Biological Activities of Paper Mulberry: Comparison
Please note this is a comparison between Version 2 by Peter Tang and Version 1 by Ly Thi Huong Nguyen.

Paper mulberry (Broussonetia papyrifera) is one of the most common skin-lightening agents in the beauty industry due to its strong anti-tyrosinase activity. It consists of various components, including flavonoids, tannins, alkaloids, phenols, saponins, coumarins, glycosides, and polysaccharides, which possess a wide range of pharmacological properties. Apart from its anti-tyrosinase activity, paper mulberry and its compounds exhibited anti-inflammatory, antioxidant, antimicrobial, antiviral, anticancer, antidiabetic, anticholinesterase, antigout, antinociceptive, and hepatoprotective effects. Phenols and flavonoids were demonstrated to be the main contributors to the biological activities of paper mulberry. Paper mulberry is widely applied in cosmetics for skin lightening and skin moisturizing purposes and shows potential for application in hair care products due to the hair nourishing effects. The safety of paper mulberry for topical application was proven in clinical studies.

  • paper mulberry
  • Broussonetia papyrifera
  • skin-lightening
  • tyrosinase
  • pharmacological activities

1. Chemical Composition of Paper Mulberry

Paper mulberry consists of various chemical constituents, with the main bioactive compounds including flavonoids, tannins, alkaloids, phenols, saponins, coumarins, glycosides, and polysaccharides [22,27,28,29,30,31][1][2][3][4][5][6]. These compounds are derived from different parts of the paper mulberry, such as the bark, roots, twigs, leaves, flowers, and fruits. Table 1 summarizes the major bioactive components found in paper mulberry.
Table 1.
Chemical composition of paper mulberry.

2. Biological Activities of Paper Mulberry and Its Components

Previous studies have demonstrated that paper mulberry and its components possess a wide range of biological activities, such as antityrosinase, anti-inflammatory, antioxidant, and antimicrobial effects, as listed below (Table 2).
Table 2.
Biological activities of paper mulberry.

Biological Activity

Part

Compound

Model

Dose

Detailed Effects

Reference

Antityrosinase

Leaf

n/a

In vitro

IC50 = 17.68 ± 5.3 μg/mL

Inhibit mushroom tyrosinase

[63][40]

(2R)-7,3′,4′-trihydroxy-6-prenylflavanone

Leaf

[32][7]

n/a

In vitro

3,3′,4′,5,7-pentahydroxyflavone

[33][8]

Broussonetones A-C

In vitro

3,4-dihydroxyisolonchocarpin

[

39

]

66.67~666.67 μg/mL

IC50 = 0.317 ~ 0.323 mM

Inhibit mushroom tyrosinase

Isogemichalcone C

[

62

]

[

39

]

Inhibit mushroom tyrosinase

[

64][41]

Leaf

[

60

][37]

[34,35,36][9][10][11]

Twig

Broussoflavonol F, 3,5,7,4′-tetrahydroxy-3′-(2-hydroxy-3-methylbut-3-enyl)flavone, uralenol, quercetin

In vitro

IC50 = 49.5~96.6 μM

Inhibit mushroom tyrosinase

[48][25]

3′-(3-methylbut-2-enyl)-3′,4′,7-trihydroxyflavane

Root

[33,34,36,37,38,39][8][9][11][12][13][14]

Broussoflavonol B/F/H-K, papyriflavonol A, isolicofavonol, glycyrrhiza flavonol

In vitro

IC50 = 9.29~31.74 μM

Inhibit mushroom tyrosinase

[40

4-hydroxyisolonchocarpin

[34,35,36,38][9][10][11][13]

7,8-dihydroxy-6-(3-methylbut-2-en-1-yl)-2H-chromen-2-one

[40][15]

8-(1,1-dimethylallyl)-5′-(3-methylbut-2-enyl)-3′,4′,5,7-tetrahydroxyflanvonol

[32,33,36,7][8]37,[11]41][[12][16]

]

[

15

]

Brossoflurenone A

[41][16]

Brossoflurenone B

[41][16]

Betulin

[42][17]

Betulinic acid

[42][17]

Broussoaurone A

[43][18]

Broussochalcone A

[25,32,33,34,35,36,38,39][7][8][9][10][11][13][14][19]

Broussochalcone B

[34,35,36,9][10]37,[11]38][[12]

Anti-inflammatory

Bark

n/a

RAW264.7 cells

10~200 μg/mL

Inhibit NO and iNOS production

[24][42]

Bark

n/a

RAW264.7 cells

10~80 μg/mL

Inhibit production of NO, iNOS, TNF-α, and IL-1β

[65][43]

Fruit

8,11-octadecadienic acid, palmitic acid, linolenic acid, 8-octadecenoic

acid, stearic acid, oleic acid

RAW264.7 cells

6~100 μg/mL

Reduce NO production

[53][30]

Root

Broussoflavonol B, kazinol J

Mice, 3T3-L1 adipocytes

40 mg/kg,

3~40 μg/mL

Decrease TNF-α-induced inflammation by inhibiting the NF-κB pathway via AMPK activation

[66][44]

Root

(2R)-7,3′,4′-trihydroxy-6-prenylflavanone, broussochalcone C, broussoflavanonol A/B, kazinol V/W

RAW264.7 cells

2.5~40 μM

Inhibit production of NO, iNOS, COX-2, TNF-α, and IL-6

[32][7]

Root

Broussochalcone A

RAW264.7 cells

1~20 μM

Inhibit production of NO, iNOS, TNF-α, and IL-1β

[67][45]

Branch, twig

Kazinol M, broussoflavonol A/B

THP-1 cells

1 μM

Reduce production of IL-1β and TNF-α by suppressing NF-κB/AP-1 activation

[49][26]

Root

Broussoflavonol H

Jurkat cells

IC50 = 9.95 μM

Decrease IL-2 production

[40][15]

