Vitamins in Inflammatory Bowel Disease: Comparison
Please note this is a comparison between Version 2 by Camila Xu and Version 1 by Sanja Dragasevic.

The pathogenesis of inflammatory bowel disease (IBD) highlights the role of mucosal immunology and changes in the gut microbiome triggered by genetic and environmental factors including diet regiments, as suggested by many nutritional studies. Along with medications usually used for IBD treatment, therapeutic strategies also include the supplementation of micronutrients such as vitamin D, folic acid, iron, and zinc.

  • IBD
  • genetics
  • vitamin D
  • B9

1. Introduction

The pathogenesis of inflammatory bowel disease (IBD) highlights the role of mucosal immunology and changes in the gut microbiome triggered by genetic and environmental factors including diet regiments, as suggested by many nutritional studies [1,2,3,4][1][2][3][4]. Oxidative damage that occurs in CD and UC is a result of an altered balance between free radical production with antioxidant depletion and micronutrients, leading to antioxidant repletion [1,2,3,4][1][2][3][4]. The presence or absence of anti-inflammatory agents such as antioxidants obtained through dietary intake or supplementation can impact the course of IBD. The intestinal tissue damage and altered gut microbiota caused by oxidative stress are significantly impacted by the presence of tissue repair mediators. Modulating the intestinal microbiota remains an attractive therapeutic potential for IBD [1,2,3,4][1][2][3][4]. Changes in dietary habits were also found to be strongly associated with a determined increased risk of autoimmune disease in a pediatric population [5,6][5][6]. So far, dietary constituents have been considered precipitants or promoters of complex interactions in IBD pathology, while nutritional deficiency with imbalances of specific micronutrients has been associated with the course of the disease [1,2][1][2]. Nevertheless, the role of modifiable environmental and behavioral factors such as diet remains poorly understood.
The majority of IBD patients show an interest in the active management of their disease, especially through dietary modifications [7]. Specifically, long-term dieting has shown the most significant effect in shaping the intestinal microbiome [8]. Therapeutic strategies in IBD, along with medications, encompass nutritional interventions including not only the elimination of potential food triggers but also the improvement of the nutritional status of patients [1,2,9][1][2][9]. The supplementation of micronutrients and macronutrients is important in everyday clinical practice in reducing the primary or secondary symptoms of disease [2]. Nevertheless, overuse or treatment with doses far exceeding the recommended daily allowances can be harmful and lead to adverse effects on the course of IBD. Especially during the coronavirus (COVID-19) pandemic, the frequent use of over-the-counter supplements among IBD patients has contributed to inadequate and uncontrolled strategies in therapy management.

2. Role of Vitamins in Inflammatory Bowel Disease

2.1. Vitamin D

According to numerous investigations, the deficiency of vitamin D has been highlighted as a key factor in the pathogenesis of IBD (Table 1) [21,22][10][11]. Vitamin D is a liposoluble vitamin, and its hormonal form of 1,25-dihydroxy vitamin D3 [1,25(OH)2D3], also called calcitriol, is important for various pathways of the immune system mediated via nuclear vitamin D receptor (VDR) in immune cells such as T and B lymphocytes, monocytes and macrophages. Vitamin D has a role in immune cell differentiation, the modulation of the gut microbiota, gene transcription, and barrier integrity [22][11]. A reduction in the serum levels of vitamin D is associated with an increased risk for infection (Table 1) [21,22][10][11]. The role of vitamin D includes the support of intestinal epithelial junctions and the upregulation of junction proteins including claudins, ZO-1, and occludins. The disruption of the mucosal barrier was noted in an IBD investigation in polarized epithelial Caco-2bbe cells grown in a medium with or without vitamin D and challenged with adherent invasive E. coli strain (AIEC). The investigation showed that Caco-2bbe cells incubated with 1,25(OH)2D3 were protected against AIEC-induced disruption. Additionally, vitamin D-deficient mice with DSS-induced colitis showed significant increases in the quantities of Bacteroidetes and were more susceptible to AIEC colonization. According to previous studies, vitamin D contributes to the homeostasis of the intestinal barrier function and protection against adherent invasive E. coli [23][12]. Additionally, it has been suggested that patients with IBD are at an increased risk of Clostridium difficile infection. Vitamin D has a prophylactic role against infection, influencing the production of antimicrobial compounds such as cathelicidins and modulating the microbiome [24][13]. VDR regulates the biological action of 1,25(OH)2D3 and has a role in the genetic, immune, environmental and microbial aspects of IBD. Dionne at al. study indicated that 1,25(OH)2D3 in CD patients significantly decreases the proinflammatory activity of M1-type macrophage but does not provide a reduction in the anti-inflammatory actions of M2-type macrophages. The level of anti-inflammatory cytokine IL-10 was not affected in the investigation [25][14]. The deficiency of vitamin D is also correlated with disease activity in IBD patients, so administration targeting a concentration of 30 ng/mL could potentially reduce disease activity [22][11]. Even though reports have shown lower vitamin D levels in IBD patients compared with the healthy population, it is not clear yet if the vitamin D deficiency is a consequence of the disease itself or if it has a role in disease pathogenesis. A study that followed subjects in two time points before (up to 8 years) and one time point after IBD diagnosis showed that the vitamin D level was not altered in IBD patients prior to disease onset compared with matched controls, but it was reduced after the disease was established [26][15].
