerkel, K.; Henseler, M.; Gruetter, M.; Herzog, I.; Reolon, S.; Ceccatelli, R. Endocrine activity and developmental toxicity of cosmetic UV filters—An update. Toxicology 2004, 205, 113–122. [CrossRef]
54. Klammer, H.; Schlecht, C.; Wuttke, W.; Schmutzler, C.; Gotthardt, I.; Köhrle, J.; Jarry, H. Effects of a 5-day treatment with the UV-filter octyl-methoxycinnamate (OMC) on the function of the hypothalamo-pituitary–thyroid function in rats. Toxicology 2007, 238, 192–199. [CrossRef]
55. Rodríguez, E.; Valbuena, M.C.; Rey, M.; Porras de Quintana, L. Causal agents of photoallergic contact dermatitis diagnosed in the national institute of dermatology of Colombia. Photodermatol. Photoimmunol. Photomed. 2006, 22, 189–192. [CrossRef]
56. Szwarcfarb, B.; Carbone, S.; Reynoso, R.; Bollero, G.; Ponzo, O.; Moguilevsky, J.; Scacchi, P. Octyl-methoxycinnamate (OMC), an ultraviolet (UV) filter, alters LHRH and amino acid neurotransmitters release from hypothalamus of immature rats. Exp. Clin. Endocrinol. Diabetes 2008, 116, 94–98. [CrossRef] [PubMed]
57. Egambaram, O.P.; Kesavan Pillai, S.; Ray, S.S. Materials science challenges in skin UV protection: A review. Photochem. Photobiol. 2020, 96, 779–797. [CrossRef] [PubMed]
58. Schlossman, D. Sunscreen Technologies for Foundations and Lipsticks. Nice (France); Kobo Products Inc.: South Plainfield, NJ, USA, 2001.
59. Skocaj, M.; Filipic, M.; Petkovic, J.; Novak, S. Titanium dioxide in our everyday life; is it safe? Radiol. Oncol. 2011, 45, 227–247. [CrossRef]
60. Mohammed, Y.H.; Holmes, A.; Haridass, I.N.; Sanchez, W.Y.; Studier, H.; Grice, J.E.; Benson, H.A.; Roberts, M.S. Support for the safe use of zinc oxide nanoparticle sunscreens: Lack of skin penetration or cellular toxicity after repeated application in
volunteers. J. Investig. Dermatol. 2019, 139, 308–315. [CrossRef]
61. Smijs, T.; Pavel, S. Titanium dioxide and zinc oxide nanoparticles in sunscreens: Focus on their safety and effectiveness.
Nanotechnol. Sci. Appl. 2011, 4, 95–112. [CrossRef] [PubMed]
62. Wu, M.-S.; Sun, D.-S.; Lin, Y.-C.; Cheng, C.-L.; Hung, S.-C.; Chen, P.-K.; Yang, J.-H.; Chang, H.-H. Nanodiamonds protect skin from ultraviolet B-induced damage in mice. J. Nanobiotechnol. 2015, 13, 1–12. [CrossRef]
63. Zenerino, A.; Boutard, T.; Bignon, C.; Amigoni, S.; Josse, D.; Devers, T.; Guittard, F. New CeO2 nanoparticles-based topical formulations for the skin protection against organophosphates. Toxicol. Rep. 2015, 2, 1007–1013. [CrossRef]
64. Abe, A.; da Cunha, R.; Salomon, P.; Valença, S.; de Brito-Gitirana, L.; Junior, E. Nanoecotoxicological Effects of a Sunscreen Formulation based on TiO2 Nanoparticles on Microalgae from Guanabara Bay (Rio De Janeiro, Brazil). MOJ Polym. Sci. 2017, 1, 99–107.
