You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Bioactive Compounds Found in Araticum Fruit Parts: Comparison
Please note this is a comparison between Version 2 by Camila Xu and Version 1 by Henrique Silvano Arruda.

Araticum (Annona crassiflora Mart.) is a native and endemic species to Brazilian Cerrado whose fruits have high sensorial, nutritional, bioactive, and economic potential. Its use in local folk medicine, associated with recent scientific findings, has attracted growing interest from different industrial sectors. Therefore, understanding the scientific advances achieved so far and identifying gaps to be filled is essential to direct future studies and transform accumulated knowledge into innovative technologies and products. HThis ere, we ntry summarizes the phytochemical composition of araticum fruit that has been reported in the scientific literature over the past 10 years. The compiled data showed that araticum fruit parts contain many  bioactive compounds, particularly phenolic compounds, alkaloids, annonaceous acetogenins, carotenoids, phytosterols, and tocols. These phytochemicals contribute to different biological activities verified in araticum fruit extracts/fractions, including antioxidant, anti-inflammatory, anti-Alzheimer, anticancer, antidiabetic, anti-obesity, antidyslipidemic, antinociceptive, hepatoprotective, healing of the cutaneous wound, antibacterial, and insecticide effects. Therefore, bioactive compounds found in the araticum fruit can be a new potential tool in treating and preventing different diseases, promoting health and well-being to consumers.

  • marolo
  • Cerrado fruit
  • phenolic compounds
  • alkaloids
  • annonaceous acetogenins
  • carotenoids
  • phytosterols
  • tocols
  • Annona crassiflora Mart.
  • phytochemical composition

1. Introduction

Araticum (Annona crassiflora Mart.), also popularly known as marolo, articum, ariticum, araticum-do-cerrado, bruto, cabeca-de-negro, cascudo, panã, pinha-do-cerrado, and pasmada, is a fruitful tree, native and endemic to Brazilian Cerrado, belonging to the Annonaceae family [1]. This species is widely distributed along the Cerrado biome areas, covering the states of Minas Gerais, São Paulo, Goiás, Bahia, Mato Grosso, Mato Grosso do Sul, Tocantins, Maranhão, Piauí, Pará, and Federal District [2]. Obtaining the fruits for commercial purposes has been done in an extractive manner from native populations, in areas of the Brazilian Cerrado, due to the absence of commercial plantations. Therefore, araticum plants present high genetic diversity since they come from seeds that have not yet undergone genetic improvements, thus resulting in highly different individuals [3]. Moreover, several factors can affect the genetic diversity of this species, including climatic conditions (e.g., temperature), geographical location, and landscape where the matrix is located (e.g., percentage of forestry cover, water, and urban areas) [4][5].
Araticum is a medium-sized tree, reaching 4 to 8 m in height and about 4 m in crown diameter (Figure 1A). The fruit has a subglobose shape, with a green epicarp when unripe and one that is greenish-brown when ripe (Figure 1B,C). The pulp is arranged on a fleshy and tapered receptacle, and it has a color ranging from white to yellowish-pink, a characteristic strong and slightly sweet flavor, and a pleasant smell (Figure 1D). In addition, the pulp is composed of cone-shaped buds (90–190 carpels) that contain a single seed (Figure 1E). The seeds have a flattened obovoid shape and bone consistency with a smooth, opaque, and light brown surface (Figure 1F) [6].
Figure 1. Araticum (Annona crassiflora Mart.) (A) tree, (B) unripe fruit, (C) ripe fruit, (D) fruit cross-section, (E) carpels, and (F) seeds. Pictures taken by Henrique Silvano Arruda in natural areas of the Cerrado biome located in the city of Carmo do Paranaíba, Minas Gerais, Brazil (altitude of 1061 meters above sea level at a latitude of 19°00′03″ S and longitude of 46°18′58″ W).
Araticum fruit parts have been used for centuries by folk medicine to treat different pathological conditions. The fruit is used by local and traditional medicine as a tonic and astringent, as well as for treating pain and rheumatism [7][8], whereas seed preparations are reported as antidiarrheic, antitumor, and insecticide agents; inductors of menstruation properties; useful for the treatment of Chagas’ disease; useful against snakebites, skin, and scalp infections [6]. In addition to being used in folk medicine, araticum fruit is highly appreciated by inhabitants of the Cerrado region. This fruit is among the 20 most used species in the regional foodstuffs, being consumed both in natura and in processed form (e.g., juices, jams, ice creams, popsicles, among others), contributing significantly to the intake of essential macro and micronutrients [9].
