As the scale of the livestock industry has grown with the increase in the demand for livestock and poultry products, gaseous emissions, an unwanted side effect of livestock and poultry production, are also increasing. Various mitigation technologies have been developed to reduce such air pollution, and the mitigation technologies are divided mainly into “source-based type” (meant to fundamentally reduce the emissions) and “end-of-pipe type” (physicochemical and biological treatment of the output from barns to reduce the release into the environment). Ultraviolet light (UV) can be considered as both end-of-pipe (treating exhaust air from barns) and source-based type (treating air inside the barn).
Reference | Experimental Conditions |
UV-A Type (Major Wavelength) |
UV Dose (Light Intensity) |
Catalyst (Dose) |
Gas Mitigation (Mitigation %) |
---|
Reference | Experimental Conditions |
UV-A Type (Major Wavelength) |
UV Dose (Light Intensity) |
Catalyst (Dose) |
GHGs Mitigation (Mitigation %) |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[28][30] | Lab scale Temp: 24 °C RH: 50% |
Fluorescent (365 nm) |
Not reported (368 nm)Not reported (0.46 mW·cm−2) |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
[20][8] | Lab scale (simulated poultry farm) Temp: 25 ± 3 °C RH: 12% |
Fluorescent (365 nm) | 0.6 and 1.3 mJ·cm−2 (2.3–5.6 mW·cm−2) |
<88 mJ·cm−2 (<0.44 mW·cm−2)TiO2 (approx. 1 mg·cm−2) |
NH3 (35) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
TiO | 2 | (1.5 m | 2·g−1) | TiO2 (10 μg·cm−2) | MT (80–87) DMS (92–96) DMDS (83–91) Butan-1-ol (93–95) AA (81–89) PA (97–98) BA (98–99) VA (98–99) |
N2O (3.3) | [20][8] | Lab scale (simulated poultry farm) Temp: 25 ± 3 °C RH: 12% |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
LED (365 nm) |
<0.97 J·cm−2 | Fluorescent (365 nm) |
<88 mJ·cm−2 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
[30][ | (<0.44 mW·cm | −2 | ) | 32] | Lab scale (simulated livestock farm) Temp: 40 °C R: 40% | (<4.85 mW·cm−2 | TiO2 | )Fluorescent (365 nm) |
12 mJ·cm−2 (0.06 mW·cm−2 | (10 μg·cm−2) |
) | TiO2 (10 μg·cmNH3 (9.4) H2S (N/S) |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
−2 | ) | DMDS (40) | CO2 (3.8) N | DEDS (81) DMTS (76) BA (87) Guaiacol (100) p-Cresol (94) |
2O (10) | LED (365 nm) |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
[19][1] | <0.97 J·cm−2 (<4.85 mW·cm−2) |
Pilot scale (swine finishing room) Temp: 22~26 °C | NH3 (19) H2S (N/S) |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
RH: 36~80% | Fluorescent | (365 nm) |
<1.88 mJ·cm−2 (<0.04 mW·cm−2) |
TiO2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
[19][1] | Pilot scale (swine finishing room) Temp: 22~26 °C RH: 36~80% |
Fluorescent (365 nm) |
<1.88 mJ·cm−2 (<0.04 mW·cm1.3 and 5.8 mJ·cm−2−2) | (10 μg·cm |
(0.41 mW·cm−2)−2) |
TiO2 (10 μg·cm−2)p-Cresol (22) Odor (16) |
TiO2CO2 (−3.1) N2O (8.7) |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(10 μg·cm | −2 | ) | O | 3 (100 and 100) |
[27][29] | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
[27][29 | [27][29] | Pilot scale (layer poultry farm) Temp: 28 ± 3 °C | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
[27][29] | Pilot scale (layer poultry farm) Temp: 28 ± 3 °C RH: 56% |
Fluorescent (365 nm) |
] | Pilot scale (layer poultry farm) Temp: 28 ± 3 °C RH: 56% |
RH: 56% |
Pilot scale (layer poultry farm) Temp: 28 ± 3 °C RH: 56% | LED (365 nm)Fluorescent (365 nm)<75 mJ·cm−2 |
<75 mJ·cm | Fluorescent (365 nm) (<0.44 mW·cm−2) |
−2 (<0.44 mW·cm−2 | TiO2 | <0.82 J·cm−2 (<4.85 mW·cm−2)) |
<75 mJ·cm−2 (<0.44 mW·cm−2) | (10 μg·cm−2) |
TiO2 (10 μg·cm−2) | TiO2 (10 μg·cm | NH3 (5.2) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
