Interstitials in High Entropy Alloys: Comparison
Please note this is a comparison between Version 3 by Catherine Yang and Version 2 by Ian Baker.

The effects of interstitials on the mechanical properties of single-phase f.c.c. high entropy alloys (HEAs) have been assessed based on a review of the literature. It is found that in nearly all studies, carbon increases the yield strength, in some cases by more than in traditional alloys. This suggests that carbon can be an excellent way to strengthen HEAs. This strength increase is related to the lattice expansion from the carbon. The effects on other mechanical behavior is mixed. Most studies show a slight reduction in ductility due to carbon, but a few show increases in ductility accompanying the yield strength increase. Similarly, some studies show little or modest increases in work-hardening rate (WHR) due to carbon, whereas a few show a substantial increase. These latter effects are due to changes in deformation mode. For both undoped and carbon doped CoCrFeMnNi, the room temperature ductility decreases slightly with decreasing grain size until ~2-5 µm, below which the ductility appears to decrease rapidly. The room temperature WHR also appears to decrease with decreasing grain size in both undoped and carbon-doped CoCrFeMnNi and in nitrogen-doped medium entropy alloy NiCoCr, and, at least for the undoped HEA, shows a sharp decrease at grain sizes <2 µm. Interestingly, carbon has been shown to almost double the Hall–Petch strengthening in CoCrFeMnNi, suggesting the segregation of carbon to the grain boundaries. There have been few studies on the effects of other interstitials such as boron, nitrogen and hydrogen.

  • HEA
  • MEA
  • interstitials
  • yield stress
  • elongation,
  • ductility
  • Hall-Petch slope
  • lattice strain
Please wait, diff process is still running!

References

  1. Patriarca, L.; Ojha, A.; Sehitoglu, H.; Chumlyakov, Y.I. Slip nucleation in single crystal FeNiCoCrMn high entropy alloy. Scr. Mater. 2016, 112, 54–57.
  2. Abuzaid, W.; Sehitoglu, H. Criticial resolved shear stress for slip and twin nucleation in single crystalline FeNiCoCrMn high entropy alloy. Mater. Charact. 2017, 129, 288–299.
  3. Otto, F.; Dlouhý, A.; Somsen, C.; Bei, H.; Eggeler, G.; George, E.P. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 2013, 61, 5743–5755.
  4. Sun, S.J.; Tian, Y.Z.; Lin, H.R.; Dong, X.G.; Wang, Y.H.; Wang, Z.J.; Zhang, Z.F. Temperature dependence of the Hall-Petch relationship in CoCrFeMnNi high-entropy alloy. J. Alloys Compd. 2019, 806, 992–998.
  5. Liu, G.; Lu, D.H.; Liu, X.W.; Liu, F.C.; Yang, Q.; Du, H.U.; Hu, Q.; Fan, Z.T. Solute segregation effect on grain boundary migration and Hall–Petch relationship in CrMnFeCoNi high-entropy alloy. Mater. Sci. Tech. 2019, 35, 500–508.
  6. Stepanov, N.D.; Shaysultanov, D.G.; Chernichenko, R.; Yu Yurchenko, N.; Zherebtsov, S.V.; Tikhonovsky, M.A.; Salishchev, G.A. Effect of thermomechanical processing on microstructure and mechanical properties of the C-containing CoCrFeNiMn high entropy alloy. J. Alloys Compd. 2017, 693, 394–405.
  7. Wu, Z.; Parish, Z.M.; Bei, H. Nano-twin mediated plasticity in C-containing FeNiCoCrMn high entropy alloys. J. Alloys Compd. 2015, 647, 815–822.
  8. Chen, J.; Yao, Z.; Wang, X.; Lu, Y.; Wang, X.; Liu, Y.; Fan, X. Effect of C content on microstructure and tensile properties of as-cast CoCrFeMnNi high entropy alloy. Mater. Chem. Phys. 2018, 210, 136–145.
  9. Li, Z. Interstitial equiatomic CoCrFeMnNi high-entropy alloys: C content, microstructure, and compositional homogeneity effects on deformation behavior. Acta Mater. 2019, 164, 400–412.
  10. Laplanche, G.; Kostka, A.; Horst, O.M.; Eggeler, G.; George, E.P. Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy. Acta Mater. 2016, 118, 152–163.
  11. Thurston, K.V.S.; Hohenwarter, A.; Laplanche, G.; George, E.P.; Gludovatz, B.; Ritchie, R.O. On the onset of deformation twinning in the CrFeMnCoNi high-entropy alloy using a novel tensile specimen geometry. Intermetallics 2019, 110, 106469.