Root, fruit

Betulin, betulinic acid

Rat

0.6, 1, 2 g/kg

Reduce edema

[42][17]

[13]

Root

Broussochalcone A, papyriflavonol A

Rat, MH-S cells

200 mg/kg,

5~50 μg/mL

Combined with Lonicera japonica to inhibit the production of NO, TNF-α, and IL-6 in macrophages, reduce pleural cavity inflammation and bronchitis

[68][46]

Broussochalcone C

[

n/a

32][7]

Papyriflavonol A

Rat

12.5~50 mg/kg

Inhibit IgE-induced passive cutaneous anaphylaxis

[69][47]

Broussocoumarin A

[40][15]

Antioxidant

Leaf

4-Caffeoylquinic acid, 5-Caffeoylquinic acid, apigenin-7-O-glucuronide, isovitexin, luteolin-7-O-glucuronide, orientin, vitexin

1~10 mM

In vitro

Radical-scavenging activities in DPPH and ABTS assays

[59][36]

Broussoflavan A

[32,34,36,38,39,43][7][9][11][13][14][18]

Luteolin, luteoloside, orientin, isoorientin

10 μg/mL

In vitro

Radical-scavenging activities in DPPH and ABTS assays

[61][38]

Broussoflavanonol A

Leaf

[32][7]

Broussonetones A−C, apigenin, vitexin

IC50 = 43.89~107.7 μM

In vitro

Antioxidant effects in SOD-like effect assays

[60][37]

Broussoflavonol B

[32,36,40,[11][1541][7]][

Root

16]

n/a

0.1~2.5 mg/mL

SH-SY5Y cells

Decrease extracellular

peroxide levels, improve activities of SOD, CAT, glutathione peroxidase, and glutathione reductase

[70][48]

Broussoflavonol C

[

Bark, wood

32][7]

Epicatechin, caffeic acid, coumaric acid, quercetin, kaempferol

10~50 mg/mL

In vitro

Superoxide anion radical and hydroxyl radical scavenging activities

[26][24]

Broussoflavonol F

[40,43][15][18]

Flower

n/a

0.5~5 mg/mL

In vitro

Scavenging activity of DPPH radical

[29][4]

Broussoflavonol G

Fruit

[43][18]

2-(4-hydroxyphenyl)propane-1,3-diol-1-O-β-D-glucopyranoside, 4-hydroxybenzaldehyde, 3,4-dihydroxybenzoic acid, arbutine, dihydroconiferyl alcohol, coniferyl alcohol, ferulic acid, p-coumaraldehyde, cis-syringin, cis-coniferin, erythro1-(4-hydroxyphenyl)glycerol, threo-1-(4-hydroxyphenyl)glycerol, curculigoside C/I

0.16~100 mM

SH-SY5Y cells

Scavenging activity of DPPH radical and neuroprotective effects

against H2O2-induced SY5Y cell injury

[50][27]

Broussoflavonol H

[40][15]

Branch, twig

Kazinol M, broussoflavonol A/B

THP-1 cells

1 μM

Reduce CAA values

[49][26]

Broussoflavonol I

[40][15]

Root

Broussochalcone A

RAW264.7 cells

1~20 μM

Inhibit production of NO, iNOS, TNF-α, and IL-1β

[67][45]

Broussoflavonol J

Root

[40][15]

Broussoflavan A, broussoflavonol F/G, broussoaurone A

In vitro

IC50 = 1.0~2.7 μM

Inhibit oxidative stress caused by Fe2+ in rat brain homogenate

[43][18]

Broussoflavonol K

[40][15]

Fruit

Chushizisins A−I, threo-1-(4-hydroxy-3-methoxyphenyl)-2-{4-[(E)-3-hydroxy-1-propenyl]-2-methoxyphenoxy}-1,3-propanediol, erythro-1-(4-hydroxy-3-methoxyphenyl)-2-{4-[(E)-3-hydroxy-1-propenyl]-2-methoxyphenoxy}-1,3-propanediol

PC12 cells

0.16~100 μM

Scavenging activity of DPPH radical and antioxidant effects

against H2O2-induced impairment in PC12 cells

[51][28]

Broussonin A

Whole plant

[32][7]

Lignins

In vitro

10~100 mg/L

Scavenging activity of DPPH radical

[71][49]

Broussonin B

Aerial part

[32][7]

n/a

Beef cattle

5~15% in food

Increase SOD concentration, total antioxidant capacity

[72][50]

Broussonol D

[32][7]

Aerial part

n/a

Dairy cow

5~15% in food

Increase the concentration of CAT, SOD, and TAC and decrease the serum concentration of 8-OHdG

[73][51]

Broussonol G

Leaf

[32][7]

n/a

Piglet

150, 300 g/t

Increase concentration of CAT, SOD, glutathione peroxidase

[74][52]

Daphnegiravan H

[32][7]

Anti-microbial

Leaf

n/a

In vitro

MIC = 1~7.5 mg/mL

Inhibit growth of bacteria (Enterococcus faecalis, Vibrio cholera, Bacillus subtilis, Pseudomonas aeruginosa, Klibsella pneumonia) and fungi (Aspergilus niger, A. flavus)

[75][53]

Glycyrrhiza flavonol A

Seed

[40][15]

Hexadecanoic acid, heptadecene-8-carbonic acid, caryophyllene

In vitro

0.125~1%

Antibacterial activity against Staphylococcus aureus, Proteus vulgaris, B. cereus, Enterobacter aerogenes

[57][34]

Isolicoflavonol

Aerial part

[40][15]

Daphnegiravan F, 5,7,3′,4′-tetrahydroxy-3-methoxy-8,5′-diprenylflavone

In vitro

MIC = 3.9~250 ppm

Anti-oral microbial effect against Gram-positive strains (Actinomyces naeslundii, A. viscosus, Streptococcus mutans, S. sanguinis, S. sorbrinus) and Gram-negative strains (Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, Porphyromonas gingivalis)

[76][54]

