Nanogenerators for Green Energy Harvesting: Comparison
Please note this is a comparison between Version 3 by Agustín Leobardo Herrera-May and Version 2 by Rita Xu.

Natural sources of green energy include sunshine, water, biomass, geothermal heat, and wind. These energies are alternate forms of electrical energy that do not rely on fossil fuels. Green energy is environmentally benign, as it avoids the generation of greenhouse gases and pollutants. Various systems and equipment have been utilized to gather natural energy. Nanogenerators have recently emerged as an alterna- tive technique for collecting energy from both natural and artificial sources, with significant benefits such as light weight, low-cost production, simple operation, easy signal processing, and low-cost materials.

  • energy harvesting
  • green energy
  • hybrid nanogenerators

1. Introduction

The internet of things (IoT) gadgets, smart sensors, internet of medical things (IoMT) for healthcare systems, and consumer electronics devices have seen significant expansion in recent years. These devices often employ traditional batteries, which have drawbacks owing to their huge size, finite lifetime, and harmful components that contaminate the environment [1][2][3]. This issue with traditional batteries may restrict the efficiency of future IoT gadgets, smart sensors, and wearable devices. Thus, new eco-friendly alternative technologies to power these gadgets are current and future research challenges. Recent studies [4][5][6][7][8] have described nanogenerators capable of harvesting green energy by several transduction methods such as the piezoelectric, triboelectric, electromagnetic, and thermoelectric effects. The nanogenerators can harvest green energy from natural and artificial sources from wind, water, thermal, solar, mechanical vibrations, and motions of the human body [9][10][11][12][13]. These nanogenerators have unique features such as light weight, low-cost fabrication, tiny size, simple performance and signal processing, high power density, and a longer lifetime when compared to conventional batteries. Thus, nanogenerators provide a cost-effective alternative for powering future IoT devices, smart sensors, and consumer electronics products based on green energy harvesting from the environment. Furthermore, nanogenerators may be used to drive self-powered sensors for applications ranging from telecommunications to health monitoring, the automotive and military industries, agriculture, aerospace, and smart cities [14][15][16][17][18][19].
Most commercial low-power electronic devices require rectifier circuits to convert the variable output current of nanogenerators into direct current (DC). In addition, several researchers have used rectifiers coupled with antennas to design rectennas, which can harvest radio frequency (RF) energy and convert it to direct current [20][21][22][23][24][25]. Supercapacitors can also be integrated into nanogenerators to store their output power [26][27]. Thus, rectifier circuits and supercapacitors can enable the nanogenerators to have a consistent output power. In addition, hybrid nanogenerators may gather multiple green energy sources using two or more acquisition processes [28][29][30][31]. Due to this performance characteristic, hybrid nanogenerators can increase their output power densities in comparison to a single nanogenerator. The hybrid nanogenerators can power electronic devices for longer periods of time by utilizing various green energy sources (e.g., wind, heat, rain, solar radiation, and mechanical vibrations). These hybrid nanogenerators may be capable of harvesting a mix of green energies to continuously power electronics and sensors. This might enable the conversion of accessible green energy sources into electricity both during the day and at night, as well as in both indoor and outdoor environments.
More research is needed to increase the performance, stability, and reliability of nanogenerators. For instance, optimization methods may be utilized in the design of nano-generators for each individual application to forecast the best electrical and structural configurations and material selection. This optimized nanogenerator design can increase output power density and service time. Another idea is to employ wearable and flexible materials to create nanogenerators that are adaptive to the human body and gather biomechanical energy [32][33]. Additionally, effective packaging solutions for nanogenerators are necessary to improve their wear resistance and resistance to high temperature and humidity fluctuations. Better packing materials and the usage of long-lasting materials for nanogenerators can improve their reliability. The sensitivity of rectification circuits used in nanogenerators can be improved in the electronic section to produce a higher output DC power. Furthermore, these circuits may be manufactured utilizing microelectronic technology to reduce their size [34][35].

2. Operation Principle

2.1. Vibration Energy

The vibration energy from the environment can be harvested using nanogenerators with transduction mechanisms such as piezoelectric, electromagnetic, triboelectric, and piezotronic effects. For instance, these nanogenerator types can convert mechanical vibrations caused by the wind effect, sound, water waves, human body motion, machines, and vehicles into electrical energy.

2.1.1. Piezoelectric Nanogenerators

The piezoelectric nanogenerators (PENGs) use the piezoelectric effect to capture green energy from ocean water waves, wind, biomechanical movements, and environmental mechanical vibrations. The output voltage of this type of nanogenerator is affected by mechanical deformations and the parameters of its piezoelectric layer. Mechanical vibrations in the environment can induce varied deformations in the piezoelectric nano-generators that generate the AC output voltage. A piezoelectric layer, a substrate, and two electrodes make up these nanogenerators. PENGs feature a basic structural design, easy performance, a simple construction method, high stability, and a low cost [36][37][38][39][40][41][42][43][44].

2.1.2. Electromagnetic Nanogenerators

Electromagnetic generators (EMGs) employ magnetic materials and coils to function according to the Faraday law. These generators may convert the kinetic energy of flowing water into electricity [45]. This wave flow is utilized to vary the location of the magnet material relative to the coil, resulting in a changing magnetic field that induces a voltage in the coil. However, as compared to triboelectric nanogenerators, these generators can have a larger volume and weight. Furthermore, EMGs require support structures that let them float on the water’s surface [46]. The performance of electromagnetic nanogenerators is determined by the rate of change of the magnetic flux. EMGs can be made to function at frequencies comparable to those of ocean waves to scavenge energy from them. Ocean waves move randomly at low frequencies of roughly 1 Hz [47]. The EMGs’ performance is limited by their low frequency. Due to wind sources and environmental mechanical vibrations, which may function at higher frequencies, EMGs are ideal for scavenging green energy.

2.1.3. Triboelectricity Nanogenerators

Triboelectric nanogenerators (TENGs) may gather green energy from irregular surroundings at low frequencies by connecting contact electrification with electrostatic induction. Blue energy, for example, may be extracted from ocean wave motion, which is fundamentally random and travels at low frequencies (near to 1 Hz) [48][49][50][51][52][53][54][55][56][57][58][59][60]. The benefits of triboelectric nanogenerators are their small weight, low cost, simple operation principle, and lack of sophisticated production [61][62][63][64]. To attain the highest performance, the triboelectric materials and electro-mechanical designs of the nanogenerators must be optimized [65][66][67][68][69][70][71]. As a result, optimizing the design of triboelectric nanogenerators is critical for improving the conversion of green energy into electric energy. TENGs may be configured to function in four basic modes (Figure 1): vertical contact-separation (CS), lateral sliding (LS), single-electrode (SE), and freestanding triboelectric-layer (FSTL). TENGs usually require two triboelectric surfaces and two electrodes. Electron attraction between two triboelectric surfaces creates an electrostatic charge transfer from one surface to another in these operational modes. The displacement of the triboelectric layers changes their initial electrostatic state, resulting in an electric potential difference between the layers. The potential difference drives the current through the external load to balance the electrostatic state. The movement of the triboelectric layer in the opposite direction will generate a difference in the current flow. TENGs can therefore have alternating current (AC) voltages between their two output electrodes, depending on the triboelectric material type, operating mechanism, and green energy source.
Figure 1. Several potential applications of TENGs using different operational modes: (a) vertical contact-separation, (b) linear sliding, (c) single-electrode, and (d) freestanding triboelectric-layer. Reprinted with permission from [72]. Copyright ©2014, Royal Society of Chemistry.