65. Wada, N.; Sakamoto, T.; Matsugo, S. Mycosporine-like amino acids and their derivatives as natural antioxidants. Antioxidants 2015, 4, 603–646. [CrossRef]
66. Chrapusta, E.; Kaminski, A.; Duchnik, K.; Bober, B.; Adamski, M.; Bialczyk, J. Mycosporine-like amino acids: Potential health and beauty ingredients. Mar. Drugs 2017, 15, 326. [CrossRef]
67. Bhatia, S.; Garg, A.; Sharma, K.; Kumar, S.; Sharma, A.; Purohit, A. Mycosporine and mycosporine-like amino acids: A paramount tool against ultra violet irradiation. Pharmacogn. Rev. 2011, 5, 138. [CrossRef]
68. Lawrence, K.; Gacesa, R.; Long, P.; Young, A. Molecular photoprotection of human keratinocytes in vitro by the naturally
occurring mycosporine-like amino acid palythine. Br. J. Dermatol. 2018, 178, 1353–1363. [CrossRef] [PubMed]
69. Suh, S.-S.; Hwang, J.; Park, M.; Seo, H.H.; Kim, H.-S.; Lee, J.H.; Moh, S.H.; Lee, T.-K. Anti-inflammation activities of mycosporinelike amino acids (MAAs) in response to UV radiation suggest potential anti-skin aging activity. Mar. Drugs 2014, 12, 5174–5187. [CrossRef]
70. Suh, S.-S.; Oh, S.K.; Lee, S.G.; Kim, I.-C.; Kim, S. Porphyra-334, a mycosporine-like amino acid, attenuates UV-induced apoptosis in HaCaT cells. Acta Pharm. 2017, 67, 257–264. [CrossRef] [PubMed]
71. Balskus, E.P.;Walsh, C.T. The genetic and molecular basis for sunscreen biosynthesis in cyanobacteria. Science 2010, 329, 1653–1656. [CrossRef]
72. Gao, Q.; Garcia-Pichel, F. Microbial ultraviolet sunscreens. Nat. Rev. Microbiol. 2011, 9, 791–802. [CrossRef] [PubMed]
73. Carreto, J.I.; Carignan, M.O. Mycosporine-like amino acids: Relevant secondary metabolites. Chemical and ecological aspects. Mar. Drugs 2011, 9, 387–446. [CrossRef]
74. Whitehead, K.; Vernet, M. Influence of mycosporine-like amino acids (MAAs) on UV absorption by particulate and dissolved organic matter in La Jolla Bay. Limnol. Oceanogr. 2000, 45, 1788–1796. [CrossRef]
75. Conde, F.R.; Churio, M.S.; Previtali, C.M. Experimental study of the excited-state properties and photostability of the mycosporine like amino acid palythine in aqueous solution. Photochem. Photobiol. Sci. 2007, 6, 669–674. [CrossRef] [PubMed]
76. Bernillon, J.; Parussini, E.; Letoublon, R.; Favre-Bonvin, J.; Arpin, N. Flavin-mediated photolysis of mycosporines. Phytochemistry 1990, 29, 81–84. [CrossRef]
77. Babele, P.K.; Singh, G.; Singh, A.; Kumar, A.; Tyagi, M.B.; Sinha, R.P. UV-B radiation and temperature stress-induced alterations in metabolic events and defense mechanisms in a bloom-forming cyanobacterium Microcystis aeruginosa. Acta Physiol. Plant. 2017, 39, 1–11. [CrossRef]
78. Singh, A.; Tyagi, M.B.; Kumar, A. Cyanobacteria growing on tree barks possess high amount of sunscreen compound mycosporinelike amino acids (MAAs). Plant. Physiol. Biochem. 2017, 119, 110–120. [CrossRef] [PubMed]
79. Singh, G.; Babele, P.K.; Kumar, A.; Srivastava, A.; Sinha, R.P.; Tyagi, M.B. Synthesis of ZnO nanoparticles using the cell extract of the cyanobacterium, Anabaena strain L31 and its conjugation with UV-B absorbing compound shinorine. J. Photochem. Photobiol. B Biol. 2014, 138, 55–62. [CrossRef] [PubMed]
80. Oyamada, C.; Kaneniwa, M.; Ebitani, K.; Murata, M.; Ishihara, K. Mycosporine-like amino acids extracted from scallop
(Patinopecten yessoensis) ovaries: UV protection and growth stimulation activities on human cells. Mar. Biotechnol. 2008, 10,
141–150. [CrossRef] [PubMed]
81. Kogej, T.; Gostinˇcar, C.; Volkmann, M.; Gorbushina, A.A.; Gunde-Cimerman, N. Mycosporines in extremophilic fungi—Novel complementary osmolytes? Environ. Chem. 2006, 3, 105–110. [CrossRef]
82. Andre, G.; Pellegrini, M.; Pellegrini, L. Algal Extracts Containing Amino Acid Analogs of Mycosporin Are Useful as Dermatological Protecting Agents against Ultraviolet Radiation. Patent No. FR2803201, 6 July 2001.