Table 1.
Frequent deficiencies of micronutrients in IBD.

References

  1. Sasson, A.N.; Ananthakrishnan, A.N.; Raman, M. Diet in Treatment of Inflammatory Bowel Diseases. Clin. Gastroenterol. Hepatol. 2021, 19, 425–435.e3.
  2. Ghishan, F.K.; Kiela, P.R. Vitamins and Minerals in Inflammatory Bowel Disease. Gastroenterol. Clin. N. Am. 2017, 46, 797–808.
  3. Weisshof, R.; Chermesh, I. Micronutrient deficiencies in inflammatory bowel disease. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 576–581.
  4. Massironi, S.; Rossi, R.E.; Cavalcoli, F.A.; Della Valle, S.; Fraquelli, M.; Conte, D. Nutritional deficiencies in inflammatory bowel disease: Therapeutic approaches. Clin. Nutr. 2013, 32, 904–910.
  5. Benchimol, E.I.; Mack, D.R.; Guttmann, A.; Nguyen, G.C.; To, T.; Mojaverian, N.; Quach, P.; Manuel, D.G. Inflammatory bowel disease in immigrants to Canada and their children: A population-based cohort study. Am. J. Gastroenterol. 2015, 110, 553–563.
  6. Rempel, J.; Grover, K.; El-Matary, W. Micronutrient Deficiencies and Anemia in Children with Inflammatory Bowel Disease. Nutrients 2021, 13, 236.
  7. Cox, S.R.; Clarke, H.; O’Keeffe, M.; Dubois, P.; Irving, P.M.; Lindsay, J.O.; Whelan, K. Nutrient, Fibre, and FODMAP Intakes and Food-related Quality of Life in Patients with Inflammatory Bowel Disease, and Their Relationship with Gastrointestinal Symptoms of Differing Aetiologies. J. Crohns. Colitis 2021, 15, 2041–2053.
  8. Sauk, J. Diet and Microbiome in Inflammatory Bowel Diseases. In Nutritional Management of Inflammatory Bowel Diseases; Springer International Publishing: Cham, Switzerland, 2016; pp. 3–16.
  9. Hart, A.R.; Chan, S.S.M. Dietary Risk Factors for the Onset and Relapse of Inflammatory Bowel Disease. In Nutritional Management of Inflammatory Bowel Diseases; Springer International Publishing: Cham, Switzerland, 2016; pp. 17–28.
  10. Jarmakiewicz-Czaja, S.; Piątek, D.; Filip, R. The Influence of Nutrients on Inflammatory Bowel Diseases. J. Nutr. Metab. 2020, 2020, 2894169.
  11. Battistini, C.; Ballan, R.; Herkenhoff, M.E.; Saad, S.M.I.; Sun, J. Vitamin D Modulates Intestinal Microbiota in Inflammatory Bowel Diseases. Int. J. Mol. Sci. 2020, 22, 362.
  12. Assa, A.; Vong, L.; Pinnell, L.J.; Rautava, J.; Avitzur, N.; Johnson-Henry, K.C.; Sherman, P.M. Vitamin D deficiency predisposes to adherent-invasive Escherichia coli-induced barrier dysfunction and experimental colonic injury. Inflamm. Bowel Dis. 2015, 21, 297–306.