−2 | ) | DEDS (47) | TiO | 2 (10 μg·cm−2 | BA (62) p-Cresol (49) Skatole (35) Odor (18) |
N2O (7.5) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
) | O | 3 | (100) | LED (365 nm) |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
[26][28] | <0.82 J·cm−2 (<4.85 mW·cm−2) |
LED | Pilot scale (simulated swine farm) Temp: 11 ± 3 °C | NH3 (8.7) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(365 nm) | RH: 34 ± 6% |
<0.82 J·cm−2 (<4.85 mW·cm−2)LED |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
LED (365 nm) |
<0.82 J·cm−2 (<4.85 mW·cm | (367 nm) |
−2N2.5 and 5.8 mJ·cm−2 (0.41 mW·cm−2) |
2TiO2 (10 μg·cm−2) |
O (13)Butan-1-ol | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
) | O | 3 (100) | (19 and 41) | [26][28] | [24][ | Pilot scale (simulated swine farm) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
[24][26] | Temp: 11 ± 3 °C RH: 34 ± 6% |
26 | Pilot scale (simulated swine farm) Temp: 19 ± 2 °C | LED (367 nm) |
] | (0.41 mW·cm | RH: 45 ± 4% | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
[21][23 | Pilot scale (simulated swine farm) Temp: 19 ± 2 °C RH: 45 ± 4% | 3.9 and 5.8 mJ·cm | −2 | ] | Swine farm (weaning rooms) Temp: 26 °C (24~30) RH: 56% (52~90) | LED (367 nm)LED
Note: Temperature (Temp), relative humidity (RH), not significant (N/S).
The reported mitigation of H2S ranged from 4 to 40% (UV-A dose: 0.6–5.3 mJ·cm−2). As before, it is challenging to make a direct comparison within previous research due to the differences in the TiO2 coating thicknesses, excitation geometries and light intensity measurement. However, an important trend can be noted. In the more controlled lab-scale experiments, there was no statistically significant reduction in H2S [20][8], but H2S mitigation was observed from the more complex mixtures inevitably encountered on the farm scale. It should also be noted that H2S oxidation via UV-A photocatalysis has been reported multiple times under “clean” laboratory conditions [32][33][34][38,40,53]. This state of affairs clearly needs further investigation.
3.2. Mitigation of VOCs and OdorUV-A photocatalysis can be effective at odorous VOCs mitigation (Table 24). At the lab scale [29][30][31,32], some odorous VOCs were effectively removed with a relatively low UV dose compared with the pilot and farm scales. On the pilot scale [19][24][26][27][1,26,28,29], statistically significant mitigation was reported from a 1.3 mJ·cm−2 UV dose. As the UV dose increased, the VOCs mitigation effect also increased. At the farm scale [25][27], UV dose ≥ 2.9 mJ·cm−2 partially removed targeted VOCs, and the highest dose (5.3 mJ∙cm−2) resulted in statistically significant percent mitigation of dimethyl disulfide (62%), isobutyric acid (44%), butanoic acid (32%), p-cresol (40%), indole (66%) and skatole (49%). This proves that UV photocatalysis can reduce odorous VOCs even in farm environments.
Table 24. Summary of VOCs and odor percent mitigation investigated in previous studies with UV-A photocatalysis. The values reported in the table are statistically significant.
Note: Temperature (Temp), relative humidity (RH), methanethiol (MT), dimethyl sulfide (DMS), dimethyl disulfide (DMDS), acetic acid (AA), propionic acid (PA), butyric acid (BA), valeric acid (VA), isobutyric acid (IA), not significant (N/S).
The mitigation of odorous VOCs was consistent with the results presented for olfactory odors (16~58%). A statistically significant olfactory odor mitigation was found for higher UV doses, in which the odorous phenolic compounds were mitigated at UV doses of 3.9 mJ·cm−2, quite comparable to the 2.9 mJ·cm−2 dosages at which several directly targeted VOCs showed reductions on a farm scale [25][27].
