Wasp Venom Biochemical Components: History
Please note this is an old version of this entry, which may differ significantly from the current revision.
Contributor:

Wasps, members of the order Hymenoptera, are distributed in different parts of the world, including Brazil, Thailand, Japan, Korea, and Argentina. The lifestyles of the wasps are solitary and social. Social wasps use venom as a defensive measure to protect their colonies, whereas solitary wasps use their venom to capture prey. Chemically, wasp venom possesses a wide variety of enzymes, proteins, peptides, volatile compounds, and bioactive constituents, which include phospholipase A2, antigen 5, mastoparan, and decoralin. The bioactive constituents have anticancer, antimicrobial, and anti-inflammatory effects. However, the limited quantities of wasp venom and the scarcity of advanced strategies for the synthesis of wasp venom’s bioactive compounds remain a challenge facing the effective usage of wasp venom. Solid-phase peptide synthesis is currently used to prepare wasp venom peptides and their analogs such as mastoparan, anoplin, decoralin, polybia-CP, and polydim-I. 

  • wasp’s venom
  • biomedical properties
  • bioactive compounds
  • nanotechnology applications
  • allergy

1. Introduction

Vespid wasps (Family: Vespidae) are distributed worldwide and comprise more than 5000 species. Wasp venom has a wide variety of chemical constituents, which includes proteins, peptides (e.g., mastoparan, eumenitin, eumenitin-R, rumenitin-F, EpVP, decoralin, and anoplin), enzymes (hyaluronidase, α-glucosidase, phosphatase phospholipase A2, and phospholipase B), and small molecules [1,2,3]. The isolated compounds from wasp venom have shown several beneficial activities such as antimicrobial [4,5], anticancer [6], and anti-inflammatory effects [7]. However, their peptides have been presented in trace quantities. Solid phase peptides synthesis (SPPS) was attributed to the design and development of these molecules [8]. Successfully, several peptides and their analogues were synthesized via SPPS technology such as mastoparan [9], anoplin [10], decoralin [11], polybia-MP-I [12], polybia-CP [13,14], polydim-I [15], and agelaia-MP [16]. The synthetic peptides have antimicrobal, and anticancer properties [17,18].
The nests and venoms of wasps have been their role in the synthesis of nanoparticles of gold and silver tested. These nanoparticles were proven effective as antimicrobial and anticancer entities against a variety of microorganisms and cancer cells [19,20,21].
Despite preliminary medicinal outcomes, the interaction between wasp venom and human organs is still under debate. Wasp venom impacts the physiological aspects of the human body and could also lead to an allergic reaction [22].
Allergic reaction to wasp venom is a devastating problem due to the progressing immune responses of different systems. For instance, Vespa velutina venom administration lead to the failure of multi-organisms and even death among the Chinese population; and that was mostly due to toxins that are usually known to cause pain, inflammation, kidney and liver failure, cardiac arrhythmia, and sometimes neurotoxicity. Thus, many efforts are being invested into combating the allergic reactions and improving life quality using venom immunotherapy (VIT) [23]. VIT is the most effective method known so far for the avoidance of the systemic sting reactions even after discontinuation of the therapy [24].

2. Biological Properties of Wasp Venom, and Their Isolated and Synthesized Bioactive Peptides

2.1. Biological Properties

Studies have been conducted on venomous wasp structures, and their mode of action dating back to over 50 years ago. However, the therapeutic value of these toxins remains relatively unexplored. Further experiments are needed to fill the gap, and implementat quality control to elucidate wasp venom biological properties. As shown below, wasp venom exhibits biological properties, including antimicrobial, anticoagulant, genotoxic, and anti-inflammatory properties (Figure 1) [26,27,28,29].
Figure 1. Wasp venom as a source of bioactive compounds and its biological activities and application.