2.1.4. Piezotronic Nanogenerators

The piezotronic nanogenerators harvest low-frequency vibration/friction energy into electricity by using the linked piezoelectric and semiconducting capabilities of nanowires/nanobelts, as well as the influence of a Schottky barrier at the metal-semiconductor [73][74]. These nanogenerators might be incorporated into textile strands to recycle energy generated by human movement. Thus, the piezoelectronic nanogenerator is a potentially useful technology for harvesting/recycling energy from the environment to power self-powered nanodevices that may be operated wirelessly and remotely. This technique will enable self-powered wireless nanosystems and nanodevices to have a sustained energy supply [75].

2.2. Thermal Energy

Thermoelectric and pyroelectric nanogenerators can transform thermal energy from the environment into electrical energy to power electronic devices.

Thermoelectric and Pyroelectric Nanogenerators

Another sort of green energy that may be obtained from the environment is thermal energy. This energy may be transformed into electric energy and used to power low-power electronic devices employing thermoelectric nanogenerators (TEGs) [76]. TEGs produce electricity by using the Seebeck effect to scavenge thermal energy caused by temperature differences between two thermoelectric (TE) materials (Figure 21). This temperature differential causes charge carriers to migrate from a high-temperature TE material to a low-temperature TE material [77][78]. A TEG’s voltage output is proportional to the temperature gradient. TEGs, on the other hand, need significant temperature gradients across TE materials. TEGs are classified into two types: rigid thermoelectric nanogenerators and flexible thermoelectric nanogenerators, with the latter depending on their deformation properties. Stretchable, compressible, collapsible, lightweight, tiny in volume, affordable, and simple are advantages of TEGs [79][80][81]. Flexible TEGs have the potential to be employed in waste heat recovery [82][83][84], portable electronics [85][86][87], and human health monitoring due to their properties [88][89][90].
Figure 21. Reduced graphene oxide poly(3,4-ethylenedioxythiophene): poly (styrenesulfonate) (rGO-PEDOT:PSS) film-coated fabric of the flexible and washable thermoelectric nanogenerator fabricated by Khoso et al. [78]. This nanogenerator has potential application for harvesting green energy from human body heat. FESEM images with magnifications of (a) 500 μm and (b) 250 μm rGO-coated fabric and (c) 200 μm of rGO-PEDPT:PSS coated fabric. (df) Color mapping of SEM images’ infrared rendering. Reprinted with permission from [78]. Copyright ©2021, Royal Society of Chemistry.
Pyroelectric nanogenerators (PyENGs) use the variation in spontaneous polarization inside pyroelectric materials to transform heat energy into electric energy. This is generated by oscillations of electric dipoles caused by a change in time-dependent temperature [91][92]. The creation of electric current through materials having a non-center symmetrical crystalline structure when subjected to a time-dependent temperature gradient is referred to as the pyroelectric effect [93][94]. Pyroelectric nanogenerators have been identified as the energy collectors of the future, with the potential to be a viable energy technology for scavenging thermal energy in everyday life [94]. Thus, PyENGs and TEGs may have significant uses in powering future intelligent electronic sensors and IoT-connected wearable devices. More investigations on inorganic and organic materials, structure, performance, and reliability are required for the development of these nanogenerators.

2.3. Hybrid Nanogenerators

In the meantime, hybrid nanogenerators may harvest/recycle green energy from the environment by using several energy acquisition mechanisms or numerous connected nanogenerators with the same energy acquisition method (Figure 32). In hybrid nanogenerators, for example, piezoelectric, pyroelectric, triboelectric, and electromagnetic phenomena can be used. In comparison to individual nanogenerators, this nanogenerator type can provide high and efficient power density [95]. Recent research has led to the development of hybrid nanogenerators based on piezoelectric–pyroelectric [96][97][98], triboelectric–piezoelectric [31][99][100][101][102][103][104][105][106][107][108][109][110][111][112][113][114][115][116][117], electromagnetic–triboelectric [118][119][120][121][122][123][124][125][126][127][128][129][130][131][132], triboelectric–piezoelectric–pyroelectric [133][134][135][136], triboelectric–piezoelectric–electromagnetic [137][138][139][140][141][142][143][144][145][146][147][148], and photovoltaic–triboelectric effect [149][150][151][152][153][154].
Figure 32. Potential applications of hybrid nanogenerators.