83. Callone, A.I.; Carignan, M.; Montoya, N.G.; Carreto, J.I. Biotransformation of mycosporine like amino acids (MAAs) in the toxic dinoflagellate Alexandrium tamarense. J. Photochem. Photobiol. B Biol. 2006, 84, 204–212. [CrossRef]
84. De la Coba, F.; Aguilera, J.; Figueroa, F.L.; De Gálvez, M.; Herrera, E. Antioxidant activity of mycosporine-like amino acids
isolated from three red macroalgae and one marine lichen. J. Appl. Phycol. 2009, 21, 161–169. [CrossRef]
85. Moliné, M.; Arbeloa, E.M.; Flores, M.R.; Libkind, D.; Farías, M.E.; Bertolotti, S.G.; Churio, M.S.; van Broock, M.R. UVB
photoprotective role of mycosporines in yeast: Photostability and antioxidant activity of mycosporine-glutaminol-glucoside.
Radiat. Res. 2011, 175, 44–50. [CrossRef]
86. Torres, A.; Hochberg, M.; Pergament, I.; Smoum, R.; Niddam, V.; Dembitsky, V.M.; Temina, M.; Dor, I.; Lev, O.; Srebnik, M. A new UV-B absorbing mycosporine with photo protective activity from the lichenized ascomycete Collema cristatum. Eur. J. Biochem. 2004, 271, 780–784. [CrossRef]
87. Oda, Y.; Zhang, Q.; Matsunaga, S.; Fujita, M.J.; Sakai, R. Two new mycosporine-like amino acids LC-343 and mycosporineethanolamine from the micronesian marine sponge Lendenfeldia chondrodes. Chem. Lett. 2017, 46, 1272–1274. [CrossRef]
88. Ferrier-Pages, C.; Richard, C.; Forcioli, D.; Allemand, D.; Pichon, M.; Shick, J.M. Effects of temperature and UV radiation increases on the photosynthetic efficiency in four scleractinian coral species. Biol. Bull. 2007, 213, 76–87. [CrossRef]
89. Adams, N.; Shick, J. Mycosporine-like amino acids prevent UVB-induced abnormalities during early development of the green sea urchin Strongylocentrotus droebachiensis. Mar. Biol. 2001, 138, 267–280. [CrossRef]
90. Newman, S.J.; Dunlap, W.C.; Nicol, S.; Ritz, D. Antarctic krill (Euphausia superba) acquire a UV-absorbing mycosporine-like amino acid from dietary algae. J. Exp. Mar. Biol. Ecol. 2000, 255, 93–110. [CrossRef]
91. Rosic, N.N. Mycosporine-like amino acids: Making the foundation for organic personalised sunscreens. Mar. Drugs 2019, 17, 638. [CrossRef]
92. Mulkidjanian, A.Y.; Junge, W. On the origin of photosynthesis as inferred from sequence analysis. Photosynth. Res. 1997, 51, 27–42. [CrossRef]
93. Oren, A.; Gunde-Cimerman, N. Mycosporines and mycosporine-like amino acids: UV protectants or multipurpose secondary metabolites? FEMS Microbiol. Lett. 2007, 269, 1–10. [CrossRef] [PubMed]
94. Oren, A. Mycosporine-like amino acids as osmotic solutes in a community of halophilic cyanobacteria. Geomicrobiol. J. 1997, 14, 231–240. [CrossRef]
95. Cockell, C.S. Ultraviolet radiation, evolution and the -electron system. Biol. J. Linn. Soc. 1998, 63, 449–457. [CrossRef]
96. Böhm, G.A.; Pfleiderer,W.; Böger, P.; Scherer, S. Structure of a novel oligosaccharide-mycosporine-amino acid ultraviolet A/B sunscreen pigment from the terrestrial cyanobacterium Nostoc commune. J. Biol. Chem. 1995, 270, 8536–8539. [CrossRef]
97. Garcia-Pichel, F. Solar ultraviolet and the evolutionary history of cyanobacteria. Orig. Life Evol. Biosph. 1998, 28, 321–347. [CrossRef]
98. Cockell, C.S.; Knowland, J. Ultraviolet radiation screening compounds. Biol. Rev. 1999, 74, 311–345. [CrossRef]
99. Garcia-Pichel, F.; Castenholz, R.W. Occurrence of UV-absorbing, mycosporine-like compounds among cyanobacterial isolates and an estimate of their screening capacity. Appl. Environ. Microbiol. 1993, 59, 163–169. [CrossRef] [PubMed]
100. Shick, J.M.; Dunlap,W.C. Mycosporine-like amino acids and related gadusols: Biosynthesis, accumulation, and UV-protective functions in aquatic organisms. Annu. Rev. Physiol. 2002, 64, 223–262. [CrossRef]
