In comprehensive research on typical Neolithic sites, Yu et al. [
132] studied a sec-tion of the Caoxieshan Site, Suzhou, located on the eastern plain of Lake Taihu, using data and methods such as sporopollen, grain size, and magnetic susceptibility analysis and found that at approximately 5.4 and 5.2 ka BP there were brief droughts in the site area that might impact on the gradual decline of the Songze Culture and the emer-gence of regional irrigation agriculture. However, the particular linkages between cli-mate change, environmental stress, agricultural impacts, and human response are un-clear. Zhang et al. [
133] studied the environmental changes in the Yangtze River Delta over the past 7000 years, in combination with the collected records of many archaeo-logical and natural strata in that area, and discovered that a marine regression process between 7.2 and 5.3 ka BP provided a vast space for human activities in the Liangzhu cultural period. Zhang et al. [
134] examined the regional climate change and living en-vironment of the Chuodun Site in Jiangsu using sporopollen analysis and concluded that the rise and fall of Neolithic culture in the Lake Taihu area was closely related to changes in terrain, climate, and sea level in the area, and the development of the dish lake basin system of Lake Taihu, not just a simple consideration of climate change. Chen et al. [
135] analyzed stratigraphic profile samples of the Guangfulin Site in Shanghai in terms of grain size, sporopollen, organic carbon content, magnetic charac-teristics of the soil, micropaleontology, and elemental geochemistry and discovered that prior to human habitation the climate was relatively dry. The climate was then warm and humid during the Liangzhu cultural period, while the climate in the Guangfulin cultural period was increasingly cool and dry, with a relatively harsh en-vironment, although the temperatures between the Warring States Period and the Han Dynasty were relatively high. Based on the archaeological excavations of the Luotuo-dun Site in Yixing, Jiangsu, Li et al. [
136] combined the 14C dating data of samples from four related strata and made foraminifera, plant clast, and seed fossil identifications for 63 samples in the stratigraphic profile of the site, finding one genus and two species of benthic foraminifera in the 10th peat layer, namely, Ammonia compressiuscula and a sim-ilar type that is a close relative of Ammonia. Ammonia is euryhalic and is a common species in brackish water near the intertidal zones of modern coasts. It can be seen from the topography of the site that the marine foraminifer is a typical heterochtho-nous burial type in this area, which may have been transported in seawater to the area for deposition. It is thus inferred that since the Holocene and before the Luotuodun Site and its adjacent Majiabang Culture came into being, there was a transgression event between 7500 and 5400 BC. This occurrence is consistent with the marine micro-paleontological characteristics of the transgression layer in Zhenjiang during the Hol-ocene derived from drilling samples by Lin et al. [
137], indicating that the Lake Taihu area was a marine sedimentary environment between the early Holocene and 7 ka BP. The identification of marine micropaleontology indicates that there was still a shallow sea sedimentary environment from the beginning of the Holocene to 7.8 cal. ka BP in the region of Hai’an and Dongtai in the northern margin of the Yangtze River Valley [
60]. For example, there are lots of microfossils of planktonic foraminifera, benthic foraminifera, and ostracoda identified from the lower marine strata (12.6–9.2 cal. ka BP) at the Taozhuang Neolithic site of Dongtai. By using sedimentary proxies, including Sr, calcium content, grain size, diatoms, and dinoflagellates, Ling et al. [
138] also suggest-ed that during the middle to late Holocene (after ca. 7.6 cal. ka BP), the deposits mainly originated from overbank flooding or from storm surge events rather than from direct RSL rise from ca. 7.6–6.6 cal ka BP in the Liangzhu area. The Liangzhu Ancient City ar-ea remained a swamp and an area of salinization until ca. 5.1 cal. ka BP. Another study presented an analysis of the chronology, sedimentology, and organic and alka-line-earth metal geochemistry (Sr/Ba ratio, δ13C value, etc.) of a profile collected from the Xiawangdu Neolithic site on the Ningbo Plain [
139]. They found that frequent ex-treme typhoon events occurred during both periods. In response to the flooding, the Neolithic people either abandoned the low-lying land close to the river channel or re-treated to dwellings constructed on earth mounds.
In the case of Shanghai, the stratigraphic profile of the Maqiao Site consists of 9 layers, with Layers 2a, 3, and 5 being cultural layers, Layers 2b, 4, and 6 being cultural interruption layers (i.e., natural fine sand or mud, peat and bog-iron layers, the absence of cultural relics between two cultural layers), and Layer 8 being the ancient coastal shell ridges around 6 ka BP [
140]. No foraminifera were found in layer 6 (the age of the middle is 5.5 ka BP), which is a marker horizon of the formation of land in the region of Shanghai [
43,
140]. According to 14C dating, along with foraminifera and sporopollen identification of the stratum samples in the Maqiao Site, it was found that in the At-lantic Ocean period (7.45–4.45 ka BP), the Maqiao area in Shanghai experienced a changing sedimentary environment process that took the form successively of inland shallow sea, onshore intertidal zone, onshore supratidal zone and onshore freshwater lakes and marshes. During the sub-boreal period (4.45–2.45 ka BP), this area experi-enced a changing process that took the form successively of dry cool onshore envi-ronment, flood water lake and marsh, and warm-humid onshore environment. In the sub-Atlantic period (2.45 ka BP to present), it has experienced flooding lake and marsh environments accompanied by fluctuations in temperature, but in general, the envi-ronment has been warm and humid. Furthermore, this area has experienced three dis-tinctly unfavorable environments for the survival and development of humans fol-lowing land formation; i.e., before the formation of the Liangzhu Culture and at the end of it and from the Shang and Zhou Dynasties until the Tang Dynasty, resulting in three obvious cultural interruption layers. All lines of evidence, including landform development, fluvial and lacustrine deposits, fossil bones, and micropaleontology, clearly indicate that these cultural interruption layers were mainly caused by the lake expansion due to land floods over a long period of time, none of which were related to a transgression [
43,
127,
140].
The Liangzhu Culture (5.0–4.0 ka BP), which included a developed jade industry in the Yangtze River Delta, suddenly disappeared around 4.0 ka BP. In the strata of the site from the same period, a natural silt layer without any cultural relics lies above the cultural layer. Above the silt layer is the Maqiao cultural layer, which was character-ized by the artifacts of the Yellow River during the Xia and Shang Dynasties. This stratification indicates that human civilization suffered serious catastrophic events at that time [
140]. Research on the deposited foraminifera, sporopollen, and sedimentol-ogy revealed that no foraminifera were found above the Liangzhu cultural layer of the Maqiao Site in Shanghai, although there was hydrophyte sporopollen. Thus, it was speculated that there was no transgression, but there had been cataclysmic land-flooding events. From the curves of sea level changes during the Holocene in East China and their comparison with the global curve (), it can also be observed that there was no high sea level and transgression from 5.0 to 4.0 ka BP in Eastern China, including the Yangtze Delta [
19,
141,
142,
143]. Another point worth noting is that, after 4.0 ka BP, as represented by the Maqiao Culture, the distribution area of each pre-historic culture contracted, a phenomenon that was simultaneously accompanied by two different modes of production (rice farming vs. hunting and gathering) and eco-nomic transitions [
43,
61,
62]. Wu et al. [
61,
62] also performed further analysis that re-vealed that climate change triggered modifications to production-lifestyles and eco-nomic forms, which induced prehistoric inhabitants to change their area of activity and even brought about the rise of a new cultural form. However, the cause of the location of the Liangzhu Culture and the origins of the Maqiao Culture have yet to be conclu-sively determined and are still being studied in depth [
144].