Evidence theory, adept at handling uncertain information, finds application in multi-sensor information fusion problems [
]. By establishing a recognition framework based on the D-S evidence theory, the researchers formulated a fusion decision model for water inrush. This model integrated indices like aquifer permeability, geological structure, aquitard properties, hydraulic pressure, and mining pressure as pieces of evidence, achieving effective and feasible results for predicting water inrush.
The combination of neural networks and computer algorithms is a hot topic of current research, in which neural networks are widely used to discriminate water sources for mine water bursts. Standard artificial neural network models include BP, RBF, ELM, and Elman neural networks [
94]. These models learn the features of sample data and build mathematical models to achieve the classification and discrimination of water sources [
82]. Deep learning algorithms are the development of artificial neural networks and play an essential role in classifying and discriminating mixed water samples from multiple sources. Standard deep learning algorithms include the deep neural network DNN and convolutional neural network CNN network analysis methods [
97]. Ant colony and genetic algorithms are mainly used for function and combinatorial optimization of discriminative models [
91]. The ant colony algorithm imitates the behavior of ants in searching for food and optimizes the answer to the problem by simulating the information exchange and cooperation of ants in searching for food. Genetic algorithms are computational methods that simulate natural selection and genetic mechanisms and continuously optimize the answers to solving problems by selecting, crossing, and mutating the best individuals in the colony [
85,
91]. In the context of identifying water sources in mines, particle swarm optimization is another algorithm that has gained attention due to its ability to solve complex optimization problems [
69]. In particle swarm optimization, a group of particles (potential solutions) move through the search space and update their positions based on their own previous best solution and the best solution of their neighbors. The Sparrow Search Algorithm (SSA) is a novel swarm intelligence algorithm that can be used to solve optimization problems [
69]. The algorithm is inspired by the swarm behavior of finches, in which each sparrow cooperates to find food through simple communication and adaptation. SSA analyzes the behavior of finches, represents the problem as a fitness function, and then applies multiple sparrows to represent different solutions to the problem to find a better solution continuously.
5. Conclusions
In conclusion, the identification of water sources in mine water inrushes requires the use of various methods, including water level and temperature analysis, hydrochemistry, geostatistical methods discrimination, machine learning and deep learning discrimination, and other analytical methods. Selecting the appropriate method depends on the specific hydrogeological conditions at the water inrush point and requires the establishment of a comprehensive water sample database to ensure accurate identification.
With the shift towards deep mining in many mines, the hydrogeological conditions become more complex, and groundwater mixing becomes more prevalent. The advancement of computer science and mathematical algorithms has enabled the development of interdisciplinary discrimination analysis methods for rapid identification of multiple water sources at water inrush points. Artificial neural networks and deep learning algorithms, which are part of the field of artificial intelligence and machine learning, have emerged as hotspots and offer new approaches for multi-source water inrush discrimination.
Furthermore, the combination of microbiological technology or fiber optic technology with water inrush source identification methods, as well as full-spectrum ion identification technology and fluorescence spectroscopy identification technology for dissolved organic matter, are trends that researchers will likely explore in future studies. These advancements will contribute to improving the accuracy and efficiency of water source identification in mine water inrushes.
Undoubtedly, the fusion of artificial intelligence (AI), heightened computational prowess, internet-based programming, and intelligent data acquisition mechanisms presents a profound opportunity to reconfigure the landscape of inrush water identification and preemptive measures. This confluence of technological marvels possesses the potential to substantially elevate the precision, velocity, and efficacy in addressing potential inrush water occurrences across diverse sectors including mining, construction, and infrastructure oversight. The amalgamation of AI, amplified computational prowess, online programming, and astute data acquisition mechanisms bears the capacity to metamorphose the approach taken by industries toward inrush water events. Through the adept utilization of these technological enablers, industries can ascend to a heightened state of preparedness, curtail the reverberations of such incidents, and thereby amplify overall safety and operational dexterity.