  13. Trifan, A.; Stanciu, C.; Stoica, O.; Girleanu, I.; Cojocariu, C. Impact of Clostridium difficile infection on inflammatory bowel disease outcome: A review. World J. Gastroenterol. 2014, 20, 11736–11742.
  14. Dionne, S.; Duchatelier, C.-F.; Seidman, E.G. The influence of vitamin D on M1 and M2 macrophages in patients with Crohn’s disease. Innate Immun. 2017, 23, 557–565.
  15. Limketkai, B.N.; Singla, M.B.; Rodriguez, B.; Veerappan, G.R.; Betteridge, J.D.; Ramos, M.A.; Hutfless, S.M.; Brant, S.R. Levels of Vitamin D Are Low After Crohn’s Disease Is Established But Not Before. Clin. Gastroenterol. Hepatol. 2020, 18, 1769–1776.e1.
  16. Ratajczak, A.E.; Szymczak-Tomczak, A.; Rychter, A.M.; Zawada, A.; Dobrowolska, A.; Krela-Kaźmierczak, I. Does Folic Acid Protect Patients with Inflammatory Bowel Disease from Complications? Nutrients 2021, 13, 4036.
  17. Moein, S.; Vaghari-Tabari, M.; Qujeq, D.; Kashifard, M.; Shokri-Shirvani, J.; Hajian-Tilaki, K. Association between serum folate with inflammatory markers, disease clinical activity and serum homocysteine in patients with inflammatory bowel disease. Does folate level have an effect on maintaining clinical remission? Acta Biomed. 2020, 91, e2020106.
  18. Drzewoski, J.; Gasiorowska, A.; Małecka-Panas, E.; Bald, E.; Czupryniak, L. Plasma total homocysteine in the active stage of ulcerative colitis. J. Gastroenterol. Hepatol. 2006, 21, 739–743.
  19. Madanchi, M.; Fagagnini, S.; Fournier, N.; Biedermann, L.; Zeitz, J.; Battegay, E.; Zimmerli, L.; Vavricka, S.R.; Rogler, G.; Scharl, M.; et al. The Relevance of Vitamin and Iron Deficiency in Patients with Inflammatory Bowel Diseases in Patients of the Swiss IBD Cohort. Inflamm. Bowel Dis. 2018, 24, 1768–1779.
  20. Hashemi, J.; Asadi, J.; Amiriani, T.; Besharat, S.; Roshandel, G.R.; Joshaghani, H.R. Serum vitamins A and E deficiencies in patients with inflammatory bowel disease. Saudi Med. J. 2013, 34, 432–434.
  21. Alkhouri, R.H.; Hashmi, H.; Baker, R.D.; Gelfond, D.; Baker, S.S. Vitamin and mineral status in patients with inflammatory bowel disease. J. Pediatr. Gastroenterol. Nutr. 2013, 56, 89–92.
  22. da Rocha Lima, B.; Pichi, F.; Lowder, C.Y. Night blindness and Crohn’s disease. Int. Ophthalmol. 2014, 34, 1141–1144.
  23. Stein, J.; Hartmann, F.; Dignass, A.U. Diagnosis and management of iron deficiency anemia in patients with IBD. Nat. Rev. Gastroenterol. Hepatol. 2010, 7, 599–610.
  24. Vagianos, K.; Bector, S.; McConnell, J.; Bernstein, C.N. Nutrition assessment of patients with inflammatory bowel disease. JPEN J. Parenter. Enter. Nutr. 2007, 31, 311–319.
  25. Siva, S.; Rubin, D.T.; Gulotta, G.; Wroblewski, K.; Pekow, J. Zinc Deficiency is Associated with Poor Clinical Outcomes in Patients with Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2017, 23, 152–157.
  26. Ananthakrishnan, A.N.; Cheng, S.-C.; Cai, T.; Cagan, A.; Gainer, V.S.; Szolovits, P.; Shaw, S.Y.; Churchill, S.; Karlson, E.W.; Murphy, S.N.; et al. Association between reduced plasma 25-hydroxy vitamin D and increased risk of cancer in patients with inflammatory bowel diseases. Clin. Gastroenterol. Hepatol. 2014, 12, 821–827.
  27. Zhang, Y.; Leung, D.Y.M.; Richers, B.N.; Liu, Y.; Remigio, L.K.; Riches, D.W.; Goleva, E. Vitamin D inhibits monocyte/macrophage proinflammatory cytokine production by targeting MAPK phosphatase-1. J. Immunol. 2012, 188, 2127–2135.