Kazinol A

[32,34,36,37,38][7][9][11][12][13]

Root

Papyriflavonol A, kazinol B, broussochalcone A

In vitro

MIC = 12.5~45 μg/mL

Antifungal effect against Candida albicans and Saccharomyces cerevisiae, antibacterial activity against Escherichia coli, Salmonella typhimurium, S. epidermis, S. aureus

[25][19]

Kazinol B

Root

[25,32,34,7][9]36,[11]38][[13][19]

Papyriflavonol A

In vitro

MIC = 10~25 μg/mL

Antifungal effect against C. albicans and S. cerevisiae

[44][20]

Kazinol E

[34,36][9][11]

Fruit

Polysaccharides

In vitro

0.4~2.0 mg/mL

Antibacterial activity against E. coli, P. aeruginosa, B. subtilis, S. aureus

[56][33]

Kazinol F

[32,38,39][

Root

7][13][14]

Broussochalcone A/B, broussoflavan A, 3′-(3-methylbut-2-enyl)-3′,4′,7-trihydroxyflavane, 3,4-dihydroxyisolonchocarpin, 8-(1,1-dimethylallyl)-5′-(3-methylbut-2-enyl)-3′,4′,5,7-tetrahydroxyflanvonol, daphnegiravan I, kazinol A/B/E, 4-hydroxyisolonchocarpin, papyriflavonol A, broussoflavonol B

In vitro

IC50 = 0.7~54 μM

Inhibit bacterial neuraminidase

[36][11]

Kazinol J

[32,38,39][7][13][14]

Kazinol V

[32][7]

Antiviral

Root

Broussochalcone A/B, 4-hydroxyisolonchocarpin, papyriflavonol A (4), 3′-(3-methylbut-2-enyl)-3′,4,7-trihydroxyflavane, kazinol A/B/F/J, broussoflavan A

In vitro

IC50 = 9.2~66.2 μM

Inhibit papain-like protease

[38][13]

Anticancer

Bark

n/a

Kazinol W

[32][7]

Oleanolic acid

[42][17]

HT-29 cells

50~200 μg/mL

Induce apoptosis-related DNA fragmentation, increase the expression of p53, caspase 3, Bax, inhibit cell proliferation

[24][42]

Bark

Papyriflavonol A, broussoflavonol B, broussochalcone A, uralenol, 5,7,3′,4′-tetrahydroxy-3-methoxy-8,5′-diprenylflavone

MCF-7 cells

5~25 μM

Anti-proliferation effects on estrogen receptor-positive breast cancer MCF-7 cells

[46][22]

Papyriflavonol A

[25,36,37,39,40,41,44][11][12][14][15][16][19][20]

Ursolic acid

[42][17]

Bark

3,4,5-trimethoxyphenyl-1-O-β-D-xylopyranosyl-β-D-glucopyranoside

[45][21]

4,5-dicaffeoylquinic acid

[45][21]

5,7,3′,4′-tetrahydroxy-3-methoxy-8,5′-diprenylflavone

[46][22]

5,7,3′,4′-tetrahydroxy-3-methoxy-8-geranylflavone

[46][22]

7,4′-dihydroxy-3′-prenylflavan

[47][23]

Broussochalcone A

[46][22]

Broussochalcone B

[47][23]

Broussoflavonol B

[46,47][22][23]

Bark, leaf, fruit

n/a

MCF-7, HeLa, HepG2 cells

31.25~1000 μg/mL

Cytotoxic activity against cancer cells

[77][55]

Root

Broussoflavonol F/H/I/K, isolicofavonol, glycyrrhiza flavonol A, papyriflavonol A

NCI-H1975, HepG2, MCF-7 cells

IC50 = 0.9~2.0 μM

Growth inhibition activity against three cancer cell lines

[40][15]

Root

Kazinol A

T24, T24R2 cells

 

Inhibit cell growth through G0/1 arrest mediated by a decrease in cyclin D1 and an increase in p21

[37][12]

n/a

Broussochalcone A

HEK293, HCT116, SW480, SNU475 cells

5~20 μM

Induce apoptosis in colon and liver cancer cells

[78][56]

n/a

Broussochalcone A

HepG2 cells

5 µM

Cytotoxic effects against human hepatoma HepG2 cells with activation of apoptosis-related proteins

[79][57]

Fruit

N-norchelerythrine, dihydrosanguinarine, oxyavicine, broussonpapyrine, nitidine, chelerythrine, liriodenine

BEL-7402, Hela cells

IC50 = 5.97~47.41 μg/mL

Inhibit cancer cell growth

[54][31]

Antidiabetic

Root

Broussoflavonol B, kazinol J

Mice

40 mg/kg

Improve glucose tolerance

Broussonin A

[47][23]

Broussonin B

[47][23]

Caffeic acid

[26][24]

Cathayanon H

[47][23]

Chlorogenic acid

[45][21]

cis-form-5-coffee acylchlorogenic acid

[45][21]

Coumaric acid

[26][24]

Cryptochlorogenic acid

[45][21]

Epicatechin

[26][24]

Glyasperin A

[47][23]

Isoliquiritigenin

[47][23]

Isoquercetin

[45][21]

Kaempferol

[26][24]

Marmesin

[47][23]

Papyriflavonol A

[46][22]

Quercetin

[26,48][24][25]

Uralenol

[46][22]

Vomifoliol

[47][23]

Branch/twig

(S)-8-methoxymarmesin

[49][26]

3,5,7,4′-tetrahydroxy-3′-(2-hydroxy-3-methylbut-3-enyl) flavone

[48][25]

5,7,3′,4′-tetrahydroxy-3-methoxy-8,5′-diprenylflavone

[49][26]

5,7,3′,4′-tetrahydroxy-3-methoxyflavone

[48][25]

5,7,3′,5′-tetrahydroxyflavanone

[48][25]

Brossoflurenone C

[49][26]

Broussin

[49][26]

