4.1. SLNs as a Promising Carrier System for the Topical Delivery of Anti-Acne Phytochemicals
SLNs loaded with resveratrol, vitamin E, and epigallocatechin gallate (EGCG) for skincare applications have been developed by Chen et al. in 2017. The study showed that lipid nanoparticles provided protective effect against UV-induced degradation of resveratrol and vitamin E and improved skin penetration of resveratrol
[16][52]. Previous studies showed that the topical formulations containing resveratrol and EGCG were effective in reducing inflammation, sebum production, and the viability of
P. acnes [17][53] as well as reducing the severity of
acne vulgaris in patients
[18][54]. Shrotriya et al. (2018) developed SLNs gel loaded with curcumin with the aim of improving its efficacy. Curcumin is a phytochemical extracted from the rhizome of
Curcuma longa (Zingiberaceae family). Curcumin has anti-inflammatory and antimicrobial activities which may combat the bacteria that contribute to acne. The results demonstrated that SLNs-based gel gave better occlusive effects and skin accumulation of curcumin compared to plain gel. The optimized curcumin-loaded SLNs had mean particle size of 51 nm and entrapment efficiency of 93%
[19][55]. According to Kakkar et al. (2018), SLNs loaded with tetrahydrocurcumin (THC), a partially reduced derivative of curcumin, provided great occlusive effect. The THC- loaded SLNs in gel formulation demonstrated better therapeutic effects than free THC
[20][56]. It was also found that the formulation containing just 10% SLNs resulted in better occlusion properties than the gold standard (Vaseline)
[21][57]. Talarico et al. (2021) reported that the controlled release of Quercetin, a poorly water-soluble flavonoid, over 26 h was achieved with SLNs composed of stearic acid as core lipid and Arabic Gum as stabilizer. In addition, the SLNs were found to enhance antioxidant activity compared to free Quercetin
[22][58]. Eugenol is a natural compound widely found in many aromatic plant species such as clove, holy basils, and betel vine. It has shown anti-acne activity by suppressing
P. acnes-induced inflammatory reaction
[23][59].
4.2. NLCs as a Promising Carrier System for the Topical Delivery of Anti-Acne Phytochemicals
Rapalli et al. (2020) developed curcumin-loaded NLCs with the aim of improving its skin permeability. The results indicated that the skin permeation of curcumin-loaded NLCs was three times higher than that of curcumin alone. Moreover, curcumin loaded-NLCs showed extended in vitro release up to 48 h
[24][63]. Lacatusu et al. (2017) studied the anti-inflammatory activity of the marigold extract and azelaic acid co-loaded NLCs. The results showed that the NLCs could reduce inflammatory IL-6 and IL-1β cytokines tested by ELISA method and paw edema in rats challenged with carrageenan
[25][64]. Moreover, a synergistic effect of carrot extract (CE) combined with azelaic acid (AA) in NLCs on anti-inflammatory and anti-acne activities was observed by Lacatusu et al. (2020). The results revealed that the NLCs exerted superior anti-inflammatory effect compared with the commercial product. Furthermore, the expression of inflammatory IL-1β and TNF-α cytokines was decreased in the cells treated with CE-AA loaded NLCs
[26][27][65,66]. Salicin is an alcoholic β-glucoside found in willow bark extract which is used to treat skin diseases such as acne due to its anti-inflammatory and high comedolytic activities. According to Arsenie et al. (2020), NLCs loaded with a mixture of white willow bark extract (WBE), azelaic acid and panthenol were able to improve the epidermal cell reconstruction. The gel containing the NLCs gave a degree of hydration of 84 % in the T-zone for type-III skin (predisposed to acne)
[28][67]. Asiaticoside, madecasosside, asiatic acid, and madecassic acid are the phytochemicals found in
Centella asiatica which exhibit multi-therapeutic effects including antioxidant, anti-inflammatory, antimicrobial, and anticarcinogenic activities
[29][68]. NLCs were found to enhance the membrane fluidity of stratum corneum which enabled the asiaticoside in
Centella asiatica to penetrate the skin
[30][69].
5. Conclusions
The SLNs and NLCs are attractive and promising lipid nanocarriers for topical delivery of phytochemicals due to their desirable properties that include skin penetration enhancement, promising occlusive effect, possibility to modulate drug release kinetics, ability to prevent the degradation of phytochemicals and suitability as carriers for both hydrophilic and lipophilic active substances. Moreover, the SLNs and NLCs can be applied onto damaged or inflamed skin because they are composed of biocompatible and non-toxic lipids. However, it is worth highlighting that although remarkable results of SLNs and NLCs as delivery systems for anti-acne phytochemicals have been demonstrated by many research groups, their in vivo efficacy in treating acne has not been fully established yet. Hence, further investigation on the potential of these lipid carriers in clinical setting is highly warranted and strongly encouraged. This would bring a new perspective on SLNs and NLCs as phytochemical carriers for topical treatment of acne.