References

  1. Keshavarz, R.; Shariati, N. Highly sensitive and compact quad-band ambient RF energy harvester. IEEE Trans. Ind. Electron. 2022, 69, 3609–3621.
  2. Tao, K.; Chen, Z.; Yi, H.; Zhang, R.; Shen, Q.; Wu, J.; Tang, L.; Fan, K.; Fu, Y.; Miao, J.; et al. Hierarchical Honeycomb-Structured Electret/Triboelectric Nanogenerator for Biomechanical and Morphing Wing Energy Harvesting. Nano-Micro Lett. 2021, 13, 123.
  3. Zhao, T.; Xu, M.; Xiao, X.; Ma, Y.; Li, Z.; Wang, Z.L. Recent progress in blue energy harvesting for powering distributed sensors in ocean. Nano Energy 2021, 88, 106199.
  4. Tremmel, S.; Luo, X.; Rothammer, B.; Seynstahl, A.; Wang, B.; Rosenkranz, A.; Marian, M.; Zhu, L. Evaluation of DLC, MoS2, and Ti3C2Tx thin films for triboelectric nanogenerators. Nano Energy 2022, 97, 107185.
  5. Niu, Q.; Wei, H.; Hsiao, B.S.; Zhang, Y. Biodegradable silk fibroin-based bio-piezoelectric/triboelectric nanogenerators as self-powered electronic devices. Nano Energy 2022, 96, 107101.
  6. Lu, M.; Fu, G.; Osman, N.B.; Konbr, U. Green energy harvesting strategies on edge-based urban computing in sustainable internet of things. Sustain. Cities Soc. 2021, 75, 103349.
  7. Gao, Y.; Liu, G.; Bu, T.; Liu, Y.; Qi, Y.; Xie, Y.; Xu, S.; Deng, W.; Yang, W.; Zhang, C. MXene based mechanically and electrically enhanced film for triboelectric nanogenerator. Nano Res. 2021, 14, 4833–4840.
  8. Islam, E.; Abdullah, A.M.; Chowdhury, A.R.; Tasnim, F.; Martinez, M.; Olivares, C.; Lozano, K.; Uddin, M.J. Electromagnetic-triboelectric-hybrid energy tile for biomechanical green energy harvesting. Nano Energy 2020, 77, 105250.
  9. Shaukat, R.A.; Saqib, Q.M.; Khan, M.U.; Chougale, M.Y.; Bae, J. Bio-waste sunflower husks powder based recycled triboelectric nanogenerator for energy harvesting. Energy Reports 2021, 7, 724–731.
  10. Niu, Z.; Cheng, W.; Cao, M.; Wang, D.; Wang, Q.; Han, J.; Long, Y.; Han, G. Recent advances in cellulose-based flexible triboelectric nanogeneratorss. Nano Energy 2021, 87, 106175.
  11. Nguyen, Q.-T.; Ahn, K.-K.K. Fluid-Based Triboelectric Nanogenerators: A Review of Current Status and Applications. Int. J. Precis. Eng. Manuf. Green Technol. 2021, 8, 1043–1060.
  12. Sanad, M.F.; Shalan, A.E.; Abdellatif, S.O.; Serea, E.S.A.; Adly, M.S.; Ahsan, M. Thermoelectric Energy Harvesters: A Review of Recent Developments in Materials and Devices for Different Potential Applications. Top. Curr. Chem. (Z) 2020, 378, 48.
  13. Karan, S.K.; Maiti, S.; Lee, J.H.; Mishra, Y.K.; Khatua, B.B.; Kim, J.K. Recent Advances in Self-Powered Tribo-/Piezoelectric Energy Harvesters: All-In-One Package for Future Smart Technologies. Adv. Funct. Mater. 2020, 30, 2004446.
  14. Nie, W. A sliding hybrid triboelectric-electromagnetic nanogenerator with staggered electrodes for human motion posture. Energy Rep. 2022, 8, 617–625.
  15. Sahu, M.; Hajra, S.; Panda, S.; Rajaitha, M.; Panigrahi, B.K.; Rubahn, H.-G.; Mishra, Y.K.; Kim, H.J. Waste textiles as the versatile triboelectric energy-harvesting platform for self-powered applications in sports and athletics. Nano Energy 2022, 97, 107208.
  16. Pang, Y.; Zhu, X.; Lee, C.; Liu, S. Triboelectric nanogenerator as next-generation self-powered sensor for cooperative vehicle-infrastructure system. Nano Energy 2022, 97, 107219.
  17. Bhatia, D.; Lee, K.-S.; Niazi, M.U.K.; Park, H.-S. Triboelectric nanogenerator integrated origami gravity support device for shoulder rehabilitation using exercise gaming. Nano Energy 2022, 97, 107179.
  18. Fang, L.; Zheng, Q.; Hou, W.; Zheng, L.; Li, H. A self-powered vibration sensor based on the coupling of triboelectric nanogenerator and electromagnetic generator. Nano Energy 2022, 97, 107164.
  19. Shi, S.; Jiang, Y.; Xu, Q.; Zhang, J.; Zhang, Y.; Li, J.; Xie, Y.; Cao, Z.-P. A self-powered triboelectric multi-information motion monitoring sensor and its application in wireless real-time control. Nano Energy 2022, 97, 107150.
  20. Miskovsky, N.M.; Cutler, P.H.; Mayer, A.; Weiss, B.L.; Willis, B.; Sullivan, T.E.; Lerner, P.B. Nanoscale devices for rectification of high frequency Radiation from the infrared through the visible: A new approach. J. Nanotech. 2012, 2012, 512379.
  21. Donchev, E.; Pang, J.S.; Gammon, P.M.; Centeno, A.; Xie, F.; Petrov, P.K.; Breeze, J.D.; Ryan, M.P.; Riley, D.J.; Alford, N. The rectenna device: From theory to practice (a review). MRS Energy Sustain. 2014, 1, E1.
  22. Mupparapu, R.; Cunha, J.; Tantussi, F.; Jacassi, A.; Summerer, L.; Patrini, M.; Giugni, A.; Maserati, L.; Alabastri, A.; Garoli, D.; et al. High-Frequency Light Rectification by Nanoscale Plasmonic Conical Antenna in Point-Contact-Insulator-Metal Architecture. Adv. Energy Mater. 2022, 12, 2103785.
  23. Shanawani, M.; Masotti, D.; Costanzo, A. THz Rectennas and Their Design Rules. Electronics 2017, 6, 99.
  24. Byrnes, S.J.; Blanchard, R.; Capasso, F. Harvesting renewable energy from Earth’s mid-infrared emissions. Proc. Natl. Acad. Sci. USA 2014, 111, 3927–3932.
  25. Joshi, S.; Moddel, G. Rectennas at optical frequencies: How to analyze the response. J. Applied Phys. 2015, 118, 084503.
  26. Zhao, J.; Cong, Z.; Hu, J.; Lu, H.; Wang, L.; Wang, H.; Malyi, O.I.; Pu, X.; Zhang, Y.; Shao, H.; et al. Regulating zinc electroplating chemistry to achieve high energy coaxial fiber Zn ion supercapacitor for self-powered textile-based monitoring system. Nano Energy 2022, 93, 106893.
  27. Zhang, Y.; Gao, X.; Zhang, Y.; Gui, J.; Sun, C.; Zheng, H.; Guo, S. High-efficiency self-charging power systems based on performance-enhanced hybrid nanogenerators and asymmetric supercapacitors for outdoor search and rescue. Nano Energy 2022, 92, 106788.