Broussoflavonol A

[49][26]

Broussoflavonol B

[49][26]

Broussoflavonol F

[48][25]

[

66

]

[

44

]

Root

8-(1,1-dimethylallyl)-5′-(3-methylbut-2-enyl)-3′,4′,5,7-tetrahydroxyflanvonol, uralenol, 3,3′,4′,5,7-pentahydroxyflavone, broussochalcone A

In vitro

IC50 = 4.3~36.8 μM

Inhibit the activity of PTP1B

[33][8]

Root

Broussochalcone A/B, 3,4-Dihydroxyisolonchocarpin, 4-Hydroxyisolonchocarpin, 3′-(3-Methylbut-2-enyl)-3′,4′,7-trihydroxyflavane, kazinol A/B/E, 8-(1,1-Dimethylallyl)-5′-(3-methylbut-2-enyl)-3′,4′,5,7-tetrahydroxyflanvonol, papyriflavonol A, brossoflurenone A

In vitro

IC50 = 2.1~75.7 μM

Inhibit the activity of α-glucosidase

[35][10]

Anticholinesterase

Root

8-(1,1-Dimethylallyl)-5′-(3-methylbut-2-enyl)-3′,4′,5,7-tetrahydroxyflanvonol, papyriflavonol A, broussoflavonol B, brossoflurenone A/B

In vitro

IC50 = 0.5~24.7 μM

Inhibit human acetylcholinesterase and butyrylcholinesterase

[41][16]

Antigout

Root

3,4-dihydroxyisolonchocarpin, broussochalcone A

In vitro

IC50 = 0.6~1.8 μM

Inhibit the activity of xanthine oxidase

[34][9]

Antinociceptive

Root, fruit

Betulin, betulinic acid

Rat

1, 2 g/kg

Inhibit writhing responses

[42][17]

Hepatoprotective

Leaf

Polysaccharides

Mice

100~400 mg/kg

Improve acetaminophen-induced liver damage, reduce liver apoptosis, enhance the detoxification ability of the liver to acetaminophen

[30][5]

Fipsotwin

[49][26]

Isolicoflavonol

[48][25]

Isoliquiritigenin

[48][25]

Kazinol B

[49][26]

Kazinol N

[49][26]

Kazinol M

[49][26]

Kazinol Q

[49][26]

Luteolin

Root

Broussoflavonol B, kazinol J

Mice

40 mg/kg

Suppress hepatic steatosis by decreasing lipogenic gene expression and increasing AMPK phosphorylation

[48][25]

Marmesin

[49][26]

Papyriflavonol A

[48][25]

Quercetin

[48][25]

[

66

]

[

44

]

threo-dadahol A

[49][26]

threo-dadahol B

[49][26]

Uralenol

[48][25]

Fruit

2-(4-hydroxyphenyl) propane-1,3-diol-1-O-β-D-glucopyranoside

[50][27]

3,4-dihydroxybenzoic acid

[50][27]

3-[2-(4- hydroxyphenyl)-3-hydroxymethyl-2,3-dihydro-1-benzofuran-5-yl]propan-1-ol

[51][28]

4-hydroxybenzaldehyde

[50][27]

7-hydroxycoumarin

[52][29]

8,11-Octadecadienoic acid

[53][30]

8-Octadecenoic acid

[53][30]

Arbutine

[50][27]

Betulin

[42][17]

Betulinic acid

[42][17]

Broussonpapyrine

[54,55][31][32]

Chelerythrine

[54][31]

Chushizisin A

[51][28]

Chushizisin B

[51][28]

Chushizisin C

[51][28]

Chushizisin D

[51][28]

Chushizisin E

[51][28]

Chushizisin F

[51][28]

Chushizisin G

[51][28]

Chushizisin H

[51][28]

Chushizisin I

[51][28]

cis-coniferin

[50][27]

cis-syringin

[50][27]

Coniferyl alcohol

[50][27]

Curculigoside C

[50][27]

Curculigoside I

[50][27]

Dihydroconiferyl alcohol

[50][27]

Dihydrosanguinarine

[54][31]

Epicatechin

[52][29]

erythro-1-(4-hydroxy-3-methoxyphenyl)-2-{4-[(E)-3-hydroxy-1-propenyl]-2-methoxyphenoxy}-1,3-propanediol

[51][28]

erythro-1-(4-hydroxyphenyl) glycerol

[50][27]

Ferulic acid

[50][27]

Linolenic acid

[53][30]

Liriodenine

[54,55][31][32]

Nitidine

[54,55][31][32]

N-Norchelerythrine

[54][31]

Oleanolic acid

[42][17]

Oleic acid

[53][30]

Oxyavicine

[54,55][31][32]

Palmitic acid

[53][30]

p-coumaraldehyde

[50][27]

Polysaccharides

[56][33]

Protocatechuic acid

[52][29]

Stearic acid

[53][30]

threo-1-(4-hydroxy-3-methoxyphenyl)-2-{4-[(E)-3-hydroxy-1-propenyl]-2-methoxyphenoxy}-1,3-propanediol

[51][28]

threo-1-(4-hydroxyphenyl) glycerol

[50][27]

Ursolic acid

[42][17]

Seed

Caryophyllene

[57][34]

Heptadecene-8-carbonic acid

[57][34]

Hexadecanoic acid

[57][34]

Leaf

(+)-pinoresinol-4′-O-β-D-glucopyranosyl-4″-O-β-D-apiofuranoside

[58][35]

3,5,4′-trihydroxy-bibenzyl-3-O-β-D-glucoside

[58][35]

4-Caffeoylquinic acid

[59][36]

4-Feruloylquinic acid

[59][36]

5-Caffeoylquinic acid

[59][36]

Apigenin

[60,61][37][38]

Apigenin-6-C-β-D-glucopyranside

[58][35]

Apigenin-7-glucoside

[59][36]

Apigenin-7-O-glucuronide

[59][36]