  28. Reich, K.M.; Fedorak, R.N.; Madsen, K.; Kroeker, K.I. Vitamin D improves inflammatory bowel disease outcomes: Basic science and clinical review. World J. Gastroenterol. 2014, 20, 4934–4947.
  29. Niforou, A.; Konstantinidou, V.; Naska, A. Genetic Variants Shaping Inter-individual Differences in Response to Dietary Intakes-A Narrative Review of the Case of Vitamins. Front. Nutr. 2020, 7, 558598.
  30. Wang, T.J.; Zhang, F.; Richards, J.B.; Kestenbaum, B.; van Meurs, J.B.; Berry, D.; Kiel, D.P.; Streeten, E.A.; Ohlsson, C.; Koller, D.L.; et al. Common genetic determinants of vitamin D insufficiency: A genome-wide association study. Lancet 2010, 376, 180–188.
  31. Ahn, J.; Yu, K.; Stolzenberg-Solomon, R.; Simon, K.C.; McCullough, M.L.; Gallicchio, L.; Jacobs, E.J.; Ascherio, A.; Helzlsouer, K.; Jacobs, K.B.; et al. Genome-wide association study of circulating vitamin D levels. Hum. Mol. Genet. 2010, 19, 2739–2745.
  32. Ramagopalan, S.V.; Heger, A.; Berlanga, A.J.; Maugeri, N.J.; Lincoln, M.R.; Burrell, A.; Handunnetthi, L.; Handel, A.E.; Disanto, G.; Orton, S.-M.; et al. A ChIP-seq defined genome-wide map of vitamin D receptor binding: Associations with disease and evolution. Genome Res. 2010, 20, 1352–1360.
  33. Wu, S.; Zhang, Y.-G.; Lu, R.; Xia, Y.; Zhou, D.; Petrof, E.O.; Claud, E.C.; Chen, D.; Chang, E.B.; Carmeliet, G.; et al. Intestinal epithelial vitamin D receptor deletion leads to defective autophagy in colitis. Gut 2015, 64, 1082–1094.
  34. Simmons, J.D.; Mullighan, C.; Welsh, K.I.; Jewell, D.P. Vitamin D receptor gene polymorphism: Association with Crohn’s disease susceptibility. Gut 2000, 47, 211–214.
  35. Martin, K.; Radlmayr, M.; Borchers, R.; Heinzlmann, M.; Folwaczny, C. Candidate genes colocalized to linkage regions in inflammatory bowel disease. Digestion 2002, 66, 121–126.
  36. Xue, L.-N.; Xu, K.-Q.; Zhang, W.; Wang, Q.; Wu, J.; Wang, X.-Y. Associations between vitamin D receptor polymorphisms and susceptibility to ulcerative colitis and Crohn’s disease: A meta-analysis. Inflamm. Bowel Dis. 2013, 19, 54–60.
  37. Dresner-Pollak, R.; Ackerman, Z.; Eliakim, R.; Karban, A.; Chowers, Y.; Fidder, H.H. The BsmI vitamin D receptor gene polymorphism is associated with ulcerative colitis in Jewish Ashkenazi patients. Genet. Test. 2004, 8, 417–420.
  38. Pei, F.H.; Wang, Y.J.; Gao, S.L.; Liu, B.R.; Du, Y.J.; Liu, W.; Yu, H.Y.; Zhao, L.X.; Chi, B.R. Vitamin D receptor gene polymorphism and ulcerative colitis susceptibility in Han Chinese. J. Dig. Dis. 2011, 12, 90–98.
  39. Naderi, N.; Farnood, A.; Habibi, M.; Derakhshan, F.; Balaii, H.; Motahari, Z.; Agah, M.R.; Firouzi, F.; Rad, M.G.; Aghazadeh, R.; et al. Association of vitamin D receptor gene polymorphisms in Iranian patients with inflammatory bowel disease. J. Gastroenterol. Hepatol. 2008, 23, 1816–1822.
  40. Xia, S.-L.; Yu, L.-Q.; Chen, H.; Hu, D.-Y.; Shao, X.-X.; Guo, M.-D.; Jiang, L.-J.; Lin, X.-X.; Lin, X.-Q.; Jiang, Y. Association of vitamin D receptor gene polymorphisms with the susceptibility to ulcerative colitis in patients from Southeast China. J. Recept. Signal Transduct. Res. 2015, 35, 530–535.