  28. Yu, Z.; Zhang, Y.; Wang, Y.; Zheng, J.; Fu, Y.; Chen, D.; Wang, G.; Cui, J.; Yu, S.; Zheng, L.; et al. Integrated piezo-tribo hybrid acoustic-driven nanogenerator based on porous MWCNTs/PVDF-TrFE aerogel bulk with embedded PDMS tympanum structure for broadband sound energy harvesting. Nano Energy 2022, 97, 107205.
  29. Li, R.; Wei, X.; Shi, Y.; Yuan, Z.; Wang, B.; Xu, J.; Wang, L.; Wu, Z.; Wang, Z.L. Low-grade heat energy harvesting system based on the shape memory effect and hybrid triboelectric-electromagnetic nanogenerator. Nano Energy 2022, 96, 107106.
  30. Banerjee, S.; Bairagi, S.; Ali, S.W. A lead-free flexible piezoelectric-triboelectric hybrid nanogenerator composed of uniquely designed PVDF/KNN-ZS nanofibrous web. Energy 2022, 244, 123102.
  31. Song, C.; Xia, K.; Xu, Z. A self-supported structure hybrid triboelectric/piezoelectric nanogenerator for biomechanical energy harvesting and pressure sensing. Microelectron. Eng. 2022, 256, 111723.
  32. Zhao, Z.; Dai, Y.; Dou, S.X.; Liang, J. Flexible nanogenerators for wearable electronic applications based on piezoelectric materials. Mater. Today Energy 2021, 20, 100690.
  33. Hinchet, R.; Seung, W.; Kim, S.W. Recent Progress on Flexible Triboelectric Nanogenerators for SelfPowered Electronics. ChemSusChem 2015, 8, 2327–2344.
  34. Quelen, A.; Morel, A.; Gasnier, P.; Grézaud, R.; Monfray, S.; Pillonnet, G. A 30nA quiescent 80nW-to-14mW power-range shock-optimized SECE-based piezoelectric harvesting interface with 420% harvested-energy improvement. In Proceedings of the 2018 IEEE International Solid-State Circuits Conference—(ISSCC), San Francisco, CA, USA, 11–15 February 2018; pp. 150–152.
  35. Hehn, T.; Hagedorn, F.; Maurath, D.; Marinkovic, D.; Kuehne, I.; Frey, A.; Manoli, Y. A Fully Autonomous Integrated Interface Circuit for Piezoelectric Harvesters. IEEE J. Solid-State Circuits 2012, 47, 2185–2198.
  36. Mahapatra, A.; Ajimsha, R.S.; Misra, P. Oxygen annealing induced enhancement in output characteristics of ZnO based flexible piezoelectric nanogenerators. J. Alloys Compd. 2022, 913, 165277.
  37. Huang, X.; Wang, Y.; Zhang, X. Ultrarobust, hierarchically anisotropic structured piezoelectric nanogenerators for self-powered sensing. Nano Energy 2022, 99, 107379.
  38. Veeralingam, S.; Bharti, D.K.; Badhulika, S. Lead-free PDMS/PPy based low-cost wearable piezoelectric nanogenerator for self-powered pulse pressure sensor application. Mater. Res. Bull. 2022, 151, 111815.
  39. Sahu, M.; Hajra, S.; Jadhav, S.; Panigrahi, B.K.; Dubal, D.; Kim, H.J. Bio-waste composites for cost-effective self-powered breathing patterns monitoring: An insight into energy harvesting and storage properties. Sustain. Mater. Technol. 2022, 32, e00396.
  40. Sarkar, L.; Sushma, M.V.; Yalagala, B.P.; Rengan, A.K.; Singh, S.G.; Vanjari, S.R.K. ZnO nanoparticles embedded silk fibroin-a piezoelectric composite for nanogenerator applications. Nanotechnology 2022, 33, 265403.
  41. Pusty, M.; Shirage, P.M. Insights and perspectives on graphene-PVDF based nanocomposite materials for harvesting mechanical energy. J. Alloys Compd. 2022, 904, 164060.
  42. Tan, P.; Xi, Y.; Chao, S.; Jiang, D.; Liu, Z.; Fan, Y.; Li, Z. An Artificial Intelligence-Enhanced Blood Pressure Monitor Wristband Based on Piezoelectric Nanogenerator. Biosensors 2022, 12, 234.
  43. Mahmud, M.A.P.; Adhikary, P.; Zolfagharian, A.; Adams, S.; Kaynak, A.; Kouzani, A.Z. Advanced design, fabrication, and applications of 3D-printable piezoelectric nanogenerators. Electron. Mater. Lett. 2022, 18, 129–144.
  44. Shi, S.; Pan, Z.; Cheng, Y.; Zhai, Y.; Zhang, Y.; Ding, X.; Liu, J.; Zhai, J.; Xu, J. Three-dimensional polypyrrole induced high-performance flexible piezoelectric nanogenerators for mechanical energy harvesting. Comp. Sci. Technol. 2022, 219, 109260.
  45. Pan, Q.; Wang, B.; Zhang, L.; Li, Z.; Yang, Z. Whisk-inspired Motion Converter for Ocean Wave Energy Harvesting. IEEE/ASME Trans. Mechatron. 2022, 27, 1808–1811.
  46. Wang, J.; Pan, L.; Guo, H.; Zhang, B.; Zhang, R.; Wu, Z.; Wu, C.; Yang, L.; Liao, R.; Wang, Z.L. Rational Structure Optimized Hybrid Nanogenerator for Highly Efficient Water Wave Energy Harvesting. Adv. Energy Mater. 2019, 9, 1802892.
  47. Wu, Y.; Zeng, Q.; Tang, Q.; Liu, W.; Liu, G.; Zhang, Y.; Wu, J.; Hu, C.; Wang, X. A teeterboard-like hybrid nanogenerator for efficient harvesting of low-frequency ocean wave energy. Nano Energy 2020, 67, 104205.
  48. Zhang, X.; Yang, Q.; Ji, P.; Wu, Z.; Li, Q.; Yang, H.; Li, X.; Zheng, G.; Xi, Y.; Wang, Z.L. Modeling of liquid-solid hydrodynamic water wave energy harvesting system based on triboelectric nanogenerator. Nano Energy 2022, 99, 107362.
  49. Zaw, N.Y.W.; Yun, J.; Goh, T.S.; Kim, I.; Kim, Y.; Lee, J.S.; Kim, D. All-polymer waterproof triboelectric nanogenerator towards blue energy harvesting and self-powered human motion detection. Energy 2022, 247, 123422.
  50. Zhou, H.; Dong, J.; Liu, H.; Zhu, L.; Xu, C.; He, X.; Zhang, S.; Song, Q. The coordination of displacement and conduction currents to boost the instantaneous power output of a water-tube triboelectric nanogenerator. Nano Energy 2022, 95, 107050.
  51. Li, W.; Wan, L.; Lin, Y.; Liu, G.; Qu, H.; Wen, H.; Ding, J.; Ning, H.; Yao, H. Synchronous nanogenerator with intermittent sliding friction self-excitation for water wave energy harvesting. Nano Energy 2022, 95, 106994.
  52. Zhang, Z.; Hu, Z.; Wang, Y.; Wang, Y.; Zhang, Q.; Liu, D.; Wang, H.; Xu, M. Multi-Tunnel Triboelectric Nanogenerator for Scavenging Mechanical Energy in Marine Floating Bodies. J. Mar. Sci. Eng. 2022, 10, 455.