101. Wada, N.; Sakamoto, T.; Matsugo, S. Multiple roles of photosynthetic and sunscreen pigments in cyanobacteria focusing on the oxidative stress. Metabolites 2013, 3, 463–483. [CrossRef] [PubMed]
102. Sommaruga, R.; Garcia-Pichel, F. UV-absorbing mycosporine-like compounds in planktonic and benthic organisms from a high-mountain lake. Arch. Hydrobiol. 1999, 144, 255–269. [CrossRef]
103. Rastogi, R.; Madamwar, D.; Incharoensakdi, A. Sun-screening bioactive compounds mycosporine-like amino acids in naturally occurring cyanobacterial biofilms: Role in photoprotection. J. Appl. Microbiol. 2015, 119, 753–762. [CrossRef]
104. Osborn, A.R.; Almabruk, K.H.; Holzwarth, G.; Asamizu, S.; LaDu, J.; Kean, K.M.; Karplus, P.A.; Tanguay, R.L.; Bakalinsky, A.T.; Mahmud, T. De novo synthesis of a sunscreen compound in vertebrates. eLife 2015, 4, e05919. [CrossRef]
105. Shinzato, C.; Shoguchi, E.; Kawashima, T.; Hamada, M.; Hisata, K.; Tanaka, M.; Fujie, M.; Fujiwara, M.; Koyanagi, R.; Ikuta, T. Using the Acropora digitifera genome to understand coral responses to environmental change. Nature 2011, 476, 320–323. [CrossRef] [PubMed]
106. Carignan, M.O.; Cardozo, K.H.; Oliveira-Silva, D.; Colepicolo, P.; Carreto, J.I. Palythine–threonine, a major novel mycosporine-like amino acid (MAA) isolated from the hermatypic coral Pocillopora capitata. J. Photochem. Photobiol. B Biol. 2009, 94, 191–200. [CrossRef] [PubMed]
107. Portwich, A.; Garcia-Pichel, F. Biosynthetic pathway of mycosporines (mycosporine-like amino acids) in the cyanobacterium Chlorogloeopsis sp. strain PCC 6912. Phycologia 2003, 42, 384–392. [CrossRef]
108. Geraldes, V.; de Medeiros, L.S.; Lima, S.T.; Alvarenga, D.O.; Gacesa, R.; Long, P.F.; Fiore, M.F.; Pinto, E. Genetic and biochemical evidence for redundant pathways leading to mycosporine-like amino acid biosynthesis in the cyanobacterium Sphaerospermopsis torques-reginae ITEP-024. Harmful Algae 2020, 35, 177–187.
109. Singh, S.P.; Klisch, M.; Sinha, R.P.; Häder, D.-P. Genome mining of mycosporine-like amino acid (MAA) synthesizing and
non-synthesizing cyanobacteria: A bioinformatics study. Genomics 2010, 95, 120–128. [CrossRef] [PubMed]
110. La Barre, S.; Roullier, C.; Boustie, J. Mycosporine-like amino acids (MAAs) in biological photosystems. In Outsatnding Marine Molecules;Wiley-VCH:Weinheim, Germany, 2014; pp. 333–360.
111. Cardozo, K.H.; Vessecchi, R.; Carvalho, V.M.; Pinto, E.; Gates, P.J.; Colepicolo, P.; Galembeck, S.E.; Lopes, N.P. A theoretical and mass spectrometry study of the fragmentation of mycosporine-like amino acids. Int. J. Mass Spectrom. 2008, 273, 11–19. [CrossRef]
112. Whitehead, K.; Hedges, J.I. Electrospray ionization tandem mass spectrometric and electron impact mass spectrometric characterization of mycosporine-like amino acids. Rapid Commun. Mass Spectrom. 2003, 17, 2133–2138. [CrossRef]
113. Nazifi, E.;Wada, N.; Yamaba, M.; Asano, T.; Nishiuchi, T.; Matsugo, S.; Sakamoto, T. Glycosylated porphyra-334 and palythinethreonine from the terrestrial cyanobacterium Nostoc commune. Mar. Drugs 2013, 11, 3124–3154. [CrossRef]
114. Furusaki, A.; Matsumoto, T.; Tsujino, I.; Sekikawa, I. The crystal and molecular structure of palythine trihydrate. Bull. Chem. Soc. Jpn. 1980, 53, 319–323. [CrossRef]
115. Uemura, D.; Katayama, C.; Wada, A.; Hirata, Y. Crystal and molecular structure of palythene possessing a novel 360 nm
chromophore. Chem. Lett. 1980, 9, 755–756. [CrossRef]
