Rhamnus alaternus Plant: Comparison
Please note this is a comparison between Version 2 by Vivi Li and Version 1 by Amine NEKKAA.

Rhamnus alaternus, is a wild-growing shrub, belonging to the Rhamnaceae family. Widely distributed in the Mediterranean basin, R. alaternus is used in the usual medicine in numerous countries, mostly Tunisia, Algeria, Morocco, Spain, France, Italy, and Croatia. A large number of disorders including dermatological complications, diabetes, hepatitis, and goiter problems can be treated by the various parts of R. alaternus (i.e., roots, bark, berries, and leaves). Several bioactive compounds were isolated from R. alaternus, including flavonoids, anthocyanins, and anthraquinones, and showed several effects such as antioxidant, antihyperlipidemic, antigenotoxic, antimutagenic, antimicrobial, and antiproliferative.

  • Rhamnus alaternus
  • extraction processes
  • phytochemistry
  • ethnopharmacology
  • phytotherapy
  • toxicity
  • bioactive compounds

1. Introduction

Rhamnus species are considered as medicinal plants. Indeed, these sources of natural compounds possess pharmacological activities, and are used for their curative effects to treat some symptoms and diseases [1,2,3,4,5,6,7][1][2][3][4][5][6][7]. During the past few years, several studies highlighted the potential efficacy of Rhamnus species in many areas [8,9,10,11][8][9][10][11]. Among these naturally available species, the Rhamnus alaternus plant (R. alaternus) is commonly recognized as a 5-meter-tall shrub, and is distributed throughout the Mediterranean area [12,13,14,15][12][13][14][15] including North Algeria, Tunisia, and Morocco [16,17][16][17]. This plant widely grows in a Mediterranean climate with hot and dry summer and winter period is moderate to cold [14,18,19][14][18][19].
The Rhamnus alaternus plant, the so-called "Imlilesse or Safir" in the North of Algeria, has been traditionally used for a long time in various medicine areas as infusion notably for its gastric, hypotensive, purgative, laxative, diuretic, antihypertensive, hepatoprotective, and digestive effects and finally to treat dermatological complications [20]. Such biological activities would be related to the natural presence of beneficial compounds as evidenced by many experimental studies, that pointed out that R. alaternus contains important metabolites such as flavonoids, coumarins, glycosides, tannins, anthraquinones, and polyphenolic compounds [21,22][21][22]. Some of these molecules were isolated from Rhamnus alaternus using various extraction processes (i.e., maceration, decoction, hydrodistillation, soxhlet, ultrasonic extraction) and demonstrated various pharmacological properties including antihyperlipidemic, antioxidant, antigenotoxic, antiproliferative, and antimutagenic activities. Some biological activities, especially antibacterial and antiproliferative effects were reviewed elsewhere [8,20,22,23,24][8][20][22][23][24].

2. Botanical Data

2.1. Geographical Distribution

Common in wild, Rhamnus alaternus growths generally between evergreen shrubs of the Mediterranean region, especially in a climate with discontinuous rains during winter. With such characteristics, R. alaternus is a very important species of the Mediterranean basin, where it is well acclimated to high solar radiation [25,26][25][26]Rhamnus alaternus is widely distributed and grows naturally in a large part of the littoral and islands of the Mediterranean. In France, this plant is mainly found in the South departments such as Isère, Ardèche, Aveyron, Maine-et-Loire, in Vienne but also in Brittany [27]. In addition, this plant growths in Corsica, Algeria, and Northern Tunisia [22,28,29,30][22][28][29][30].