  12. Liu, W.H.; Wu, Y.; He, J.Z.; Nieh, T.G.; Lu, T.P. Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy. Scr. Mater. 2013, 68, 526–529.
  13. Stepanov, N.D. Personal communication by email. 21 April 2020.
  14. Ikeda, I.; Tanaka, I.; Neugebauer, J.; Körmann, F. Impact of interstitial C on phase stability and stacking-fault energy of the CrMnFeCoNi high-entropy alloy. Phys. Rev. Mater. 2019, 3, 113603.
  15. Cheng, H.; Wang, H.Y.; Xie, Y.C.; Tang, Q.H.; Dai, P.Q. Controllable fabrication of a carbide-containing FeCoCrNiMn high-entropy alloy: Microstructure and mechanical properties. Mater. Sci. Tech. 2017, 33, 2032–2039.
  16. Ko, J.Y.; Hong, S.I. Microstructural evolution and mechanical performance of C-containing CoCrFeMnNi-C high entropy alloys. J. Alloys Compd. 2018, 743, 115–125.
  17. Guo, L.; Ou, X.Q.; Ni, S.; Liu, Y.; Song, M. Effects of C on the microstructures and mechanical properties of FeCoCrNiMn high entropy alloys. Mater. Sci. Eng. A 2019, 746, 356–362.
  18. Klimova, M.V.; Shaysultanov, D.G.; Chernichenko, R.S.; Sanin, V.N.; Stepanov, N.D.; Zherebtsov, S.V.; Belyakov, A.N. Recrystallized microstructures and mechanical properties of a C-containing CoCrFeNiMn-type high-entropy alloy. Mat. Sci. Eng. A 2019, 740–741, 201–210.
  19. Park, J.M.; Choe, J.; Kim, J.G.; Bae, J.W.; Moon, J.; Yang, S.; Kim, K.T.; Yu, J.-H.; Kim, H.S. Superior tensile properties of 1%C-CoCrFeMnNi high-entropy alloy additively manufactured by selective laser melting. Mater. Res. Lett. 2020, 8, 1–7.
  20. Stepanov, N.D.; Yurchenko, N.Y.; Tikhonovsky, M.A.; Salishchev, G.A. Effect of C content and annealing on structure and hardness of the CoCrFeNiMn-based high entropy alloys. J. Alloys Compd. 2016, 687, 59–71.
  21. Cheng, H.C.; Chen, W.; Liu, X.Q.; Tang, Q.H.; Xie, Y.C.; Dai, P.Q. Effect of Ti and C additions on the microstructure and mechanical properties of the FeCoCrNiMn high-entropy alloy. Mater. Sci. Eng. A 2018, 719, 192–198.
  22. Klimova, M.; Stepanov, N.; Shaysultanov, D.; Chernichenko, R.; Yurchenko, N.; Sanin, V.; Zherebtsov, S. Microstructure and Mechanical Properties Evolution of the Al, C-Containing CoCrFeNiMn-Type High-Entropy Alloy during Cold Rolling. Materials 2018, 11, 53.
  23. Klimova, M.V.; Semenyuk, A.O.; Shaysultanov, D.G.; Salishchev, G.A.; Zherebtsov, S.V.; Stepanov, N.D. Effect of C on cryogenic tensile behavior of CoCrFeMnNi-type high entropy alloys. J. Alloys Compd. 2019, 811, 152000.
  24. Wang, Z.; Baker, I.; Cai, Z.; Chen, S.; Poplawsky, J.D.; Guo, W. The effect of interstitial C on the mechanical properties and dislocation substructure evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys. Acta Mater. 2016, 68, 228–239.
  25. Wang, Z.; Baker, I.; Guo, W.; Poplawsky, J.D. The effect of carbon on the microstructures, mechanical properties, and deformation mechanisms of thermo-mechanically treated Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys. Acta Mater. 2017, 126, 346–360.
  26. Labusch, R. A Statistical Theory of Solid Solution Hardening. Phys. Stat. Sol. 1970, 41, 659.
  27. Wei, R.; Sun, H.; Han, Z.H.; Chen, C.; Wang, T.; Guan, S.K.; Li, F.S. Strengthening of Fe40Mn40Co10Cr10 High Entropy Alloy Via Mo/C Alloying. Mater. Lett. 2018, 219, 85–88.