  53. Wang, X.; Shi, Y.; Yang, P.; Tao, X.; Li, S.; Lei, R.; Liu, Z.; Wang, Z.L.; Chen, X. Fish-Wearable Data Snooping Platform for Underwater Energy Harvesting and Fish Behavior Monitoring. Small 2022, 18, 2107232.
  54. Xu, L.; Jiang, T.; Lin, P.; Shao, J.J.; He, C.; Zhong, W.; Chen, X.Y.; Wang, Z.L. Coupled Triboelectric Nanogenerator Networks for Efficient Water Wave Energy Harvesting. ACS Nano 2018, 12, 1849–1858.
  55. Wen, H.; Yang, P.; Liu, G.; Xu, S.; Yao, H.; Li, W.; Qu, H.; Ding, J.; Li, J.; Wan, L. Flower-like triboelectric nanogenerator for blue energy harvesting with six degrees of freedom. Nano Energy 2022, 93, 106796.
  56. Wang, A.; Chen, J.; Wang, L.; Han, J.; Su, W.; Li, A.; Liu, P.; Duan, L.; Xu, C.; Zeng, Z. Numerical analysis and experimental study of an ocean wave tetrahedral triboelectric nanogenerator. Appl. Energy 2022, 307, 118174.
  57. Qu, Z.; Huang, M.; Chen, C.; An, Y.; Liu, H.; Zhang, Q.; Wang, X.; Liu, Y.; Yin, W.; Li, X. Spherical triboelectric nanogenerator based on eccentric structure for omnidirectional low frequency water wave energy harvesting. Adv. Funct. Mater. 2022, 32, 2202048.
  58. Xu, S.; Liu, G.; Wang, J.; Wen, H.; Cao, S.; Yao, H.; Wan, L.; Wang, Z.L. Interaction between water wave and geometrical structures of floating triboelectric nanogenerators. Adv. Energy Mater. 2021, 12, 2103408.
  59. Feng, Y.; Han, J.; Xu, M.; Liang, X.; Jiang, T.; Li, H.; Wang, Z.L. Blue energy for green hydrogen fuel: A self-powered electrochemical conversion driven by triboelectric nanogenerators. Adv. Energy Mater. 2021, 10, 1902467.
  60. Zheng, F.; Sun, Y.; Wei, X.; Chen, J.; Yuan, Z.; Jin, X.; Tao, L.; Wu, Z. A hybridized water wave energy harvester with a swing magnetic structure toward intelligent fishing ground. Nano Energy 2021, 90, 106631.
  61. Torres, F.G.; Troncoso, O.P.; De-la-Torre, G.E. Hydrogel-based triboelectric nanogenerators: Properties, performance, and applications. Int. J. Energy Res. 2022, 46, 5603–5624.
  62. Chen, B.; Wang, Z.L. Toward a new era of sustainable energy: Advanced triboelectric nanogenerator for harvesting high entropy energy. Small 2022, in press.
  63. Bukhari, M.U.; Khan, A.; Maqbool, K.Q.; Arshad, A.; Riaz, K.; Bermak, A. Waste to energy: Facile, low-cost and environment-friendly triboelectric nanogenerators using recycled plastic and electronic wastes for self-powered portable electronics. Energy Rep. 2022, 8, 1687–1695.
  64. Zhang, J.; Hu, Y.; Lin, X.; Qian, X.; Zhang, L.; Zhou, J.; Lu, A. High-performance triboelectric nanogenerator based on chitin for mechanical-energy harvesting and self-powered sensing. Carbohydr. Polym. 2022, 291, 119586.
  65. Gravesen, J.; Willatzen, M.; Shao, J.; Wang, Z.L. Energy optimization of a mirror-symmetric spherical triboelectric nanogenerator. Adv. Funct. Mater. 2022, 32, 2110516.
  66. Wu, H.; Wang, J.; Wu, Z.; Kang, S.; Wei, X.; Wang, H.; Luo, H.; Yang, L.; Liao, R.; Wang, Z.L. Multi-parameter optimized triboelectric nanogenerator based self-powered sensor network for broadband aeolian vibration online-monitoring of transmission lines. Adv. Energy Mater. 2022, 12, 2103654.
  67. Wang, J.; Jiang, Z.; Sun, W.; Xu, X.; Han, Q.; Chu, F. Yoyo-ball inspired triboelectric nanogenerators for harvesting biomechanical energy. Appl. Energy 2022, 308, 118322.
  68. Mathew, A.A.; Vivekanandan, S. Design and Simulation of Single-Electrode Mode Triboelectric Nanogenerator-Based Pulse Sensor for Healthcare Applications Using COMSOL Multiphysics. Energy Technol. 2022, 10, 2101130.
  69. Zheng, Z.; Xia, J.; Wang, B.; Guo, Y. Hierarchically designed nanocomposites for triboelectric nanogenerator toward biomechanical energy harvester and smart home system. Nano Energy 2022, 95, 107047.
  70. Sun, Z.; Yang, W.; Chen, P.; Zhang, Y.; Wang, X.; Hu, Y. Effects of PDMS Base/Agent Ratios and Texture Sizes on the Electrical Performance of Triboelectric Nanogenerators. Adv. Mater. Interfaces 2022, 9, 2102139.
  71. Jiang, C.; Lai, C.L.; Xu, B.; So, M.Y.; Li, Z. Fabric-rebound triboelectric nanogenerators with loops and layered structures for energy harvesting and intelligent wireless monitoring of human motions. Nano Energy 2022, 93, 106807.
  72. Wang, Z.L. Triboelectric nanogenerators as new energy technology and self-powered sensors-principles, problems and perspectives. Faraday Discuss. 2014, 176, 447.
  73. Wang, Z. Nanopiezotronics. Adv. Mater. 2007, 19, 889–892.
  74. Wang, Z.L. Towards Self-Powered Nanosystems: From Nanogenerators to Nanopiezotronics. Adv. Funct. Mater. 2008, 18, 3553–3567.
  75. Wang, Z.L. The new field of nanopiezotronics. Mater. Today 2007, 10, 20–28.
  76. Yang, Y. Pyroelectric and Thermoelectric Nanogenerators. In Hybridized and Coupled Nanogenerators; Yang, Y., Ed.; Wiley-VCH GmbH: Weinheim, Germany, 2020.
  77. Klochko, N.P.; Klepikova, K.S.; Kopach, V.R.; Tyukhov, I.I.; Starikov, V.V.; Sofronov, D.S.; Khrypunova, I.V.; Zhadan, D.O.; Petrushenko, S.I.; Dukarov, S.V.; et al. Development of semi-transparent ZnO/FTO solar thermoelectric nanogenerator for energy efficient glazing. Sol. Energy 2019, 184, 230–239.
  78. Khoso, N.A.; Xu, G.; Xie, J.; Sun, T.; Wang, J. The fabrication of a graphene and conductive polymer nanocomposite-coated highly flexible and washable woven thermoelectric nanogenerator. Mater. Adv. 2021, 2, 3695–3704.
  79. Khoso, N.A.; Ahmed, A.; Deb, H.; Tian, S.; Jiao, X.; Gong, X.Y.; Wang, J. Controlled template-free in-situ polymerization of PEDOT for enhanced thermoelectric performance on textile substrate. Org. Electron. 2019, 75, 105368.
  80. Feng, R.; Tang, F.; Zhang, N.; Wang, X. Flexible, High-Power Density, Wearable Thermoelectric Nanogenerator and Self-Powered Temperature Sensor. ACS Appl. Mater. Interfaces 2019, 11, 42.