2.1.1. Antimicrobial Activities

Today, microbial infections are a significant human concern globally. The emergence of infectious diseases and the scarcity of vaccines pose a significant danger to human health; thus, there is an immediate need to develop new antimicrobial agents [30]. Vespa orientalis’s crude venom contains peptides and proteins. The venom has antimicrobial activity against Gram-positive and Gram-negative bacteria at very low concentrations relative to tetracycline (positive control). The inhibition zones were 10.2, 12.6, 22.4, and 22.7 mm for Klebsiella pneumonia, Staphylococcus aureus, Escherichia coli, and Bacillus subtilis, respectively, while MIC values were 128, 64, 64, and 8 μg/mL, respectively. The MIC50 and MIC90 values were 74.4 and 119.2 μg/mL for K. pneumonia, 63.6 and 107 μg/mL for S. aureus, 45.3 and 65.7 μg/mL for E. coli, and 4.3 and 7.0 μg/mL for B. subtilis, respectively [31]. Previous studies have determined that the venom from Parischnogaster, Liostenogaster, Eustenogaster, and Metischnogaster wasps inhibited the development of Gram-positive B. subtilis, Gram-negative E. coli, and Saccharomyces cerevisiae yeast [32]. The peptide mastoparan-c, derived from Vespa crabro venom, triggered antimicrobial action toward resistant strains of S. aureus (Gram-positive) bacteria [26].

2.1.2. Anti-Inflammatory Activities

Inflammation is an underlying cause of several destructive disorders such as arthritis, cancer, and asthma. Anti-inflammatory medications are currently used to suppress short- and long-term body responses, and thus, it is vital to recognize new molecules with similar properties [33]. Vespa tropica venom effectively reduced oxidative stress and stimulated microglia via lipopolysaccharides (LPS) release. Wasp venom treatment (5 and 10 μg/mL) greatly attenuated LPS induced activation of NF-kB phosphorylation [34]. Bracon hebetor venom (BHV) affected LPS-induced nitric oxide (NO) in RAW 264.7 cells and septic shock in mouse models. BHV strongly mediated LPS-induced inflammation without any cytotoxicity at a concentration of 0.1–0.4 μg/mL [35]. Moreover, Nasonia vitripennis venom contains at least 80 proteins, and it exerts anti-inflammatory impacts via down-regulation of the proinflammatory cytokine IL-1β [27].

2.1.3. Genotoxicity

Polybia paulista wasp venom concentrations below 0.01–10 μg/mL did not cause cytotoxicity and showed genotoxic and mutagenic potential in HepG2 cells. The genotoxic and mutagenic behavior of P. paulista venom could be explained by the action of phospholipase, mastoparan, and hyaluronidase, leading to cell membrane disruption and genetic material alterations or even DNA mutations [29].

2.1.4. Anticoagulant

The venom of Polybia occidentalis, a social wasp, has anticoagulant, and fibrinogen-degrading pharmacological properties. Anticoagulation occurs at different stages of the clotting process (intrinsic, extrinsic, and specific pathway). Venom can inhibit platelet aggregation and destroy plasma fibrinogens [28].

2.2. Isolated and Synthesized Bioactive Peptides from Wasp Venoms

Wasp venoms are cocktails of peptides, proteins, and small organic molecules like volatiles compounds (Figure 1 and Figure 2), where peptides are the most abundant compounds, as mentioned in Table 1 [36,37]. The minute quantity of extracted venom stands as a hindrance to the analysis and understanding of the pharmacological, biological, and ecological aspects of the venom constituents. Here, we discuss the isolated peptides from wasp venom and their chemical design via SPPS [8].
Figure 2. Some of the volatile compounds identified from wasp venom.
Table 1. Isolated constitutes from Wasp-Venom and their biological activity.

2.2.1. Mastoparans

The mastoparans are comprised of a class of peptides isolated from Vespula lewisii [38], V. crabro [26], Vespula vulgaris [4], and Polistes jadwigae [39]. Mastoparans are characterized by their antitumor activity against melanoma cells (B16F10-Nex2) [38].