  41. Gisbert-Ferrándiz, L.; Salvador, P.; Ortiz-Masiá, D.; Macías-Ceja, D.C.; Orden, S.; Esplugues, J.V.; Calatayud, S.; Hinojosa, J.; Barrachina, M.D.; Hernández, C. A Single Nucleotide Polymorphism in the Vitamin D Receptor Gene Is Associated with Decreased Levels of the Protein and a Penetrating Pattern in Crohn’s Disease. Inflamm. Bowel Dis. 2018, 24, 1462–1470.
  42. Bermejo, F.; Algaba, A.; Guerra, I.; Chaparro, M.; De-La-Poza, G.; Valer, P.; Piqueras, B.; Bermejo, A.; García-Alonso, J.; Pérez, M.-J.; et al. Should we monitor vitamin B12 and folate levels in Crohn’s disease patients? Scand. J. Gastroenterol. 2013, 48, 1272–1277.
  43. Weisberg, I.; Tran, P.; Christensen, B.; Sibani, S.; Rozen, R. A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity. Mol. Genet. Metab. 1998, 64, 169–172.
  44. Yang, P.; Wang, L.; Tang, X.; Liang, Y. The methylenetetrahydrofolate reductase 1298 A>C polymorphism is associated with an increased risk of inflammatory bowel disease: Evidence from a meta-analysis. Expert Rev. Clin. Immunol. 2021, 17, 1221–1229.
  45. Shao, W.; Yuan, Y.; Li, Y. Association Between MTHFR C677T Polymorphism and Methotrexate Treatment Outcome in Rheumatoid Arthritis Patients: A Systematic Review and Meta-Analysis. Genet. Test. Mol. Biomark. 2017, 21, 275–285.
  46. Maroni, L.; van de Graaf, S.F.J.; Hohenester, S.D.; Oude Elferink, R.P.J.; Beuers, U. Fucosyltransferase 2: A genetic risk factor for primary sclerosing cholangitis and Crohn’s disease—A comprehensive review. Clin. Rev. Allergy Immunol. 2015, 48, 182–191.
  47. Cheng, S.; Hu, J.; Wu, X.; Pan, J.-A.; Jiao, N.; Li, Y.; Huang, Y.; Lin, X.; Zou, Y.; Chen, Y.; et al. Altered gut microbiome in FUT2 loss-of-function mutants in support of personalized medicine for inflammatory bowel diseases. J. Genet. Genom. 2021, 48, 771–780.
  48. Nongmaithem, S.S.; Joglekar, C.V.; Krishnaveni, G.V.; Sahariah, S.A.; Ahmad, M.; Ramachandran, S.; Gandhi, M.; Chopra, H.; Pandit, A.; Potdar, R.D.; et al. GWAS identifies population-specific new regulatory variants in FUT6 associated with plasma B12 concentrations in Indians. Hum. Mol. Genet. 2017, 26, 2551–2564.
  49. Borel, P.; Desmarchelier, C. Genetic Variations Associated with Vitamin A Status and Vitamin A Bioavailability. Nutrients 2017, 9, 246.
  50. Fransén, K.; Franzén, P.; Magnuson, A.; Elmabsout, A.A.; Nyhlin, N.; Wickbom, A.; Curman, B.; Törkvist, L.; D’Amato, M.; Bohr, J.; et al. Polymorphism in the retinoic acid metabolizing enzyme CYP26B1 and the development of Crohn’s Disease. PLoS ONE 2013, 8, e72739.
  51. De Falco, L.; Tortora, R.; Imperatore, N.; Bruno, M.; Capasso, M.; Girelli, D.; Castagna, A.; Caporaso, N.; Iolascon, A.; Rispo, A. The role of TMPRSS6 and HFE variants in iron deficiency anemia in celiac disease. Am. J. Hematol. 2018, 93, 383–393.
  52. Urbaszek, K.; Drabińska, N.; Szaflarska-Popławska, A.; Jarocka-Cyrta, E. TMPRSS6 rs855791 Polymorphism Status in Children with Celiac Disease and Anemia. Nutrients 2021, 13, 2782.
  53. Collij, V.; Imhann, F.; Vich Vila, A.; Fu, J.; Dijkstra, G.; Festen, E.A.M.; Voskuil, M.D.; Daly, M.J.; Xavier, R.J.; Wijmenga, C.; et al. SLC39A8 missense variant is associated with Crohn’s disease but does not have a major impact on gut microbiome composition in healthy subjects. PLoS ONE 2019, 14, e0211328.