Recent studies have shown that both the edible fruit part (pulp) and its byproducts (peel and seeds) contain several bioactive compounds that exert important biological activities [6]. However, this information is sometimes too dispersed and out-of-date in the specialized literature, making it difficult to know which main classes of bioactive compounds identified in this fruit so far.  Here, weresearchers compile the most recent scientific data found in the literature on the phytochemical composition of araticum fruit parts. 

2. Bioactive Compounds Found in Araticum Fruit Parts

Bioactive compounds are naturally occurring chemical substances found in plants, animals, and microorganisms that have specific biological activities and can exert a wide spectrum of beneficial effects on human health, including antioxidant, anti-inflammatory, antimicrobial, anti-aging, and anticarcinogenic effects. They are classified into diverse classes according to chemical structure, namely phenolic compounds, alkaloids, carotenoids, tocols, phytosterols, organosulfur compounds, polysaccharides, amino acids, and peptides, among others [10][11]. As shown in Table 1, bioactive compounds such as phenolic compounds, alkaloids, annonaceous acetogenins, carotenoids, phytosterols, and tocols were observed in the pulp, peel, and seed of araticum fruit, and they will be discussed in more detail throughout this section.
Table 1.
A summary of studies showing the bioactive compounds found in araticum fruit.

References

  1. Arruda, H.S.; Fernandes, R.V.d.B.; Botrel, D.A.; de Almeida, M.E.F. Cerrado fruits: Knowledge and acceptance of Annona crassiflora Mart. (Araticum) and Eugenia dysenterica Mart. (Cagaita) for children using the senses of taste and vision. J. Health Biol. Sci. 2015, 3, 224–230.
  2. Cota, L.G.; Vieira, F.A.; Melo Júnior, A.F.; Brandão, M.M.; Santana, K.N.O.; Guedes, M.L.; Oliveira, D.A. Genetic diversity of Annona crassiflora (Annonaceae) in northern Minas Gerais State. Genet. Mol. Res. 2011, 10, 2172–2180.
  3. Da Silva, E.C.; Villa, F.; Da Silva, D.F.; Possenti, J.C.; Da Silva, L.S.; Ritter, G. Araticum accessions: Effect of gibberellic acid concentrations and soaking times on seed dormancy overcoming. Rev. Caatinga 2021, 34, 614–620.
  4. Palermo, A.C.; de Souza, A.M. Morphometric analysis of fruits and seeds of Annona crassiflora Mart. (Annonaceae) from central Brazil. Rev. Árvore 2019, 43, e430304.
  5. Vitorino, L.C.; Reis, M.N.O.; Bessa, L.A.; de Souza, U.J.B.; Silva, F.G. Landscape and Climate Influence the Patterns of Genetic Diversity and Inbreeding in Cerrado Plant Species. Diversity 2020, 12, 421.
  6. Arruda, H.S.; Pastore, G.M. Araticum (Annona crassiflora Mart.) as a source of nutrients and bioactive compounds for food and non-food purposes: A comprehensive review. Food Res. Int. 2019, 123, 450–480.
  7. Vilar, J.; Ferri, P.; Chen-Chen, L. Genotoxicity investigation of araticum (Annona crassiflora Mart., 1841, Annonaceae) using SOS-Inductest and Ames test. Braz. J. Biol. 2011, 71, 197–202.
  8. Cavéchia, L.A.; Proença, C.E.B. Resgate cultural de usos de plantas nativas do cerrado pela população tradicional da região do atual Distrito Federal. Heringeriana 2015, 1, 11–24.
  9. Arruda, H.S.; de Almeida, M.E.F. Frutos do Cerrado: Panorama, Resgate Cultural e Aproveitamento Culinário; Novas Edições Acadêmicas: Saarbrücken, Germany, 2015; ISBN 978-3-639-83794-0.
  10. Erzinger, G.S.; Lopes, P.C.; del Ciampo, L.F.; Zimath, S.C.; Vicente, D.; Martins de Albuquerque, F.; Prates, R.C. Bioactive compounds of hops resulting from the discarding of the beer industry in the control of pathogenic bacteria. In Natural Bioactive Compounds; Sinha, R.P., Häder, D.-P., Eds.; Academic Press: London, UK, 2021; pp. 41–55. ISBN 9780128206553.