  81. He, M.; Lin, Y.-J.; Chiu, C.M.; Yang, W.; Zhang, B.; Yun, D.; Xie, Y.; Lin, Z.H. A flexible photo-thermoelectric nanogenerator based on MoS2/PU photothermal layer for infrared light harvesting. Nano Energy 2018, 49, 588–595.
  82. Fan, Z.; Zhang, Y.; Pan, L.; Ouyang, J.; Zhang, Q. Recent developments in flexible thermoelectrics: From materials to devices. Renew. Sust. Energ. Rev. 2021, 137, 110448.
  83. Xie, Y.; Chou, T.M.; Yang, W.; He, M.; Zhao, Y.; Li, N.; Lin, Z.-H. Flexible thermoelectric nanogenerator based on the MoS2/graphene nanocomposite and its application for a self-powered temperature sensor. Semicond. Sci. Technol. 2017, 32, 044003.
  84. Huang, X.-L.; Ao, D.-W.; Chen, T.-B.; Chen, Y.-X.; Li, F.; Chen, S.; Liang, G.-X.; Zhang, X.-H.; Zheng, Z.-H.; Fan, P. High performance copper selenide thermoelectric thin films for flexible thermoelectric application. Mater. Today Energy 2021, 21, 100743.
  85. Xu, C.; Yang, S.; Li, P.; Wang, H.; Li, H.; Liu, Z. Wet-spun PEDOT:PSS/CNT composite fibers for wearable thermoelectric energy harvesting. Compos. Commun. 2022, 32, 101179.
  86. Palaporn, D.; Mongkolthanaruk, W.; Tanusilp, S.-A.; Kurosaki, K.; Pinitsoontorn, S. A simple method for fabricating flexible thermoelectric nanocomposites based on bacterial cellulose nanofiber and Ag2Se. Appl. Phys. Lett. 2022, 120, 073901.
  87. Zhang, X.; Shiu, B.-C.; Li, T.T.; Liu, X.; Ren, H.-T.; Wang, Y.; Lou, C.-W.; Lin, J.-H. Synergistic work of photo-thermoelectric and hydroelectric effects of hierarchical structure photo-thermoelectric textile for solar energy harvesting and solar steam generation simultaneously. Chem. Eng. J. 2021, 426, 131923.
  88. Wang, Y.; Zhu, W.; Deng, Y.; Zhu, P.; Yu, Y.; Hu, S.; Zhang, R. High-sensitivity self-powered temperature/pressure sensor based on flexible Bi-Te thermoelectric film and porous microconed elastomer. J. Mater. Sci. Technol. 2022, 103, 1–7.
  89. Yuan, J.F.; Zhu, R.; Li, G.Z. Self-Powered Electronic Skin with Multisensory Functions Based on Thermoelectric Conversion. Adv. Mater. Technol. 2020, 5, 2000419.
  90. Wang, Y.; Zhu, W.; Deng, Y.; Fu, B.; Zhu, P.; Yu, Y.; Li, J.; Guo, J. Self-powered wearable pressure sensing system for continuous healthcare monitoring enabled by flexible thin-film thermoelectric generator. Nano Energy 2020, 73, 104773.
  91. Gokana, M.R.; Wu, C.-M.; Motora, K.G.; Qi, J.Y.; Yen, W.-T. Effects of patterned electrode on near infrared light-triggered cesium tungsten bronze/poly(vinylidene)fluoride nanocomposite-based pyroelectric nanogenerator for energy harvesting. J. Power Sources 2022, 536, 231524.
  92. Mistewicz, K. Pyroelectric Nanogenerator Based on an SbSI–TiO2 Nanocomposite. Sensors 2022, 22, 69.
  93. Feng, Y.; Zhang, Y.; Wang, Y.; Wang, Z. Frequency response characteristics of pyroelectric effect in p-n junction UV detectors. Nano Energy 2018, 54, 429–436.
  94. Korkmaz, S.; Kariper, İ.A. Pyroelectric nanogenerators (PyNGs) in converting thermal energy into electrical energy: Fundamentals and current status. Nano Energy 2021, 84, 105888.
  95. Ali, I.; Hassan, G.; Shuja, A. Fabrication of self-healing hybrid nanogenerators based on polyurethane and ZnO for harvesting wind energy. J Mater. Sci. Mater. Electron. 2022, 33, 3982–3993.
  96. Mahanty, B.; Ghosh, S.K.; Maity, K.; Roy, K.; Sarkar, S.; Mandal, D. All-fiber pyro- and piezo-electric nanogenerator for IoT based self-powered health-care monitoring. Mater. Adv. 2021, 2, 4370–4379.
  97. Abbasipour, M.; Khajavi, R.; Yousefi, A.A.; Yazdanshenas, M.E.; Razaghian, F.; Akbarzadeh, A. Improving piezoelectric and pyroelectric properties of electrospun PVDF nanofibers using nanofillers for energy harvesting application. Polym. Adv. Technol. 2019, 30, 279–291.
  98. Zhu, L.; Lin, P.; Chen, B.; Wang, L.; Chen, L.; Li, D.; Wang, Z.L. Piezo-phototronic and pyro-phototronic effects to enhance Cu(In, Ga)Se2 thin film solar cells. Nano Res. 2018, 11, 3877–3885.
  99. Liu, X.; Liu, Y.; Cheng, T.; Gao, Y.; Yang, Z. A high performing piezoelectric and triboelectric nanogenerator based on a large deformation of the novel lantern-shaped structure. Nano Energy 2022, 92, 106699.
  100. Wang, Z.; Liu, Z.; Zhao, G.; Zhang, Z.; Zhao, X.; Wan, X.; Zhang, Y.; Wang, Z.L.; Li, L. Stretchable Unsymmetrical Piezoelectric BaTiO3 Composite Hydrogel for Triboelectric Nanogenerators and Multimodal Sensors. ACS Nano 2022, 16, 1661–1670.
  101. Hou, X.; Zhong, J.; Yang, C.; Yang, Y.; He, J.; Mu, J.; Geng, W.; Chou, X. A high-performance, single-electrode and stretchable piezo-triboelectric hybrid patch for omnidirectional biomechanical energy harvesting and motion monitoring. J. Mater. 2022, in press.
  102. Joo, H.; Lee, K.Y.; Lee, J. Piezo/Triboelectric Effect Driven Self-Powered Gas Sensor for Environmental Sensor Networks. Energy Technol. 2022, 10, 2200113.
  103. Negedu, S.D.; Tromer, R.; Gowda, C.C.; Woellner, C.F.; Olu, F.E.; Roy, A.K.; Pandey, P.; Galvao, D.S.; Ajayan, P.M.; Kumbhakar, P.; et al. Two-dimensional cobalt telluride as a piezo-tribogenerator. Nanoscale 2022, 14, 7788–7797.
  104. Zhang, J.-H.; Zhou, Z.; Li, J.; Shen, B.; Zhu, T.; Gao, X.; Tao, R.; Guo, X.; Hu, X.; Shi, Y.; et al. Coupling Enhanced Performance of Triboelectric–Piezoelectric Hybrid Nanogenerator Based on Nanoporous Film of Poly(vinylidene fluoride)/BaTiO3 Composite Electrospun Fibers. ACS Mater. Lett. 2022, 4, 847–852.
  105. Nazar, A.M.; Egbe, K.I.; Jiao, P. Hybrid Piezoelectric and Triboelectric Nanogenerators for Energy Harvesting and Walking Sensing. Energy Technol. 2022, 10, 2200063.
  106. Du, M.; Cao, Y.; Qu, X.; Xue, J.; Zhang, W.; Pu, X.; Shi, B.; Li, Z. Hybrid Nanogenerator for Biomechanical Energy Harvesting, Motion State Detection, and Pulse Sensing. Adv. Mater. Technol. 2022, 7, 2101332.