  54. Eloranta, J.J.; Wenger, C.; Mwinyi, J.; Hiller, C.; Gubler, C.; Vavricka, S.R.; Fried, M.; Kullak-Ublick, G.A.; Swiss IBD Cohort Study Group. Association of a common vitamin D-binding protein polymorphism with inflammatory bowel disease. Pharmacogenet. Genom. 2011, 21, 559–564.
  55. Lund-Nielsen, J.; Vedel-Krogh, S.; Kobylecki, C.J.; Brynskov, J.; Afzal, S.; Nordestgaard, B.G. Vitamin D and Inflammatory Bowel Disease: Mendelian Randomization Analyses in the Copenhagen Studies and UK Biobank. J. Clin. Endocrinol. Metab. 2018, 103, 3267–3277.
  56. Usategui-Martín, R.; De Luis-Román, D.-A.; Fernández-Gómez, J.M.; Ruiz-Mambrilla, M.; Pérez-Castrillón, J.-L. Vitamin D Receptor (VDR) Gene Polymorphisms Modify the Response to Vitamin D Supplementation: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 360.
  57. Däbritz, J.; Musci, J.; Foell, D. Diagnostic utility of faecal biomarkers in patients with irritable bowel syndrome. World J. Gastroenterol. 2014, 20, 363–375.
  58. Gioxari, A.; Amerikanou, C.; Papada, E.; Zioga, E.; Georgoulis, A.D.; Bamias, G.; Kaliora, A.C. Serum Vitamins D, B9 and B12 in Greek Patients with Inflammatory Bowel Diseases. Nutrients 2020, 12, 3734.
  59. Kunisawa, J.; Hashimoto, E.; Ishikawa, I.; Kiyono, H. A pivotal role of vitamin B9 in the maintenance of regulatory T cells in vitro and in vivo. PLoS ONE 2012, 7, e32094.
  60. Samblas, M.; Martínez, J.A.; Milagro, F. Folic Acid Improves the Inflammatory Response in LPS-Activated THP-1 Macrophages. Mediat. Inflamm. 2018, 2018, 1312626.
  61. Burr, N.E.; Hull, M.A.; Subramanian, V. Folic Acid Supplementation May Reduce Colorectal Cancer Risk in Patients with Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. J. Clin. Gastroenterol. 2017, 51, 247–253.
  62. Piovani, D.; Danese, S.; Peyrin-Biroulet, L.; Nikolopoulos, G.K.; Lytras, T.; Bonovas, S. Environmental Risk Factors for Inflammatory Bowel Diseases: An Umbrella Review of Meta-analyses. Gastroenterology 2019, 157, 647–659.e4.
  63. Zezos, P.; Papaioannou, G.; Nikolaidis, N.; Vasiliadis, T.; Giouleme, O.; Evgenidis, N. Hyperhomocysteinemia in ulcerative colitis is related to folate levels. World J. Gastroenterol. 2005, 11, 6038–6042.
  64. Pan, Y.; Liu, Y.; Guo, H.; Jabir, M.S.; Liu, X.; Cui, W.; Li, D. Associations between Folate and Vitamin B12 Levels and Inflammatory Bowel Disease: A Meta-Analysis. Nutrients 2017, 9, 382.
  65. Oussalah, A.; Guéant, J.-L.; Peyrin-Biroulet, L. Meta-analysis: Hyperhomocysteinaemia in inflammatory bowel diseases. Aliment. Pharmacol. Ther. 2011, 34, 1173–1184.
  66. Jowett, S.L.; Seal, C.J.; Phillips, E.; Gregory, W.; Barton, J.R.; Welfare, M.R. Dietary beliefs of people with ulcerative colitis and their effect on relapse and nutrient intake. Clin. Nutr. 2004, 23, 161–170.
  67. Lambert, K.; Pappas, D.; Miglioretto, C.; Javadpour, A.; Reveley, H.; Frank, L.; Grimm, M.C.; Samocha-Bonet, D.; Hold, G.L. Systematic review with meta-analysis: Dietary intake in adults with inflammatory bowel disease. Aliment. Pharmacol. Ther. 2021, 54, 742–754.