  11. Walia, A.; Gupta, A.K.; Sharma, V. Role of Bioactive Compounds in Human Health. Acta Sci. Med. Sci. 2019, 3, 25–33.
  12. Stafussa, A.P.; Maciel, G.M.; Bortolini, D.G.; Maroldi, W.V.; Ribeiro, V.R.; Fachi, M.M.; Pontarolo, R.; Bach, F.; Pedro, A.C.; Haminiuk, C.W.I. Bioactivity and bioaccessibility of phenolic compounds from Brazilian fruit purees. Futur. Foods 2021, 4, 100066.
  13. Carvalho, N.C.C.; Monteiro, O.S.; da Rocha, C.Q.; Longato, G.B.; Smith, R.E.; da Silva, J.K.R.; Maia, J.G.S. Phytochemical Analysis of the Fruit Pulp Extracts from Annona crassiflora Mart. and Evaluation of Their Antioxidant and Antiproliferative Activities. Foods 2022, 11, 2079.
  14. Guimarães, A.C.G.; de Souza Gomes, M.; Zacaroni Lima, L.M.; Sales, P.F.; da Cunha, M.C.; Rodrigues, L.J.; de Barros, H.E.A.; Pires, C.R.F.; dos Santos, V.F.; Lima Natarelli, C.V.; et al. Application of Chemometric Techniques In The Evaluation of Bioactive Compounds and Antioxidant Activity of Fruit From Brazilian Cerrado. J. Food Meas. Charact. 2022, 1–12.
  15. Arruda, H.S.; Silva, E.K.; Pereira, G.A.; Angolini, C.F.F.; Eberlin, M.N.; Meireles, M.A.A.; Pastore, G.M. Effects of high-intensity ultrasound process parameters on the phenolic compounds recovery from araticum peel. Ultrason. Sonochem. 2019, 50, 82–95.
  16. Justino, A.B.; Pereira, M.N.; Vilela, D.D.; Peixoto, L.G.; Martins, M.M.; Teixeira, R.R.; Miranda, N.C.; da Silva, N.M.; de Sousa, R.M.F.; de Oliveira, A.; et al. Peel of araticum fruit (Annona crassiflora Mart.) as a source of antioxidant compounds with α-amylase, α-glucosidase and glycation inhibitory activities. Bioorg. Chem. 2016, 69, 167–182.
  17. Justino, A.B.; Franco, R.R.; Silva, H.C.G.; Saraiva, A.L.; Sousa, R.M.F.; Espindola, F.S. B procyanidins of Annona crassiflora fruit peel inhibited glycation, lipid peroxidation and protein-bound carbonyls, with protective effects on glycated catalase. Sci. Rep. 2019, 9, 19183.
  18. Ramos, L.P.A.; Justino, A.B.; Tavernelli, N.; Saraiva, A.L.; Franco, R.R.; de Souza, A.V.; Silva, H.C.G.; de Moura, F.B.R.; Botelho, F.V.; Espindola, F.S. Antioxidant compounds from Annona crassiflora fruit peel reduce lipid levels and oxidative damage and maintain the glutathione defense in hepatic tissue of Triton WR-1339-induced hyperlipidemic mice. Biomed. Pharmacother. 2021, 142, 112049.
  19. Menezes, E.G.T.; Oliveira, É.R.; Carvalho, G.R.; Guimarães, I.C.; Queiroz, F. Assessment of chemical, nutritional and bioactive properties of Annona crassiflora and Annona muricata wastes. Food Sci. Technol. 2019, 39, 662–672.
  20. Formagio, A.S.N.; Vieira, M.C.; Volobuff, C.R.F.; Silva, M.S.; Matos, A.I.; Cardoso, C.A.L.; Foglio, M.A.; Carvalho, J.E. In vitro biological screening of the anticholinesterase and antiproliferative activities of medicinal plants belonging to Annonaceae. Braz. J. Med. Biol. Res. 2015, 48, 308–315.
  21. Ramos, A.L.C.C.; Silva, M.R.; Mendonça, H.d.O.P.; Mazzinghy, A.C.d.C.; Silva, V.D.M.; Botelho, B.G.; Augusti, R.; Ferreira, R.M.d.S.B.; Sousa, I.M.N.d.; Batista-Santos, P.; et al. Use of pulp, peel, and seed of Annona crassiflora Mart. in elaborating extracts for fingerprint analysis using paper spray mass spectrometry. Food Res. Int. 2022, 160, 111687.
  22. Prado, L.G.; Arruda, H.S.; Peixoto Araujo, N.M.; de Oliveira Braga, L.E.; Banzato, T.P.; Pereira, G.A.; Figueiredo, M.C.; Ruiz, A.L.T.G.; Eberlin, M.N.; de Carvalho, J.E.; et al. Antioxidant, antiproliferative and healing properties of araticum (Annona crassiflora Mart.) peel and seed. Food Res. Int. 2020, 133, 109168.