Mastoparan (MP)

Mastoparan (MP), a major component of P. jadwigae wasp venom, is a basic amphiphilic α-helical peptide that consists of 14 amino acid residues, hydrophobic and essential amino acids, and an amino acid C-terminus, as shown in Table 1 [39]. These characters are specific for the cationic amphiphilic peptide (CAP) class and favour the α-helix conformation while in contact with bilayer phospholipids [40]. MP has several biological effects and has shown antimicrobial properties [41], increased histamine release from mast cells [42], and cytotoxicity effect on tumor cells [18]. MP-induced mitochondrial permeability and powerful transition of mitochondrial permeability (PT) in a range of 25 μM in a homogeneous K562 cell are reported [43]. Moreover, MP exerts anticancer activities toward leukemia, myeloma, and breast cancer cells. In a mouse model of mammary carcinoma, MP and gemcitabine (drug) worked synergistically [18]. MP was active on a dose-dependent basis with doses ranging from 77.9 to 432.5 μM against human cancer cells (A2058 (melanoma), SiHa (cervical carcinoma), Jurkat (T cell leukemia), MCF-7, MDA-MB-231, and SK-BR-3 (breast cancer). The IC50 of B16F10 murine melanoma was 165 μM. MP-induced apoptosis involves activation of caspase −9, −12, and −3, PARP cleavage, upregulation of pro-apoptotic Bax, and Bim, down-regulation of anti-apoptotic Bcl-XL; furthermore, cell apoptosis induced mitochondrial membrane disruption [38].
MP inhibited bradykinin-induced phosphoinositide hydrolysis within 5 min of administration at a concentration of 30 μM and induced the release of prostaglandin E2 (PGE 2) in rabbit astrocytes within 10 min [44].
The synthetic peptide derived from MP is called mastoparan ([I5, R8] MP) and has a wide range of antimicrobial activities against bacteria and fungi at MIC values of 3–25 µM with no hemolytic or cytotoxic properties to the human embryonic kidney cell line (HEK-293 cells). The synthesis does not appear to change the α-helical conformation but enhances the biological activity [45]. Ten MP derivatives have been synthesized via SPPS strategies and evolved against Acinetobacter baumannii. MP analogs (H-INIKALAALAKKII-NH2, H-INLKALAALAKKIL-CH2CH2NH2, and Gu-INLKALAALAKKIL-NH2) demonstrated the same behavior against A. baumannii as the original peptide (2.7 µM) and retained its consistency in the presence of human serum for more than 24 h [9]. Three MP analogs, MK4589 (INWKKIAKKVAGML-NH2), MK45789 (INWKKIKKKVAGM), and MK4578911 (INWKKIKKKVKGML-NH2), were synthesized, and exhibited strong antibacterial properties against Gram-negative bacteria compared to the reference antibiotic, chloramphenicol [46]. Mastoparan-V1 (MP-V1), a de novo type of V. vulgaris venom mastoparan, has higher anti-Salmonella activity than other mastoparans [4]. MP analog peptides showed activity against Candida albicans, with low cytotoxicity and non-teratogenicity using cell cultures and zebrafish models [47]. Synthetic MP-V1 has antimicrobial properties at MICsvalues of 106.95, 56.86, and 123 µg/mL against Salmonella Gallinarum, S. typhimurium, and S. enteritidis, respectively [48].

Mastoparan-B (MP-B)

Mastoparan-B (MP-B), the mastoparan homolog of Vespa basalis venom, has a less hydrophobic amino acid sequence with four lysines (LKLKSIVSWAKKVL-NH2) [49] and is approved as a cardiovascular depressor [50] and antibacterial agent [51]. MP-B shows powerful hemolytic activity secondary to the stimulation of histamine release from rat peritoneal mast cells [49]. A synthetic MP-B analog (LDLKSIVSWAKKVL-NH2), in which lysine was replaced by asparagine at position 2, showed a remarkable decline of cardiovascular depressors; in contrast, the analog with leucine replacing lysine at position 4, 11, or 12 (LKLLSIVSWALLVL-NH2) did not display the same effect [50].