  107. Kao, F.-C.; Ho, H.-H.; Chiu, P.-Y.; Hsieh, M.-K.; Liao, J.-C.; Lai, P.-L.; Huang, Y.-F.; Dong, M.-Y.; Tsai, T.T.; Lin, Z.-H. Self-assisted wound healing using piezoelectric and triboelectric nanogenerators. Sci. Technol. Adv. Mater. 2022, 23, 1–16.
  108. Manchi, P.; Graham, S.A.; Patnam, H.; Paranjape, M.V.; Yu, J.S. rGO-ZnSnO3 Nanostructure-Embedded Triboelectric Polymer-Based Hybridized Nanogenerators. Adv. Mater. Technol. 2022, in press.
  109. Zhu, Y.; Sun, F.; Jia, C.; Zhao, T.; Mao, Y. A Stretchable and Self-Healing Hybrid Nano-Generator for Human Motion Monitoring. Nanomaterials 2022, 12, 104.
  110. García-Casas, X.; Ghaffarinejad, A.; Aparicio, F.J.; Castillo-Seoane, J.; López-Santos, C.; Espinós, J.P.; Cotrino, J.; Sánchez-Valencia, J.R.; Barranco, A.; Borrás, A. Plasma engineering of microstructured piezo—Triboelectric hybrid nanogenerators for wide bandwidth vibration energy harvesting. Nano Energy 2022, 91, 106673.
  111. Toroń, B.; Mistewicz, K.; Jesionek, M.; Kozioł, M.; Zubko, M.; Stróż, D. A new hybrid piezo/triboelectric SbSeI nanogenerator. Energy 2022, 238C, 122048.
  112. Li, X.; Ji, D.; Yu, B.; Ghosh, R.; He, J.; Qin, X.; Ramakrishna, S. Boosting piezoelectric and triboelectric effects of PVDF nanofiber through carbon-coated piezoelectric nanoparticles for highly sensitive wearable sensors. Chem. Eng. J. 2021, 426, 130345.
  113. Yang, Z.; Zhu, Z.; Chen, Z.; Liu, M.; Zhao, B.; Liu, Y.; Cheng, Z.; Wang, S.; Yang, W.; Yu, T. Recent Advances in Self-Powered Piezoelectric and Triboelectric Sensors: From Material and Structure Design to Frontier Applications of Artificial Intelligence. Sensors 2021, 21, 8422.
  114. Yang, X.; Li, P.; Wu, B.; Li, H.; Zhou, G. A flexible piezoelectric-triboelectric hybrid nanogenerator in one structure with dual doping enhancement effects. Curr. Appl. Phys. 2021, 32, 50–58.
  115. Lee, T.; Kim, I.; Kim, D. Flexible Hybrid Nanogenerator for Self-Powered Weather and Healthcare Monitoring Sensor. Adv. Electron. Mater. 2021, 7, 2100785.
  116. Singh, H.H.; Khare, N. A ferroelectric nanocomposite-film-based device for harvesting energy from water droplets using both piezoelectric and triboelectric effects. Nanotechnology 2021, 32, 485406.
  117. Hajra, S.; Padhan, A.M.; Sahu, M.; Alagarsamy, P.; Lee, K.; Kim, H.J. Lead-free flexible Bismuth Titanate-PDMS composites: A multifunctional colossal dielectric material for hybrid piezo-triboelectric nanogenerator to sustainably power portable electronics. Nano Energy 2021, 89A, 106316.
  118. Gai, Y.; Bai, Y.; Cao, Y.; Wang, E.; Xue, J.; Qu, X.; Liu, Z.; Luo, D.; Li, Z. A Gyroscope Nanogenerator with Frequency Up-Conversion Effect for Fitness and Energy Harvesting. Small 2022, 18, 2108091.
  119. Mu, J.; He, H.; Song, J.; He, J.; Hou, X.; Han, X.; Feng, C.; Zou, J.; Yu, J.; Chou, X. Functional structure enhanced synergistic sensing from triboelectric–electromagnetic hybrid nanogenerator for self-powered rotating speed monitoring. Energy Rep. 2022, 8, 5272–5283.
  120. Wang, D.; Zhang, D.; Tang, M.; Zhang, H.; Chen, F.; Wang, T.; Li, Z.; Zhao, P. Rotating triboelectric-electromagnetic nanogenerator driven by tires for self-powered MXene-based flexible wearable electronics. Chem. Eng. J. 2022, 446, 136914.
  121. Yu, D.; Sun, C.; Wang, K.; Yin, S.; Sun, L.; Chen, H.; Kong, F. A novel direct-driven triboelectric–electromagnetic hybridized wave energy converter for buoy power supply. Appl. Nanosci. 2022, 12, 1697–1711.
  122. Cho, H.; Kim, I.; Park, J.; Kim, D. A waterwheel hybrid generator with disk triboelectric nanogenerator and electromagnetic generator as a power source for an electrocoagulation system. Nano Energy 2022, 95, 107048.
  123. He, J.; Fan, X.; Zhao, D.; Cui, M.; Han, B.; Hou, X.; Chou, X. A high-efficient triboelectric-electromagnetic hybrid nanogenerator for vibration energy harvesting and wireless monitoring. Sci. China Inf. Sci. 2022, 65, 142401.
  124. Hu, Y.; Wang, X.; Qin, Y.; Li, Z.; Wang, C.; Wu, H. A robust hybrid generator for harvesting vehicle suspension vibration energy from random road excitation. Appl. Energy 2022, 309, 118506.
  125. Chen, Y.; Jie, Y.; Zhu, J.; Lu, Q.; Cheng, Y.; Cao, X.; Wang, Z.L. Hybridized triboelectric-electromagnetic nanogenerators and solar cell for energy harvesting and wireless power transmission. Nano Res. 2022, 15, 2069–2076.
  126. Mu, J.; Zou, J.; Song, J.; He, J.; Hou, X.; Yu, J.; Han, X.; Feng, C.; He, H.; Chou, X. Hybrid enhancement effect of structural and material properties of the triboelectric generator on its performance in integrated energy harvester. Energy Convers. Manag. 2022, 254, 115151.
  127. Kong, F.; Yin, S.; Sun, C.; Yang, C.; Chen, H.; Liu, H. Design and optimization of a maglev electromagnetic–triboelectric hybrid energy converter for supplying power to intelligent sensing equipment. Sustain. Energy Fuels 2022, 6, 800–814.
  128. Hong, H.; Yang, X.; Cui, H.; Zheng, D.; Wen, H.; Huang, R.; Liu, L.; Duan, J.; Tang, Q. Self-powered seesaw structured spherical buoys based on a hybrid triboelectric–electromagnetic nanogenerator for sea surface wireless positioning. Energy Environ. Sci. 2022, 15, 621–632.
  129. Li, X.; Gao, Q.; Cao, Y.; Yang, Y.; Liu, S.; Wang, Z.L. Tinghai Cheng. Optimization strategy of wind energy harvesting via triboelectric-electromagnetic flexible cooperation. Appl. Energy 2022, 307, 118311.
  130. Xin, C.; Guo, H.; Shen, F.; Peng, Y.; Xie, S.; Li, Z.; Zhang, Q. A Hybrid Generator with Electromagnetic Transduction for Improving the Power Density of Triboelectric Nanogenerators and Scavenging Wind Energy. Adv. Mater. Technol. 2022, in press.