Apigenin-7-O-β -D-glucoside

[61][38]

Broussonetone A

[60][37]

Broussonetone B

[60][37]

Broussonetone C

[60][37]

Broussoside A

[61][38]

Broussoside B

[61][38]

Broussoside C

[61][38]

Broussoside D

[61][38]

Broussoside E

[61][38]

Chrysoriol-7-O-β-D-glucoside

[61][38]

Cosmosiin

[58][35]

Coumaric acid

[61][38]

Dihydrosyringin

[61][38]

Flacourtin

[61][38]

Gentisoyl hexoside

[59][36]

Isoorientin

[61][38]

Isovitexin

[59,61][36][38]

Liriodendrin

[58][35]

Luteolin

[61][38]

Luteolin-7-O-glucuronide

[59][36]

Luteolin-7-O-β-D-glucopyranoside

[58][35]

Luteoloside

[61][38]

Orientin

[59,61][36][38]

Pinoresinol-4′-O-β-D-glucopyranoside

[61][38]

Poliothyrsoside

[61][38]

Polysaccharides

[30][5]

Syringaresinol-4′-O-β-D-glucoside

[61][38]

Vitexin

[59,60,61][36][37][38]

Whole plant

(2S)-2′,4′-dihydroxy-2″-(1-hydroxy-1-methylethyl) dihydrofuro [2,3-h] flavanone

[62][39]

(2S)-abyssinone II

[62][39]

3′-[γ-hydroxymethyl-(E)-γ-methylallyl]-2,4,2′,4′-tetrahydroxychalcone 11′-O-coumarate

[62][39]

5,7,2′,4′-tetrahydroxy-3-geranylflavone

[62][39]

Demethylmoracin I

Isolicoflavonol

Leaf

[62]

[62][39]

3. Application of Paper Mulberry in Cosmetics

3.1. Skin Lightening and Moisturizing

Paper mulberry is commonly used as a skin-lightening agent in cosmetics. Paper mulberry might prevent skin hyperpigmentation by inhibiting the activity of tyrosinase and melanin formation [88][58]. Extracts from paper mulberry are included in many skin-whitening compositions for external application [89,90][59][60]. Paper mulberry combined with Styela clava extract is blended into a facial mask sheet for the whitening purpose [91][61]. A mask pack containing paper mulberry showed moisturizing effects on the skin [92][62]. Paper mulberry combined with white ginseng was incorporated in a cosmetic composition for skin moisturizing and smoothing [93][63].

3.2. Hair Protection and Hair Growth

A previous study showed that the application of formulations containing paper mulberry root extract exerted hair-protective effects by improving the tensile strength, optical absorption, and luster of damaged hair [97][64]. Another study on 11 healthy subjects indicated that using a leaf extract of paper mulberry for 12 weeks showed beneficial effects on hair growth, indicated by increased total hair count as compared with the start date of the trial. The underlying mechanism might be through regulating the WNT-β-catenin and STAT6 pathways to promote the proliferation of dermal papilla cells [98][65]. These data suggest the potential application of paper mulberry in hair-care products in cosmetics.