  23. Ramos, A.L.C.C.; Minighin, E.C.; Soares, I.I.C.; Ferreira, R.M.d.S.B.; Sousa, I.M.N.d.; Augusti, R.; Labanca, R.A.; Araújo, R.L.B.d.; Melo, J.O.F. Evaluation of the total phenolic content, antioxidative capacity, and chemical fingerprint of Annona crassiflora Mart. bioaccessible molecules. Food Res. Int. 2023, 165, 112514.
  24. Arruda, H.S.; Pereira, G.A.; de Morais, D.R.; Eberlin, M.N.; Pastore, G.M. Determination of free, esterified, glycosylated and insoluble-bound phenolics composition in the edible part of araticum fruit (Annona crassiflora Mart.) and its by-products by HPLC-ESI-MS/MS. Food Chem. 2018, 245, 738–749.
  25. Barbosa, M.F.; Justino, A.B.; Martins, M.M.; Belaz, K.R.A.; Ferreira, F.B.; Junio de Oliveira, R.; Danuello, A.; Espindola, F.S.; Pivatto, M. Cholinesterase inhibitors assessment of aporphine alkaloids from Annona crassiflora and molecular docking studies. Bioorg. Chem. 2022, 120, 105593.
  26. Santos, P.D.; Vieira, T.N.; Gontijo Couto, A.C.; Mesquita Luiz, J.P.; Lopes Saraiva, A.L.; Borges Linhares, C.R.; Barbosa, M.F.; Justino, A.B.; Franco, R.R.; da Silva Brum, E.; et al. Stephalagine, an aporphinic alkaloid with therapeutic effects in acute gout arthritis in mice. J. Ethnopharmacol. 2022, 293, 115291.
  27. Justino, A.B.; Barbosa, M.F.; Neves, T.V.; Silva, H.C.G.; Brum, E.d.S.; Fialho, M.F.P.; Couto, A.C.; Saraiva, A.L.; Avila, V.d.M.R.; Oliveira, S.M.; et al. Stephalagine, an aporphine alkaloid from Annona crassiflora fruit peel, induces antinociceptive effects by TRPA1 and TRPV1 channels modulation in mice. Bioorg. Chem. 2020, 96, 103562.
  28. Pereira, M.N.; Justino, A.B.; Martins, M.M.; Peixoto, L.G.; Vilela, D.D.; Santos, P.S.; Teixeira, T.L.; da Silva, C.V.; Goulart, L.R.; Pivatto, M.; et al. Stephalagine, an alkaloid with pancreatic lipase inhibitory activity isolated from the fruit peel of Annona crassiflora Mart. Ind. Crops Prod. 2017, 97, 324–329.
  29. Justino, A.B.; Florentino, R.M.; França, A.; Filho, A.C.M.L.; Franco, R.R.; Saraiva, A.L.; Fonseca, M.C.; Leite, M.F.; Salmen Espindola, F. Alkaloid and acetogenin-rich fraction from Annona crassiflora fruit peel inhibits proliferation and migration of human liver cancer HepG2 cells. PLoS ONE 2021, 16, e0250394.
  30. Tran, K.; Ryan, S.; McDonald, M.; Thomas, A.L.; Maia, J.G.S.; Smith, R.E. Annonacin and Squamocin Contents of Pawpaw (Asimina triloba) and Marolo (Annona crassiflora) Fruits and Atemoya (A. squamosa × A. cherimola) Seeds. Biol. Trace Elem. Res. 2021, 199, 2320–2329.
  31. Cardoso, L.d.M.; Oliveira, D.d.S.; Bedetti, S.d.F.; Martino, H.S.D.; Pinheiro-Sant’Ana, H.M. Araticum (Annona crassiflora Mart.) from the Brazilian Cerrado: Chemical composition and bioactive compounds. Fruits 2013, 68, 121–134.
  32. Silva, L.L.; Cardoso, L.d.M.; Pinheiro-Sant’Ana, H.M. Influência do branqueamento, pasteurização e congelamento nas características físico-químicas e carotenoides de polpa de araticum. Bol. Cent. Pesqui. Process. Aliment. 2015, 33, 49–59.
  33. Luzia, D.M.M.; Jorge, N. Bioactive substance contents and antioxidant capacity of the lipid fraction of Annona crassiflora Mart. seeds. Ind. Crops Prod. 2013, 42, 231–235.