116. Orfanoudaki, M.; Hartmann, A.; Alilou, M.; Gelbrich, T.; Planchenault, P.; Derbré, S.; Schinkovitz, A.; Richomme, P.; Hensel, A.; Ganzera, M. Absolute configuration of mycosporine-like amino acids, their wound healing properties and in vitro anti-aging effects. Mar. Drugs 2020, 18, 35. [CrossRef] [PubMed]
117. Derikvand, P.; Llewellyn, C.A.; Purton, S. Cyanobacterial metabolites as a source of sunscreens and moisturizers: A comparison with current synthetic compounds. Eur. J. Phycol. 2017, 52, 43–56. [CrossRef]
118. Kageyama, H.;Waditee-Sirisattha, R. Antioxidative, anti-inflammatory, and anti-aging properties of mycosporine-like amino acids: Molecular and cellular mechanisms in the protection of skin-aging. Mar. Drugs 2019, 17, 222. [CrossRef] [PubMed]
119. Ryu, J.; Park, S.-J.; Kim, I.-H.; Choi, Y.H.; Nam, T.-J. Protective effect of porphyra-334 on UVA-induced photoaging in human skin fibroblasts. Int. J. Mol. Med. 2014, 34, 796–803. [CrossRef] [PubMed]
120. Tarasuntisuk, S.; Palaga, T.; Kageyama, H.;Waditee-Sirisattha, R. Mycosporine-2-glycine exerts anti-inflammatory and antioxidant effects in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Arch. Biochem. Biophys. 2019, 662, 33–39. [CrossRef]
[PubMed]
121. Kim, S.Y.; Cho, W.K.; Kim, H.-I.; Paek, S.H.; Jang, S.J.; Jo, Y.; Choi, H.; Lee, J.H.; Moh, S.H. Transcriptome Profiling of Human Follicle Dermal Papilla Cells in response to Porphyra-334 Treatment by RNA-Seq. Evid. Based Complement. Altern. Med. 2021, 2021, 6637513. [CrossRef]
122. Becker, K.; Hartmann, A.; Ganzera, M.; Fuchs, D.; Gostner, J.M. Immunomodulatory effects of the mycosporine-like amino acids shinorine and porphyra-334. Mar. Drugs 2016, 14, 119. [CrossRef]
123. Álvarez-Gómez, F.; Korbee, N.; Casas-Arrojo, V.; Abdala-Díaz, R.T.; Figueroa, F.L. UV photoprotection, cytotoxicity and
immunology capacity of red algae extracts. Molecules 2019, 24, 341. [CrossRef] [PubMed]
124. Rui, Y.; Zhaohui, Z.; Wenshan, S.; Bafang, L.; Hu, H. Protective effect of MAAs extracted from Porphyra tenera against UV irradiation-induced photoaging in mouse skin. J. Photochem. Photobiol. B Biol. 2019, 192, 26–33. [CrossRef]
125. De la Coba, F.; Aguilera, J.; Korbee, N.; de Gálvez, M.V.; Herrera-Ceballos, E.; Álvarez-Gómez, F.; Figueroa, F.L. UVA and UVB photoprotective capabilities of topical formulations containing mycosporine-like amino acids (MAAs) through different Biological Effective Protection Factors (BEPFs). Mar. Drugs 2019, 17, 55. [CrossRef]
126. Fernandes, S.C.; Alonso-Varona, A.; Palomares, T.; Zubillaga, V.N.; Labidi, J.; Bulone, V. Exploiting mycosporines as natural molecular sunscreens for the fabrication of UV-absorbing green materials. ACS Appl. Mater. Interfaces 2015, 7, 16558–16564. [CrossRef]
127. Dash, M.; Chiellini, F.; Ottenbrite, R.M.; Chiellini, E. Chitosan—A versatile semi-synthetic polymer in biomedical applications. Prog. Polym. Sci. 2011, 36, 981–1014. [CrossRef]
128. Schmid, D.; Schürch, C.; Zülli, F. Mycosporine-like amino acids from red algae protect against premature skin-aging. Euro Cosmet 2006, 9, 1–4.
129. Helioguard 365 A Natural UVA-Screening Compound from Sea Algae to Protect the Skin against Photo-Aging. Available online: https://www.xmedicimports.com/shop/images/Helioguard-365.pdf (accessed on 14 April 2021).
130. Colabella, F.; Moliné, M.; Libkind, D. UV sunscreens of microbial origin: Mycosporines and mycosporine-like aminoacids. Recent Pat. Biotechnol 2015, 8, 179–193. [CrossRef] [PubMed]
131. Schmid, D.; Schürch, C.; Zülli, F.; Nissen, H.-P.; Prieur, H. Mycosporine-like amino acids: Natural UV-screening compounds from red algae to protect the skin against photoaging. Söfw. J. 2003, 129, 38–42.