Mastoparan-M

Mastoparan-M is an amphipathic tetradecapeptide toxin and a vespid venom mastoparan counterpart isolated from the Vespa mandarinia hornet in Japan. Mastoparan-M has the (INLKAIAALAKKLL) sequence. At a minimum concentration (MIC) of 0.5 nmol/mL, the peptide degranulated rat peritoneal mast cells [52]. Mast cell degranulation induced the release of inflammatory mediators, such as TNF-α, IL-1β, and nitrite, from cultured mouse spleen macrophages [53].
SPPS was used to synthesize D-mastoparan M (INLKAIALAKKLL) and L-mastoparan M (INLKAIAALAKKLL). D-mastoparan M showed MIC of 6.25 mg/L against E. coli and Pseudomonas aeruginosa and 3.12 mg/L against S. aureus. The antibacterial impact of D-mastoparan was twice as effective as L-mastoparan M. After the supplementation of D-mastoparan M, bacterial lysis was observed at 1 h and was completed after 4 h [54].

2.2.2. Anoplin

Anoplin (ANP) is the smallest antimicrobial, naturally occurring peptide isolated from the solitary spider wasp Anoplius samariensis (Hymenoptera: Pompillidae) and contains ten amino acids (Table 1), making it an ideal research template [55]. The peptide causes mast cell degranulation and has antimicrobial activity [55]. The presence of four-polar residues makes ANP water-soluble. Its interaction with amphipathic environments, such as trifluoroacetic acid (TFE)/water mixtures, or with anisotropic media, such as sodium dodecyl sulfate (SDS) micelles or anionic vesicles, induces α-helical conformations and amphiphilic properties as indicated by the circular dichroism (CD) spectra [55]. ANP inhibited the proliferation of murine erythroleukemia (MEL) cells in a time- and dose-dependent manner. The IC50 values were 161.49, 121.03, and 114.88 μM at 24, 48, and 72 h, respectively. Disrupting the cell membrane integrity was the primary mechanism behind anoplin’s cytotoxicity [56].
Synthetic ANP peptides have a broad spectrum of antimicrobial activity against Gram-positive and Gram-negative bacteria. ANP antimicrobial activity is susceptible to salt. Gram-negative bacteria were entirely immune to ANP in high-salt media (150 mM NaCl); however, Gram-positive bacteria’s efficacy was greatly diminished [55]. Equally interesting, it stimulates rat peritoneal mast cell degranulation, and ANP’s hemolytic activity was relatively low or virtually inactive on human erythrocytes [55].
ANP’s activity is highly sensitive to minor changes of the primary structure, such as single amino acid mutations in certain positions. For example, 37 anoplin analogs have been synthesized by replacing single and multiple residues leading to a change in amphipathicity and charge. Accordingly, the effects against S. aureus and E. coli varied considerably depending on the hydrophobicity and position of the various replaced amines. Residue replacement at positions 5, and 8 with phenylalanine or tryptophan caused by an increase in antibacterial, and hemolytic activity owed to the role of these aromatic residues in the membrane anchoring. Lysine placement in position 8 improved peptide selectivity for prokaryotic cells due to the higher charge [57], whereas C-and N-terminal truncation and C-terminus deamidation drastically decreased peptide antibacterial properties [58]. Antimicrobial activities were measured against E. coli and B. subtilis for all three derivatives of ANP (ANP-NH2, D-ANP-NH2, and ANP-OH). Both amidated ANP derivatives display 50 μg/mL, MIC values for B. subtilis, and 100 μg/mL for E. coli. Alternatively, the deamidated form showed significantly lower bactericidal activity with MIC values of 200 μg/mL. The LD50 values for both amidated ANP forms were identical and approximately 10- to 30-fold lower than those of ANP-OH. ANP loses its biological activity after deamidation. Both amidated and carboxylated forms have secondary structures similar to those of the lytic ANP [59]. The natural cationic ANP was modified by substituting residues Gly1 for Lys or Arg, Arg5 for Phe, and Thr8 for Lys. The antimicrobial properties change dramatically, and high activity against Gram-negative bacterium Zymomonas mobilis at MIC 7 μg/mL was observed, compared to native peptide MIC 200 μg/mL; additionally, it was non-toxic to erythrocytes and resistant to proteolysis [10]. Interestingly, the antimicrobial activities of ANP and analogs ANP-2 (WLLKRWKLL-NH2), and ANP-4 (KLLKWKKLL-NH2) were significantly higher than ANP-1 (WLLKRWKKLL-NH2) and ANP-3 (KLLKWWKKLL-NH2). The highest antimicrobial activity against B. subtili was shown by ANP-2 and ANP-4 (MIC value: 4 μM) compared to the parent peptide (MIC value: 32 µM). ANP-4 treatment significantly reduced the mortality rate of mice infected with E. coli compared to ANP. ANP-4 is a novel analog of ANP with high antimicrobial activity and enzyme stability that represent it as a successful agent for infections treatment [60].