References

  1. Qureshi, H.; Anwar, T.; Khan, S.; Fatimah, H.; Waseem, M. Phytochemical constituents of Broussonetia papyrifera (L.) LʹHeʹr. ex Vent: An overview. J. Indian Chem. Soc. 2020, 97, 55.
  2. Amir, M.K.; Rizwana, A.Q.; Faizan, U.; Syed, A.G.; Asia, N.; Sumaira, S.; Muhammad, K.L.; Muhammad, Y.L.; Ishtiaq, H.; Waheed, M. Phytochemical analysis of selected medicinal plants of Margalla Hills and surroundings. J. Med. Plant. Res. 2011, 5, 6055–6060.
  3. Sirita, J.; Chomsawan, B.; Yodsoontorn, P.; Kornochalert, S.; Lapinee, C.; Jumpatong, K. Antioxidant activities, phenolic and tannin contents of paper mulberry (Broussonetia papyrifera) extract. Med. Plants—Int J. Phytomed. Relat. Ind. 2020, 12, 371–375.
  4. Sun, J.; Zhang, C.S.; Yu, L.N.; Bi, J.; Liu, S.F.; Zhu, F.; Yang, Q.L. Antioxidant activity and total phenolics of Broussonetia papyrifera flower extracts. Appl. Mech. Mater. 2012, 140, 263–267.
  5. Xu, B.; Hao, K.; Chen, X.; Wu, E.; Nie, D.; Zhang, G.; Si, H. Broussonetia papyrifera Polysaccharide Alleviated Acetaminophen-Induced Liver Injury by Regulating the Intestinal Flora. Nutrients 2022, 14, 2636.
  6. Qureshi, H.; Arshad, M.; Bibi, Y. Toxicity assessment and phytochemical analysis of Broussonetia papyrifera and Lantana camara: Two notorious invasive plant species. J. Biodivers Environ. Sci. 2014, 5, 508–517.
  7. Ryu, H.W.; Park, M.H.; Kwon, O.K.; Kim, D.Y.; Hwang, J.Y.; Jo, Y.H.; Ahn, K.S.; Hwang, B.Y.; Oh, S.R. Anti-inflammatory flavonoids from root bark of Broussonetia papyrifera in LPS-stimulated RAW264.7 cells. Bioorg. Chem. 2019, 92, 103233.
  8. Chen, R.M.; Hu, L.H.; An, T.Y.; Li, J.; Shen, Q. Natural PTP1B inhibitors from Broussonetia papyrifera. Bioorg. Med. Chem. Lett. 2002, 12, 3387–3390.
  9. Ryu, H.W.; Lee, J.H.; Kang, J.E.; Jin, Y.M.; Park, K.H. Inhibition of xanthine oxidase by phenolic phytochemicals from Broussonetia papyrifera. J. Korean Soc. Appl. Biol. Chem. 2012, 55, 587–594.
  10. Ryu, H.W.; Lee, B.W.; Curtis-Long, M.J.; Jung, S.; Ryu, Y.B.; Lee, W.S.; Park, K.H. Polyphenols from Broussonetia papyrifera displaying potent alpha-glucosidase inhibition. J. Agric. Food Chem. 2010, 58, 202–208.
  11. Park, M.H.; Jung, S.; Yuk, H.J.; Jang, H.J.; Kim, W.J.; Kim, D.Y.; Lim, G.; Lee, J.; Oh, S.R.; Lee, S.U.; et al. Rapid identification of isoprenylated flavonoids constituents with inhibitory activity on bacterial neuraminidase from root barks of paper mulberry (Broussonetia papyrifera). Int J. Biol. Macromol. 2021, 174, 61–68.
  12. Park, S.; Fudhaili, A.; Oh, S.S.; Lee, K.W.; Madhi, H.; Kim, D.H.; Yoo, J.; Ryu, H.W.; Park, K.H.; Kim, K.D. Cytotoxic effects of kazinol A derived from Broussonetia papyrifera on human bladder cancer cells, T24 and T24R2. Phytomedicine 2016, 23, 1462–1468.
  13. Park, J.Y.; Yuk, H.J.; Ryu, H.W.; Lim, S.H.; Kim, K.S.; Park, K.H.; Ryu, Y.B.; Lee, W.S. Evaluation of polyphenols from Broussonetia papyrifera as coronavirus protease inhibitors. J. Enzym. Inhib. Med. Chem. 2017, 32, 504–515.
  14. Ghosh, R.; Chakraborty, A.; Biswas, A.; Chowdhuri, S. Identification of polyphenols from Broussonetia papyrifera as SARS CoV-2 main protease inhibitors using in silico docking and molecular dynamics simulation approaches. J. Biomol. Struct. Dyn. 2021, 39, 6747–6760.
  15. Tian, J.L.; Liu, T.L.; Xue, J.J.; Hong, W.; Zhang, Y.; Zhang, D.X.; Cui, C.C.; Liu, M.C.; Niu, S.L. Flavanoids derivatives from the root bark of Broussonetia papyrifera as a tyrosinase inhibitor. Ind. Crops Prod. 2019, 138, 111445.
  16. Ryu, H.W.; Curtis-Long, M.J.; Jung, S.; Jeong, I.Y.; Kim, D.S.; Kang, K.Y.; Park, K.H. Anticholinesterase potential of flavonols from paper mulberry (Broussonetia papyrifera) and their kinetic studies. Food Chem. 2012, 132, 1244–1250.
  17. Lin, L.W.; Chen, H.Y.; Wu, C.R.; Liao, P.M.; Lin, Y.T.; Hsieh, M.T.; Ching, H. Comparison with various parts of Broussonetia papyrifera as to the antinociceptive and anti-inflammatory activities in rodents. Biosci. Biotechnol. Biochem. 2008, 72, 2377–2384.
  18. Ko, H.H.; Yu, S.M.; Ko, F.N.; Teng, C.M.; Lin, C.N. Bioactive constituents of Morus australis and Broussonetia papyrifera. J. Nat. Prod. 1997, 60, 1008–1011.
  19. Sohn, H.Y.; Son, K.H.; Kwon, C.S.; Kwon, G.S.; Kang, S.S. Antimicrobial and cytotoxic activity of 18 prenylated flavonoids isolated from medicinal plants: Morus alba L., Morus mongolica Schneider, Broussnetia papyrifera (L.) Vent, Sophora flavescens Ait and Echinosophora koreensis Nakai. Phytomedicine 2004, 11, 666–672.
  20. Sohn, H.Y.; Kwon, C.S.; Son, K.H. Fungicidal effect of prenylated flavonol, papyriflavonol A, isolated from Broussonetia papyrifera (L.) vent. against Candida albicans. J. MicroBiol. Biotechnol. 2010, 20, 1397–1402.
  21. Dou, C.Z.; Liu, Y.F.; Zhang, L.L.; Chen, S.H.; Hu, C.Y.; Liu, Y.; Zhao, Y.T. Polyphenols from Broussonetia papyrifera Induce Apoptosis of HepG2 Cells via Inactivation of ERK and AKT Signaling Pathways. Evid. Based Complement. Altern. Med. 2021, 2021, 8841706.
