Areas of Mathematics: Comparison
Please note this is a comparison between Version 2 by Sirius Huang and Version 1 by Sirius Huang.

Mathematics encompasses a growing variety and depth of subjects over its history, and comprehension of it requires a system to categorize and organize these various subjects into more general areas of mathematics. A number of different classification schemes have arisen, and though they share some similarities, there are differences due in part to the different purposes they serve. A traditional division of mathematics is into pure mathematics; mathematics studied for its intrinsic interest, and applied mathematics; the mathematics that can be directly applied to real-world problems.[note 1] This division is not always clear and many subjects have been developed as pure mathematics to find unexpected applications later on. Broad divisions, such as discrete mathematics, computational mathematics and so on have emerged more recently. An ideal system of classification permits adding new areas into the organization of previous knowledge, and fitting surprising discoveries and unexpected interactions into the outline. For example, the Langlands program has found unexpected connections between areas previously thought unconnected, at least Galois groups, Riemann surfaces and number theory.

  • classification
  • galois
  • classification schemes
Please wait, diff process is still running!
ScholarVision Creations