2.2.3. Decoralin

Decoralin (Dec-NH2) is a peptide derived from the solitary Eumenine wasp (Oreumenes decoratus) [61] and was synthesized by solid-phase synthesis [62]. Equally important, a natural antimicrobial peptide, Dec-NH2, was isolated from wasp venom, and its synthetic derivatives were manufactured using peptide design. Dec-NH2 exhibits potent activity toward cancer cells at doses of 12.5 μmol/L and specific inhibition of MCF-7 breast cancer cells [62]. In a biological assessment, synthetic Dec-NH2 demonstrated strong broad-spectrum antimicrobial activity, slight mast cell degranulation, and leishmanicidal activity. The peptide displayed low hemolytic function against mouse erythrocytes, EC50 lower 300 µM [61]. A synthetic Dec-NH2 analog with C-terminal amidation demonstrated much more efficient activity against Gram-positive and Gram-negative bacteria and yeast. When isoleucine was substituted by phenylalanine residue at position 6, the peptide increased its resistance to degradation in bovine fetal serum. Besides that, lower hemolytic activity was obtained for [Pro]4-decoralin-NH2 and [Phe]6-Des[Thr]11-decoralin-NH2. The antimicrobial effect was increased in the case of [Phe]9-[Phe]10-Dec-NH2 (MIC = 0.39 vs. native peptide of 0.78 µmol/L) against Micrococcus luteus A 270 [63]. Torres et al. synthesized two leucine-substituted Dec-NH2 analogs; [Leu]8-Dec-NH2, and [Leu]10-Dec-NH2 using SPPS. [Leu]10-Dec-NH2 analog showed similar activity against E. coli, and P. aeruginosa (MIC 1.6 μmol/L), and higher activities against M. luteus and C. albicans. The same helical structure of the [Leu]8-Dec-NH2 analog exhibited evidential low activities against M. luteus, E. coli, Salmonella arizonae, B. subtilis, P. aeruginosa, and C. albicans [11]. The natural sequence of amidated Dec-NH2 and eight synthesized analogs, along with their biological activity toward Plasmodium, were reviewed. The Dec-NH2 template compound did not display antiplasmodial properties; on the other hand, it’s designed analogs showed significant antiplasmodial activity (>95%). The highest antiplasmodial behavior was achieved by mutations made to the N-terminus of Dec [64].