  22. Guo, F.; Feng, L.; Huang, C.; Ding, H.; Zhang, X.; Wang, Z.; Li, Y. Prenylflavone derivatives from Broussonetia papyrifera, inhibit the growth of breast cancer cells in vitro and in vivo. Phytochem. Lett. 2013, 6, 331–336.
  23. Chang, C.-F.; Wang, C.-H.; Lee, T.-H.; Liu, S.-M. Bioactive compounds from the bark of Broussonetia papyrifera after solid fermentation with a white rot fungus Perenniporia tephropora. J. Wood Chem. Technol. 2020, 40, 317–330.
  24. Xu, M.-L.; Wang, L.; Hu, J.-H.; Lee, S.K.; Wang, M.-H. Antioxidant activities and related polyphenolic constituents of the methanol extract fractions from Broussonetia papyrifera stem bark and wood. Food Sci. Biotechnol. 2010, 19, 677–682.
  25. Zheng, Z.-P.; Cheng, K.-W.; Chao, J.; Wu, J.; Wang, M. Tyrosinase inhibitors from paper mulberry (Broussonetia papyrifera). Food Chem. 2008, 106, 529–535.
  26. Malaník, M.; Treml, J.; Leláková, V.; Nykodýmová, D.; Oravec, M.; Marek, J.; Šmejkal, K. Anti-inflammatory and antioxidant properties of chemical constituents of Broussonetia papyrifera. Bioorg. Chem. 2020, 104, 104298.
  27. Zhou, X.J.; Mei, R.Q.; Zhang, L.; Lu, Q.; Zhao, J.; Adebayo, A.H.; Cheng, Y.X. Antioxidant phenolics from Broussonetia papyrifera fruits. J. Asian Nat. Prod. Res. 2010, 12, 399–406.
  28. Mei, R.Q.; Wang, Y.H.; Du, G.H.; Liu, G.M.; Zhang, L.; Cheng, Y.X. Antioxidant Lignans from the Fruits of Broussonetia papyrifera. J. Nat. Prod. 2009, 72, 621–625.
  29. Sun, J.; Liu, S.F.; Zhang, C.S.; Yu, L.N.; Bi, J.; Zhu, F.; Yang, Q.L. Chemical composition and antioxidant activities of Broussonetia papyrifera fruits. PLoS ONE 2012, 7, e32021.
  30. Hongfang, Z.; Linzhang, H.; Luping, Q.; Baokang, H. Antioxidative and anti-inflammatory properties of Chushizi oil from Fructus Broussonetiae. J. Med. Plant. Res. 2011, 5, 6407–6412.
  31. Pang, S.Q.; Wang, G.Q.; Lin, J.S.; Diao, Y.; Xu, R.A. Cytotoxic activity of the alkaloids from Broussonetia papyrifera fruits. Pharm. Biol. 2014, 52, 1315–1319.
  32. Pang, S.-Q.; Wang, G.-Q.; Huang, B.-K.; Zhang, Q.-Y.; Qin, L.-P. Isoquinoline alkaloids from Broussonetia papyrifera fruits. Chem. Nat. Compd. 2007, 43, 100–102.
  33. Han, Q.H.; Wu, Z.L.; Huang, B.; Sun, L.Q.; Ding, C.B.; Yuan, S.; Zhang, Z.W.; Chen, Y.E.; Hu, C.; Zhou, L.J.; et al. Extraction, antioxidant and antibacterial activities of Broussonetia papyrifera fruits polysaccharides. Int. J. Biol. Macromol. 2016, 92, 116–124.
  34. Kumar, N.N.; Ramakrishnaiah, H.; Krishna, V.; Deepalakshmi, A. GC-MS analysis and antimicrobial activity of seed oil of Broussonetia papyrifera (L.) Vent. Int. J. Pharm. Sci. Res. 2015, 6, 3954.
  35. Ran, X.K.; Wang, X.T.; Liu, P.P.; Chi, Y.X.; Wang, B.J.; Dou, D.Q.; Kang, T.G.; Xiong, W. Cytotoxic constituents from the leaves of Broussonetia papyrifera. Chin. J. Nat. Med. 2013, 11, 269–273.
  36. Cao, X.; Yang, L.; Xue, Q.; Yao, F.; Sun, J.; Yang, F.; Liu, Y. Antioxidant evaluation-guided chemical profiling and structure-activity analysis of leaf extracts from five trees in Broussonetia and Morus (Moraceae). Sci Rep. 2020, 10, 4808.
  37. Ko, H.H.; Chang, W.L.; Lu, T.M. Antityrosinase and antioxidant effects of ent-kaurane diterpenes from leaves of Broussonetia papyrifera. J. Nat. Prod. 2008, 71, 1930–1933.
  38. Yang, C.; Li, F.; Du, B.; Chen, B.; Wang, F.; Wang, M. Isolation and characterization of new phenolic compounds with estrogen biosynthesis-inhibiting and antioxidation activities from Broussonetia papyrifera leaves. PLoS ONE 2014, 9, e94198.
  39. Lee, D.; Bhat, K.P.; Fong, H.H.; Farnsworth, N.R.; Pezzuto, J.M.; Kinghorn, A.D. Aromatase inhibitors from Broussonetia papyrifera. J. Nat. Prod. 2001, 64, 1286–1293.
  40. Thungmungmee, S.; Ingkaninan, K.; Pitaksuteepong, T. Stability study of Broussonetia papyrifera leaf extract. Thai J. Pharm. Sci. 2012, 36, 197–200.
  41. Hwang, J.-H.; Lee, B.M. Inhibitory effects of plant extracts on tyrosinase, L-DOPA oxidation, and melanin synthesis. J. Toxicol. Environ. Health A 2007, 70, 393–407.
  42. Wang, L.; Son, H.J.; Xu, M.-L.; Hu, J.-H.; Wang, M.-H. Anti-inflammatory and anticancer properties of dichloromethane and butanol fractions from the stem bark of Broussonetia papyrifera. J. Korean Soc. Appl. Biol. Chem. 2010, 53, 297–303.
  43. Wu, W.-T. Evaluation of anti-inflammatory effects of Broussonetia papyrifera stem bark. Indian J. Pharmacol. 2012, 44, 26.
  44. Lee, J.M.; Choi, S.S.; Park, M.H.; Jang, H.; Lee, Y.H.; Khim, K.W.; Oh, S.R.; Park, J.; Ryu, H.W.; Choi, J.H. Broussonetia papyrifera Root Bark Extract Exhibits Anti-inflammatory Effects on Adipose Tissue and Improves Insulin Sensitivity Potentially Via AMPK Activation. Nutrients 2020, 12, 773.
  45. Cheng, Z.; Lin, C.; Hwang, T.; Teng, C. Broussochalcone A, a potent antioxidant and effective suppressor of inducible nitric oxide synthase in lipopolysaccharide-activated macrophages. Biochem. Pharmacol. 2001, 61, 939–946.