  68. Maaser, C.; Sturm, A.; Vavricka, S.R.; Kucharzik, T.; Fiorino, G.; Annese, V.; Calabrese, E.; Baumgart, D.C.; Bettenworth, D.; Borralho Nunes, P.; et al. ECCO-ESGAR Guideline for Diagnostic Assessment in IBD Part 1: Initial diagnosis, monitoring of known IBD, detection of complications. J. Crohns. Colitis 2019, 13, 144–164.
  69. Battat, R.; Kopylov, U.; Szilagyi, A.; Saxena, A.; Rosenblatt, D.S.; Warner, M.; Bessissow, T.; Seidman, E.; Bitton, A. Vitamin B12 deficiency in inflammatory bowel disease: Prevalence, risk factors, evaluation, and management. Inflamm. Bowel Dis. 2014, 20, 1120–1128.
  70. Dignass, A.U.; Gasche, C.; Bettenworth, D.; Birgegård, G.; Danese, S.; Gisbert, J.P.; Gomollon, F.; Iqbal, T.; Katsanos, K.; Koutroubakis, I.; et al. European consensus on the diagnosis and management of iron deficiency and anaemia in inflammatory bowel diseases. J. Crohns. Colitis 2015, 9, 211–222.
  71. Carrier, J.; Medline, A.; Sohn, K.-J.; Choi, M.; Martin, R.; Hwang, S.W.; Kim, Y.-I. Effects of dietary folate on ulcerative colitis-associated colorectal carcinogenesis in the interleukin 2- and beta(2)-microglobulin-deficient mice. Cancer Epidemiol. Biomark. Prev. 2003, 12, 1262–1267.
  72. Frosst, P.; Blom, H.J.; Milos, R.; Goyette, P.; Sheppard, C.A.; Matthews, R.G.; Boers, G.J.; den Heijer, M.; Kluijtmans, L.A.; van den Heuvel, L.P. A candidate genetic risk factor for vascular disease: A common mutation in methylenetetrahydrofolate reductase. Nat. Genet. 1995, 10, 111–113.
  73. Tsang, B.L.; Devine, O.J.; Cordero, A.M.; Marchetta, C.M.; Mulinare, J.; Mersereau, P.; Guo, J.; Qi, Y.P.; Berry, R.J.; Rosenthal, J.; et al. Assessing the association between the methylenetetrahydrofolate reductase (MTHFR) 677C>T polymorphism and blood folate concentrations: A systematic review and meta-analysis of trials and observational studies. Am. J. Clin. Nutr. 2015, 101, 1286–1294.
  74. Ménézo, Y.; Patrizio, P.; Alvarez, S.; Amar, E.; Brack, M.; Brami, C.; Chouteau, J.; Clement, A.; Clement, P.; Cohen, M.; et al. MTHFR (methylenetetrahydrofolate reductase: EC 1.5.1.20) SNPs (single-nucleotide polymorphisms) and homocysteine in patients referred for investigation of fertility. J. Assist. Reprod. Genet. 2021, 38, 2383–2389.
  75. Cronstein, B.N.; Aune, T.M. Methotrexate and its mechanisms of action in inflammatory arthritis. Nat. Rev. Rheumatol. 2020, 16, 145–154.
  76. Rosh, J.R. The Current Role of Methotrexate in Patients With Inflammatory Bowel Disease. Gastroenterol. Hepatol. 2020, 16, 43–46.
  77. Herrlinger, K.R.; Cummings, J.R.F.; Barnardo, M.C.N.M.; Schwab, M.; Ahmad, T.; Jewell, D.P. The pharmacogenetics of methotrexate in inflammatory bowel disease. Pharmacogenet. Genom. 2005, 15, 705–711.
  78. Mehta, R.S.; Taylor, Z.L.; Martin, L.J.; Rosen, M.J.; Ramsey, L.B. SLCO1B1 *15 allele is associated with methotrexate-induced nausea in pediatric patients with inflammatory bowel disease. Clin. Transl. Sci. 2022, 15, 63–69.
  79. Li, X.; Hu, M.; Li, W.; Gu, L.; Chen, M.; Ding, H.; Vanarsa, K.; Du, Y. The association between reduced folate carrier-1 gene 80G/A polymorphism and methotrexate efficacy or methotrexate related-toxicity in rheumatoid arthritis: A meta-analysis. Int. Immunopharmacol. 2016, 38, 8–15.
More
ScholarVision Creations