2.2.4. Polybia-MP-I

Polybia-MP-I is one of the 14 amino acid residues (Table 1) of mastoparan peptides [65]. The peptide was derived from the venom of the social wasp P. paulista. It causes moderate mast cell degranulation, demonstrates chemotactic action for polymorphonuclear leukocytes, exhibits active antimicrobial activity, and is non-hemolytic to rat erythrocytes [66]. Polybia-MP-I is cytotoxic to leukemic T lymphocytes and strongly selective to these individual cells [67]. Polybia-MP-I has demonstrated antitumor action against bladder and prostate cancer [12]; however, this antitumor activity drastically decreased with the synthesized analogs (replacement of the amino acids at position 7, 8, or 9 with Pro residue). These substitutions influence the original helical structure and electrostatic equilibrium and increase the degree of peptide hydrophilic behavior (Pro7 and Pro9). Polybia-MP-I exerts pore formation and thus alters the intact cellular structure leading to a cytotoxic and antiproliferative outcome. It can selectively inhibit the proliferation of prostate cancer cell lines (PC-3), human bladder cancer cell lines (Biu87 and EJ), and human umbilical vein endothelial cell lines (HUVEC) at IC50 of 20.8, 25.32, and 36.97 μM, respectively [12].
The peptides polybia-MP-I (IDWKKLLDAAKQIL-NH2) and Asn-2-polybia-MP-I (INWKKLLDAAKQIL-NH2) were manually synthesized in the solid phase. Polybia-MP-I and N-2-polybia-MP-I exhibited a significant reduction in the pain threshold at 30, and 50 μg/50 μL as detected at 2, and 8 h after peptide injection into the hind paw of mice [68,69]. The polybia-MP-I analogs (proline replacement) showed reduced antibacterial activity compared to the parent. MIC values of polybia-MP-I were 4, 16, 16, and 32 μM for B. subtilis, E. coli, S. epidermidis, and S. aureus, respectively. The MIC value was 8 µM for C. glabrata versus 16 µM against C. albicans. The fungicidal activity of polybia-MP-I versus both Candida glabrata and C. albicans was measured as an minimum fungicidal concentration (MFC) of 32 μM [70,71].

2.2.5. Polybia-CP

Polybia-CP has been isolated from P. paulista, and gradually synthesized by SPPS, and its effects on bacteria have been recorded [14]. Polybia-CP’s MICs for E. coli, P. aeruginosa, S. aureus, S. epidemic, and B. subtilis were 16, 128, 4, 16, and 4 μM, respectively, while the MBCs were 8, 16, 128, and 16 μM, for B. subtilis, S. aureus, and E. coli, respectively. The peptide was stable at different temperature ranges of 20–100 °C, and the temperature changes did not affect the MIC values [72]. Polybia-CP showed antimicrobial activities with MIC values of 4–64 μM in eight fungal strains, where the highest activity was noted against C. tropicalis at a MIC of 4 μM [13].
Synthetic Polybia-CP has potent antitumor activity against Biu87 and PC-3 cell lines. Cell proliferation inhibition was observed at IC50 of 17.84 and 11.01 μM, respectively. The cytotoxicity of polybia-CP was explained by the disruption of cell membrane integrity [14].

2.2.6. Polydim-I

Polydim-I is a peptide derived from the venom of a neotropical wasp (Polybia dimorpha). The peptide contains 22 amino acid residues and is known for its amphipathic properties due to the presence of hydrophobic amino acid residues (e.g., methionine, leucine, valine, and proline) [15].
Polydim-I was synthesized with high quality (>99%), and the relevant peptide sequence was tested and validated by MS analysis. The synthetic peptide is active against Mycobacterium abscessus subsp. massiliense infections as described in in vitro and in vivo studies. In vitro study, the inhibition was 55 to 68% of M. abscessus subsp massiliense strains growth at a concentration of 15.2 μg/mL in which the cell shape was expressively damaged. The peptide prevents bacterial growth through the inhibition of protein synthesis, did not result in visible morphological changes. Polydim-I treatment at 2 mg/kg/mLW showed significant reduction of the bacterial load in in the lungs, spleen, and liver [15], and the antimicrobial properties against S. aureus, E. coli, Enterococcus faecalis, Acinetobacter calcoaceticus-baumannii were displayed with MIC50 values of 4.1, 50.7, 73.2, and 84.0 μg/mL, respectively [73].