  46. Ko, H.J.; Jin, J.H.; Kwon, O.S.; Jong Taek Kim, K.H.S.; Kim, H.P. Inhibition of experimental lung inflammation and bronchitis by phytoformula containing Broussonetia papyrifera and Lonicera japonica. Korean Soc. Appl. Pharmacol. 2011, 19, 324–330.
  47. Kwak, W.J.; Moon, T.C.; Lin, C.X.; Rhyn, H.G.; Jung, H.; Lee, E.; Kwon, D.Y.; Son, K.H.; Kim, H.P.; Kang, S.S.; et al. Papyriflavonol A from Broussonetia papyrifera inhibits the passive cutaneous anaphylaxis reaction and has a secretory phospholipase A2-inhibitory activity. Biol. Pharm. Bull. 2003, 26, 299–302.
  48. Tsai, F.H.; Lien, J.C.; Lin, L.W.; Chen, H.Y.; Ching, H.; Wu, C.R. Protective effect of Broussonetia papyrifera against hydrogen peroxide-induced oxidative stress in SH-SY5Y cells. Biosci. Biotechnol. Biochem. 2009, 73, 1933–1939.
  49. Yao, L.; Xiong, L.; Yoo, C.G.; Dong, C.; Meng, X.; Dai, J.; Ragauskas, A.J.; Yang, C.; Yu, J.; Yang, H. Correlations of the physicochemical properties of organosolv lignins from Broussonetia papyrifera with their antioxidant activities. Sustain. Energy Fuels 2020, 4, 5114–5119.
  50. Tao, H.; Si, B.; Xu, W.; Tu, Y.; Diao, Q. Effect of Broussonetia papyrifera L. silage on blood biochemical parameters, growth performance, meat amino acids and fatty acids compositions in beef cattle. Asian Australas J. Anim. Sci. 2020, 33, 732–741.
  51. Si, B.; Tao, H.; Zhang, X.; Guo, J.; Cui, K.; Tu, Y.; Diao, Q. Effect of Broussonetia papyrifera L. (paper mulberry) silage on dry matter intake, milk composition, antioxidant capacity and milk fatty acid profile in dairy cows. Asian Australas J. Anim. Sci. 2018, 31, 1259–1266.
  52. Chen, G.; Shui, S.; Chai, M.; Wang, D.; Su, Y.; Wu, H.; Sui, X.; Yin, Y. Effects of Paper Mulberry (Broussonetia papyrifera) Leaf Extract on Growth Performance and Fecal Microflora of Weaned Piglets. Biomed. Res. Int. 2020, 2020, 6508494.
  53. Amir, M.K.; Rizwana, A.Q.; Syed, A.G.; Faizan, U. Antimicrobial activity of selected medicinal plants of Margalla hills, Islamabad, Pakistan. J. Med. Plants Res. 2011, 5, 4665–4670.
  54. Geng, C.-A.; Yan, M.-H.; Zhang, X.-M.; Chen, J.-J. Anti-oral microbial flavanes from Broussonetia papyrifera under the guidance of bioassay. Nat. Prod. Bioprospect. 2019, 9, 139–144.
  55. Kumar, N.N.; Ramakrishnaiah, H.; Krishna, V.; Radhika, M. Cytotoxic activity of Broussonetia papyrifera (L.) Vent on MCF-7, HeLa and HepG2 cell lines. Int. J. Pharm. Pharm. Sci. 2014, 6, 339–342.
  56. Shin, S.; Son, Y.; Liu, K.H.; Kang, W.; Oh, S. Cytotoxic activity of broussochalcone a against colon and liver cancer cells by promoting destruction complex-independent β-catenin degradation. Food Chem. Toxicol. 2019, 131, 110550.
  57. Park, S.H.; Lee, J.; Shon, J.C.; Phuc, N.M.; Jee, J.G.; Liu, K.H. The inhibitory potential of Broussochalcone A for the human cytochrome P450 2J2 isoform and its anti-cancer effects via FOXO3 activation. Phytomedicine 2018, 42, 199–206.
  58. D’Amelio, F.; Mirhom, Y. Paper mulberry and its preparations as tyrosinase inhibitors and skin lightening agents. Cosmet. Toiletr. Manufact. Worldw. 2000, 2000, 31–34.
  59. Lee, J.Y.; Lim, H.J.J. Skin-Whitening Composition Containing Extracts from Trees Including Paper Mulberry. U.S. Patent 14/478,195, 25 December 2014. Available online: https://patents.google.com/patent/WO2012002783A3/en (accessed on 6 October 2022).
  60. Lee, J.Y.; Lim, H.J. Skin-Whitening Composition for External Application on Skin Containing Extracts from Paper Mulberry Flowers and Fruits. U.S. Patent 13/807,904, 2 May 2013. Available online: https://patents.google.com/patent/SG186891A1/en (accessed on 6 October 2022).
  61. Yun, W.; Lee, Y.; Kim, D.; Kim, J.; Sung, J.; Lee, H.; Son, H.; Hwang, D.; Jung, Y. The preparation of mask-pack sheet blended with Styela clava tunics and natural polymer. Text. Color. Finish. 2017, 29, 45–54.
  62. Kwon, S.S.; Yeom, M.H.; Park, C.M.; Kim, D.H.; Kim, H.K. Mask Pack Comprising Cosmetic Cotton-Like Material Prepared from Paper Mulberry. U.S. Patent No 8,329,234, 11 December 2012. Available online: https://patents.google.com/patent/WO2010062142A2/en (accessed on 6 October 2022).
  63. Go Un, H.; Soon Sang, K.; Sun Young, P.; Jeong Cheol, H.; Youn Joon, K.; Sang Hoon, H. Antioxidant Cosmetic Composition Containing White Ginseng Powder and White Paper Powder. PubChem. Patent KR-20110035265-A, 2009. Available online: https://pubchem.ncbi.nlm.nih.gov/patent/KR-20110035265-A (accessed on 6 October 2022).
  64. Kim, J.-S.; Kim, J.-S. Effect of paper mulberry extract on damaged hair. Asian J. Beauty Cosmetol. 2021, 19, 175–182.
  65. Lee, Y.H.; Nam, G.; Kim, M.-K.; Cho, S.-C.; Choi, B.Y. Broussonetia papyrifera Promotes Hair Growth Through the Regulation of β-Catenin and STAT6 Target Proteins: A Phototrichogram Analysis of Clinical Samples. Cosmetics 2020, 7, 40.
More
ScholarVision Creations