  131. Zhao, T.; Niu, B.; Xie, G.; Hu, C.; Liu, B.; Xu, M.; Ma, Y. A High Output Triboelectric–Electromagnetic Hybrid Generator Based on In-Phase Parallel Connection. Adv. Mater. Technol. 2022, 7, 2101485.
  132. Zhang, B.; Zhang, S.; Li, W.; Gao, Q.; Zhao, D.; Wang, Z.L.; Cheng, T. Self-Powered Sensing for Smart Agriculture by Electromagnetic–Triboelectric Hybrid Generator. ACS Nano 2021, 15, 20278–20286.
  133. Askari, H.; Xu, N.; Barbosa, B.H.G.; Huang, Y.; Chen, L.; Khajepour, A.; Chen, H.; Wang, Z.L. Intelligent systems using triboelectric, piezoelectric, and pyroelectric nanogenerators. Mater. Today 2022, 52, 188–206.
  134. Wang, S.; Wang, Z.L.; Yang, Y. A One-Structure-Based Hybridized Nanogenerator for Scavenging Mechanical and Thermal Energies by Triboelectric–Piezoelectric–Pyroelectric Effects. Adv. Mater. 2016, 28, 2881–2887.
  135. Zhang, H.; Zhang, S.; Yao, G.; Huang, Z.; Xie, Y.; Su, Y.; Yang, W.; Zheng, C.; Lin, Y. Simultaneously Harvesting Thermal and Mechanical Energies based on Flexible Hybrid Nanogenerator for Self-Powered Cathodic Protection. ACS Appl. Mater. Interfaces 2015, 7, 28142–28147.
  136. Zi, Y.; Lin, L.; Wang, J.; Wang, S.; Chen, J.; Fan, X.; Yang, P.-K.; Yi, F.; Wang, Z.L. Triboelectric–Pyroelectric–Piezoelectric Hybrid Cell for High-Efficiency Energy-Harvesting and Self-Powered Sensing. Adv. Mater. 2015, 27, 2340–2347.
  137. Khan, A.A.; Saritas, R.; Rana, M.M.; Tanguy, N.; Zhu, W.; Mei, N.; Kokilathasan, S.; Rassel, S.; Leonenko, Z.; Yan, N.; et al. Performance-Improved Highly Integrated Uniaxial Tristate Hybrid Nanogenerator for Sustainable Mechanical Energy Harvesting. ACS Appl. Mater. Interfaces 2022, 14, 4119–4131.
  138. Tang, G.; Wang, Z.; Hu, X.; Wu, S.; Xu, B.; Li, Z.; Yan, X.; Xu, F.; Yuan, D.; Li, P.; et al. A Non-Resonant Piezoelectric–Electromagnetic–Triboelectric Hybrid Energy Harvester for Low-Frequency Human Motions. Nanomaterials 2022, 12, 1168.
  139. Zhao, L.-C.; Zou, H.-X.; Zhao, Y.-J.; Wu, Z.-Y.; Liu, F.-R.; Wei, K.-X.; Zhang, W.-M. Hybrid energy harvesting for self-powered rotor condition monitoring using maximal utilization strategy in structural space and operation process. Appl. Energy 2022, 314, 118983.
  140. Zhang, C.; Yuan, W.; Zhang, B.; Yang, O.; Liu, Y.; He, L.; Wang, J.; Wang, Z.L. High Space Efficiency Hybrid Nanogenerators for Effective Water Wave Energy Harvesting. Adv. Funct. Mater. 2022, 32, 2111775.
  141. Xue, F.; Chen, L.; Li, C.; Ren, J.; Yu, J.; Hou, X.; Geng, W.; Mu, J.; He, J.; Chou, X. A static-dynamic energy harvester for a self-powered ocean environment monitoring application. Sci. China Technol. Sci. 2022, 65, 893–902.
  142. Wang, C.; Lai, S.-K.; Wang, J.-M.; Feng, J.-J.; Ni, Y.-Q. An ultra-low-frequency, broadband and multi-stable tri-hybrid energy harvester for enabling the next-generation sustainable power. Appl. Energy 2021, 291, 116825.
  143. Xue, X.; Zhang, Z.; Wu, B.; He, S.; Wang, Q.; Zhang, W.; Bi, R.; Cui, J.; Zheng, Y.; Xue, C. Coil-levitated hybrid generator for mechanical energy harvesting and wireless temperature and vibration monitoring. Sci. China Technol. Sci. 2021, 64, 1325–1334.
  144. Ma, T.; Gao, Q.; Li, Y.; Wang, Z.; Lu, X.; Cheng, T. An Integrated Triboelectric–Electromagnetic–Piezoelectric Hybrid Energy Harvester Induced by a Multifunction Magnet for Rotational Motion. Adv. Eng. Mater. 2020, 22, 1900872.
  145. Rodrigues, C.; Gomes, A.; Ghosh, A.; Pereira, A.; Ventura, J. Power-generating footwear based on a triboelectric-electromagnetic-piezoelectric hybrid nanogenerator. Nano Energy 2019, 62, 660–666.
  146. Rahman, M.T.; Salauddin, M.; Maharjan, P.; Rasel, M.S.; Cho, H.; Park, J.Y. Natural wind-driven ultra-compact and highly efficient hybridized nanogenerator for self-sustained wireless environmental monitoring system. Nano Energy 2019, 57, 256–268.
  147. Du, X.; Zhao, S.; Xing, Y.; Li, N.; Wang, J.; Zhang, X.; Cao, R.; Liu, Y.; Yuan, Z.; Yin, Y.; et al. Hybridized Nanogenerators for Harvesting Vibrational Energy by Triboelectric–Piezoelectric–Electromagnetic Effects. Adv. Mater. Technol. 2018, 3, 1800019.
  148. He, J.; Wen, T.; Qian, S.; Zhang, Z.; Tian, Z.; Zhu, J.; Mu, J.; Hou, X.; Geng, W.; Cho, J.; et al. Triboelectric-piezoelectric-electromagnetic hybrid nanogenerator for high-efficient vibration energy harvesting and self-powered wireless monitoring system. Nano Energy 2018, 43, 326–339.
  149. Liu, Y.; Sun, N.; Liu, J.; Wen, Z.; Sun, X.; Lee, S.-T.; Sun, B. Integrating a Silicon Solar Cell with a Triboelectric Nanogenerator via a Mutual Electrode for Harvesting Energy from Sunlight and Raindrops. ACS Nano 2018, 12, 2893–2899.
  150. Im, B.; Lee, S.-K.; Kang, G.; Moon, J.; Byun, D.; Cho, D.-H. Electrohydrodynamic jet printed silver-grid electrode for transparent raindrop energy-based triboelectric nanogenerator. Nano Energy 2022, 95, 107049.
  151. Zheng, Y.; Liu, T.; Wu, J.; Xu, T.; Wang, X.; Han, X.; Cui, H.; Xu, X.; Pan, C.; Li, X. Energy Conversion Analysis of Multilayered Triboelectric Nanogenerators for Synergistic Rain and Solar Energy Harvesting. Adv. Mater. 2022, 34, 2202238.
  152. Wu, Y.; Qu, J.; Chu, P.K.; Shin, D.-M.; Luo, Y.; Feng, S.-P. Hybrid photovoltaic-triboelectric nanogenerators for simultaneously harvesting solar and mechanical energies. Nano Energy 2021, 89, 106376.
  153. Sivasubramanian, R.; Vaithilingam, C.A.; Indira, S.S.; Paiman, S.; Misron, N.; Abubakar, S. A review on photovoltaic and nanogenerator hybrid system. Mater. Today Energy 2021, 20, 100772.
  154. Yang, D.; Ni, Y.; Su, H.; Shi, Y.; Liu, Q.; Chen, X.; He, D. Hybrid energy system based on solar cell and self-healing/self-cleaning triboelectric nanogenerator. Nano Energy 2021, 79, 105394.
More
ScholarVision Creations