2.2.7. Protonectarina-MP and Agelaia-MP

Protonectarina-MP was isolated from Protonectarina syleirae venom and is a member of the 14 amino residue class of mastoparans [74]. The peptide protonectarina-MP-NH2 (INWKALLDAAKKVL-NH2) and its analogue protonectarina-MP-OH (INWKALLDAAKKVL-OH) were produced by step-by-step manual SPPS. Protonectarin-MP-NH2 is a powerful mast cell degranulating peptide with slightly higher degranulating activity (ED50 = 8 ×10−5 M) than the standard peptide (ED50 = 20 × 10−5 M). Protonectarina-MP-OH, and even at high concentrations, has reduced degranulation activity. Protonectarina-MP-NH2 has effective antimicrobial activity against both Gram-positive and Gram-negative bacteria, while protonectarina-MP-OH has much poorer antimicrobial activity [17].
Agelaia-MP is a mastoparan peptide that contains 14 residues (INWLKLGKAIIDAL-NH2) and is isolated from the venom of the social wasp Agelaia pallipes. It was characterized by its poor antimicrobial action and the lack of chemotaxis toward mast cells [74]. Using the Fmoc strategy, agelaia-MP has been chemically and manually synthesized. At a concentration of 10 μM, the peptide enhances the insulin secretion from the mice pancreatic islets using different glucose doses (2.8, 11.1, and 22.2 mM). In mouse models, agelaia-MP-I has a dose-dependent anti-nociceptive effect. For example, nociception significantly declined when the highest dosage (6.4 nmol) was administered, while the maximal effect was observed 4 h after the peptide injection [16].
Protonectin is derived from the venom of the neotropical social wasp (Agelaia pallipes), with a sequence of ILGTILGLLKGL-NH2. The peptide exhibits poor hemolysis to rat erythrocytes [74]. Protonectin has some mast cell degranulating activity and potent antimicrobial action with E. coli, P. aeruginosa, B. subtilis, and S. aureus at MICs of 25, 1.7, 3.1, and 12.5 µg/mL, respectively [74].
Protonectin and its three analogues were synthesized through a stepwise solid-phase assay by replacing L-proline. Proline is a unique amino acid among the 20 protein-forming amino acids because its amine nitrogen is linked to two groups of alkyls, making it a secondary amine. The insertion of proline inside the peptide considerably changes the secondary structure. Protonectin has demonstrated potent antibacterial action toward multidrug-resistant S. aureus, and E. coli at MICs of 8, and 32 μM, respectively. MBC values were 8, 8, 16, and 64 µM for B. subtilis, S. epidermidis, S. aureus, and E. coli, respectively, indicating potent bactericidal effect [75].

2.2.8. Philanthotoxin-433 (PhTX-433)

Philanthotoxin-433 (PhTX-433) is a polyamine-based toxin isolated from Egyptian digger wasp (Philanthus triangulum) venom. The venom induces prey paralysis by suppressing nicotinic acetylcholine receptors (nAChRs) and ionotropic glutamate receptors (iGluRs). PhTX-433 is an important lead compound in neuropharmacology [76,77]. The action of 17 analogs of PhTX-343 against ganglionic (α3β4) and brain (α4β2) nAChRs has been expressed in Xenopus oocytes. IC50 values for PhTX-343 inhibition of α3β4 and α4β2 receptors were 7.7 and 80 nM, respectively [78]. Their total synthesis achieved good yield (77%) and purity (80%) using a mild borane reduction protocol of polyamide precursors to access the polyamine chains. The synthesis of PhTX-433 isomers proved this strategy’s potential for the generation of branched analogs [76].
 

This entry is adapted from the peer-reviewed paper 10.3390/toxins13030206

This entry is offline, you can click here to edit this entry!
Video Production Service