Note: Temperature (Temp), relative humidity (RH), not significant (N/S).
A surprising slight decrease in CO2 was reported in a few previous studies [20][22][8,24], but most research has reported an increase in CO2 concentration after UV-A photocatalysis [19][23][24][25][27][1,25,26,27,29]. In general, CO2 is the oxidative endpoint for photocatalytic oxidation of virtually all carbon-containing compounds under conditions like those used here. Thus, its mitigation would not derive from its chemical removal [20][27][8,29].
N2O was mitigated by 3–13% under UV-A photocatalysis with 1.9 mJ·cm−2 or higher doses [19][20][22][23][24][25][26][27][1,8,24,25,26,27,28,29]. For N2O concentration, mitigation continuously appeared at a low rate, but the mitigation efficiency did not always increase as the UV dose increased.
In general, N2O and O3 are known not to absorb significantly in the UV-A range, meaning that they are not subject to direct photolytic degradation at these wavelengths. However, indirect effects through more complex reaction paths can certainly affect their observed concentrations. N2O might be reduced by the reaction of the hydroxyl radical and activated O3.
3.4. Mitigation of PollutantsTable 46 summarized the additional UV-A photocatalysis mitigation effects other than the gases previously listed.
Table 46. Summary of mitigation effects in previous studies with UV-A photocatalysis. The values reported in the table are statistically significant.
Note: Temperature (Temp), relative humidity (RH), particular matter (PM), feed conversion ratio (FCR), colony-forming unit (CFU), not significant (N/S).
Ozone (O3) is an interesting case because of its well-known atmospheric role in protecting the surface of the earth from UV irradiation. However, O3 does not absorb the light of wavelengths > 290 nm (i.e., UV-A), so its direct photochemistry is not involved in the reported mitigation using UV-A irradiation. Instead, either a reaction with the catalyst or ordinary indirect photocatalytic reactions must be involved [37][55]. O3 has been reported to increase the reduction in target gas during photocatalysis [38][39][40][41][56,57,58,59] because O3 could be reduced to ozonide radicals (O3−). In this instance, O3 would be an electron sink (in parallel with ambient O2), but the resulting ozonide is sufficiently reactive that the ozone is destroyed rather than reformed by oxidation.
At both farm and pilot scales, ambient O3 was removed completely, whereas at the lab scale, mitigation was significant but not complete (24–48%). It is reasonable to speculate that a wider variety of compounds are produced in the larger-scale reactions than in the “controlled” lab reactions and that some of these are reactive with ozone or ozonide.
The effects of UV-A photocatalysis on PM have been investigated by two groups. An Italian research team [21][23] reported that UV-A photocatalysis with TiO2 mitigated airborne PM 10, which is a PM with diameters that are usually 10 microns or less (17%) inside a ~390 head nursery barn, while also improving feed conversion efficiency (12%). The mechanism of PM mitigation was not reported and was unclear; thus, the Iowa (USA) research team independently investigated the PM mitigation effect. No statistically significant PM mitigation was reported in experiments that used different minimum efficiency reporting values (MERV) rating filters to create three different airborne PM concentration levels [23][25].
Although pathogens are obviously much larger than individual gas molecules, it is well known in other applications of photocatalytic methods that they can be inactivated without the need for complete chemical degradation. The research of Rodriguez-Silva et al. [42][60] is an example of microorganism inactivation in liquid water. The previous precedent showed that microbe deactivation by photocatalysis is sensitive to catalyst loading and UV dose, like chemical degradation. Therefore, it is considered that there is a potential to inactivate airborne microorganisms if appropriate UV-A dose and TiO2 coating are satisfied. Indeed, UV-A photocatalysis treatment was reported to mitigate airborne microbial colony-forming units (CFUs, a measure of the airborne microbial load) by 15–95% [23][25]. Normalization of the measured airborne pathogen concentrations by smaller PM size concentrations led to the significant mitigation (49–51%, p-value < 0.03) effect of UV-A photocatalysis on pathogen inactivation [23][25]. |