  28. Shang, Y.Y.; Wu, Y.; He, J.Y.; Zhu, X.Y.; Liu, S.F.; Huang, H.L.; An, K.; Chen, Y.; Jiang, S.H.; Wang, H.; et al. Solving the strength-ductility tradeoff in the medium-entropy NiCoCr alloy via interstitial strengthening of carbon. Intermetallics 2019, 106, 77–87.
  29. Li, Z.; Tasan, C.C.; Springer, H.; Gault, B.; Raabe, D. Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys. Sci. Rep. 2017, 7, 40704.
  30. Li, Z.; Pradeep, K.G.; Deng, Y.; Raabe, D.; Tasan, C.C. Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature 2016, 534, 227–230.
  31. Zhang, W.; Yan, D.; Lu, W.; Li, Z. Carbon and nitrogen co-doping enhances phase stability and mechanical properties of a metastable high-entropy alloy. J. Alloys Compd. 2020, 831, 154799.
  32. Moravcik, I.; Hadraba, H.; Li, L.; Dlouhy, I.; Raabe, D.; Li, Z. Yield strength increase of a CoCrNi medium entropy alloy by interstitial nitrogen doping at maintained ductility. Scr. Mater. 2020, 178, 391–397.
  33. Yoshida, S.; Bhattacharjee, T.; Bai, Y.; Tsuji, N. Friction stress and Hall-Petch relationship in CoCrNi equi-atomic medium entropy alloy processed by severe plastic deformation and subsequent annealing. Scr. Mater. 2017, 134, 33–36.
  34. Uzer, B.; Picak, S.; Liu, J.; Jozaghi, T.; Canadinc, D.; Karaman, I.; Chumlyakov, Y.I.; Kireeva, I. On the mechanical response and microstructure evolution of NiCoCr single crystalline medium entropy alloys. Mater. Res. Lett. 2018, 6, 442–449.
  35. Song, M.Z.; Zhou, R.; Gu, J.; Wang, Z.; Ni, S.; Liu, Y. Nitrogen induced heterogeneous structures overcome strength-ductilitytrade-off in an additively manufactured high-entropy alloy. Appl. Mater. Today 2019, 18.
  36. Meng, F.; Baker, I. Nitriding of a High Entropy FeNiMnAlCr Alloy. J. Alloys Compd. 2015, 645, 376–381.
  37. Feng, H.; Li, H.; Wu, X.; Jiang, Z.; Zhao, S.; Zhang, T.; Xu, D.; Zhang, S.; Zhu, H.; Zhang, B.; et al. Effect of nitrogen on corrosion behaviour of a novel high nitrogen medium-entropy alloy CrCoNiN manufactured by pressurized metallurgy. J. Maters. Sci. Tech. 2018, 34, 1781–1790.
  38. Laurent-Brocq, M.; Sauvage, X.; Akhatova, A.; Perriere, L.; Leroy, E.; Champion, Y. Precipitation and hardness of Citrides in a CrMnFeCoNi high entropy alloy. Adv. Eng. Mater. 2017, 19, 201600715.
  39. Youssef, K.M.; Zaddach, A.J.; Niu, C.; Irving, D.L.; Koch, C.C. A Novel Low-Density, High-Hardness, High-entropy Alloy with Close-packed Single-phase Nanocrystalline Structures. Mater. Res. Lett. 2015, 3, 95–99.
  40. Hakan, G.; Mohsen, G. A novel medium entropy alloy based on iron-manganese-aluminum- nickel: Influence of boron addition on phase formation, microstructure, and mechanical properties. Mater. Res. Express 2020, 7, 016516.
  41. Xiaotao, L.; Wenbin, L.; Lijuan, M.; Jinling, L.; Jing, L.; Jianzhong, C. Effect of Boron on the microstructure, Phase Assemblage and Wear Properties of Al0.5CoCrCuFeNi High-Entropy Alloy. Rare Metal Mater. Eng. 2016, 45, 2201–2207.
  42. Wang, Z.W.; Baker, I. Interstitial strengthening of a f.c.c. FeNiMnAlCr high entropy alloy. Mater. Lett. 2016, 180, 153–156.
  43. Hou, L.; Hui, J.T.; Yao, Y.H.; Chen, J.; Liu, J.N. Effects of Boron Content on microstructure and mechanical properties of AlFeCoNiBx High Entropy Alloy Prepared by vacuum arc melting. Vacuum 2019, 164, 212–218.
  44. Luo, H.; Lia, Z.; Raabe, D. Hydrogen enhances strength and ductility of an equiatomic high entropy alloy. Sci. Rep. 2017, 7, 9892.
More
Video Production Service