  34. Arruda, H.S.; Araújo, M.V.L.; Marostica Junior, M.R. Underexploited Brazilian Cerrado fruits as sources of phenolic compounds for diseases management: A review. Food Chem. Mol. Sci. 2022, 5, 100148.
  35. Borsoi, F.T.; Neri-Numa, I.A.; de Oliveira, W.Q.; de Araújo, F.F.; Pastore, G.M. Dietary polyphenols and their relationship to the modulation of non-communicable chronic diseases and epigenetic mechanisms: A mini-review. Food Chem. Mol. Sci. 2023, 6, 100155.
  36. Arruda, H.S.; Pereira, G.A.; Pastore, G.M. Optimization of Extraction Parameters of Total Phenolics from Annona crassiflora Mart. (Araticum) Fruits Using Response Surface Methodology. Food Anal. Methods 2017, 10, 100–110.
  37. Anaya-Esparza, L.M.; García-Magaña, M.d.L.; Abraham Domínguez-Ávila, J.; Yahia, E.M.; Salazar-López, N.J.; González-Aguilar, G.A.; Montalvo-González, E. Annonas: Underutilized species as a potential source of bioactive compounds. Food Res. Int. 2020, 138, 109775.
  38. Bhambhani, S.; Kondhare, K.R.; Giri, A.P. Diversity in Chemical Structures and Biological Properties of Plant Alkaloids. Molecules 2021, 26, 3374.
  39. Rajput, A.; Sharma, R.; Bharti, R. Pharmacological activities and toxicities of alkaloids on human health. Mater. Today Proc. 2022, 48, 1407–1415.
  40. Debnath, B.; Singh, W.S.; Das, M.; Goswami, S.; Singh, M.K.; Maiti, D.; Manna, K. Role of plant alkaloids on human health: A review of biological activities. Mater. Today Chem. 2018, 9, 56–72.
  41. Durán, A.G.; Gutiérrez, M.T.; Mejías, F.J.R.; Molinillo, J.M.G.; Macías, F.A. An Overview of the Chemical Characteristics, Bioactivity and Achievements Regarding the Therapeutic Usage of Acetogenins from Annona cherimola Mill. Molecules 2021, 26, 2926.
  42. Neske, A.; Ruiz Hidalgo, J.; Cabedo, N.; Cortes, D. Acetogenins from Annonaceae family. Their potential biological applications. Phytochemistry 2020, 174, 112332.
  43. Lima, N.N.d.C.; Faustino, D.C.; Allahdadi, K.J.; França, L.S.d.A.; Pinto, L.C. Acetogenins from Annonaceae plants: Potent antitumor and neurotoxic compounds. PharmaNutrition 2022, 20, 100295.
  44. Neri-Numa, I.A.; Arruda, H.S.; Geraldi, M.V.; Maróstica Júnior, M.R.; Pastore, G.M. Natural prebiotic carbohydrates, carotenoids and flavonoids as ingredients in food systems. Curr. Opin. Food Sci. 2020, 33, 98–107.
  45. Rodriguez-Amaya, D.B. Update on natural food pigments—A mini-review on carotenoids, anthocyanins, and betalains. Food Res. Int. 2019, 124, 200–205.
  46. Arruda, H.S.; Geraldi, M.V.; Cedran, M.F.; Bicas, J.L.; Marostica Junior, M.R.; Pastore, G.M. Prebiotics and probiotics. In Bioactive Food Components Activity in Mechanistic Approach; Cazarin, C.B.B., Bicas, J.L., Pastore, G.M., Marostica Junior, M.R., Eds.; Academic Press: London, UK, 2022; pp. 55–118.
  47. do Nascimento Silva, N.R.R.; Cavalcante, R.B.M.; da Silva, F.A. Nutritional properties of Buriti (Mauritia flexuosa) and health benefits. J. Food Compos. Anal. 2023, 117, 105092.
  48. Zhang, X.; Wang, J.; Zhu, L.; Wang, X.; Meng, F.; Xia, L.; Zhang, H. Advances in Stigmasterol on its anti-tumor effect and mechanism of action. Front. Oncol. 2022, 12, 1101289.
  49. Traber, M.G.; Head, B. Vitamin E: How much is enough, too much and why! Free Radic. Biol. Med. 2021, 177, 212–225.
  50. Durazzo, A.; Nazhand, A.; Lucarini, M.; Delgado, A.M.; De Wit, M.; Nyam, K.L.; Santini, A.; Fawzy Ramadan, M. Occurrence of Tocols in Foods: An Updated Shot of Current Databases. J. Food Qual. 2021, 2021, 8857571.
More
Academic Video Service