2.2. Botanical Description

In North Africa, Rhamnus alaternus has several names such as Am’lile’ce, M’lila, Soitfaïr, Oud El-khir, or Safir, and is commonly known as Meliles in Berber language [31,32,33][31][32][33]R. alaternus is also called Buckthorn in English, Nerprun in French, Kreülzdorn in German, Aladierna, Cosco Unia, or Sanguino de Andalucia in Spanish, and Alaterno or Legno Puzzo in Italian [34]. Concerning its botanical classification, R. alaternus belongs to the Magnoliophyta division, the Magnoliopsida class, the Rhamnales order, the Rhamnaceae family, the Reynosia Genus and the Rhamnus alaternus species [35]. In addition, this plant has various synonyms including R. a. var angustifolia DC, R. a. var balearica DC, R. a. var hispanica DC, and R. a. var vulgaris DC [36]R. alaternus is a small shrub of about 5-meter-tall (Figure 1A–D). Its flowers are fecundated by insects or with the help of wind [37,38][37][38] and get yellow-green from January until the end of April (Figure 1E), with a top in mid-February [39]. Then puffy and black fruits are produced, and mature between late spring and early summer, each one containing between 2 and 5 red berry seeds with on average 2.5 mm width, 4.6 mm length, and 9.1 mg weight as maximum (Figure 1F) [38,40][38][40]. Seeds are surrounded within a pericarp, which opens up once dried [38], and represents an important trophic source for birds and small mammals [41]. Usually germinated in 3 to 4 weeks between 7.5 and 24 °C, the seeds remain viable for several years in storage [40].
Figure 1.
Rhamnus alaternus
 plant with a focus on its different aerial parts: (
) leaves, (
) stem, (
) pods, (
) flowers, and (
) berries.

3. Phytochemistry

3.1. Generalities

The phytochemical investigations of Rhamnus alaternus extracts led to the isolation of various classes of natural bioactive compounds, and evidenced the richness in secondary metabolites of this medicinal plant. These bioactive compounds included flavonoids, tannins, anthraquinones, anthocyanins, anthocyanidins, and other compounds [48[42][43],72], isolated from various parts of R. alaternus such as barks, leaves, roots, and berries extracts. The investigation of these compounds was limited to qualitative studies. The most important classes of phytochemicals identified in R. alaternus are summarized (Table 21) with their main chemical compounds, whose structures are presented in Supplementary Data Supplementary Data (supplementary could be found in https://www.mdpi.com/2076-3921/10/2/300#supplementary). Each class of compounds is reviewed hereafter.
Table 21.
 Compounds isolated from 
Rhamnus alaternus.
Compound Class Compound Compound Number * Reference
Flavonoids Quercetin-3-O-rhamninoside 1 [48,55][42][44]
Kaempferol-3-O-rhamninoside 2 [55][44]
Quercetin-4′-O-rhamninoside 3 [55][44]
Kaempferol-4′-O-rhamninoside 4 [55][44]
Rhamnetin-3-O-rhamninoside 5 [55][44]
Rhamnocitrin-3-O-rhamninoside 6 [55][44]
Rhamnocitrin-4′-O-rhamninoside 7 [55][44]
Kaempferol 8 [21,23,47,48,55][21][23][42][44][45]
Quercetin 9 [21,23,55][21][23][44]
Isorhamnetin 10 [21,[2155]][44]
Rhamnetin 11 [21,55][21][44]
Rhamnazin 12 [55][44]
Kaempferol-3-O-isorhamninoside 13 [23,24,50][23][24][46]
Rhamnocitrin-3-O-isorhamninoside 14 [24,50][24][46]
Rhamnetin-3-O-isorhamninoside 15 [50][46]
Anthraquinones Emodin 16 [8,47,56][8][45][47]
Rhein 17 [8,57][8][48]
Chrysophanol 18 [8]
Physcion 19 [8,57][8][48]
1,4,6,8 tetrahydroxy-3 methyl anthraquinone 20 [16]
1,2,6,8 tetrahydroxy-3 methyl anthraquinone 8-O-β-D-glucopyranoside 21 [16]
1, 6 dihydroxy-3 methyl 6 [2′-Me (heptoxy)] anthraquinone    
Physcion-3-O-β-rutinoside 22 [16]
Emodin-6O-α-L-rhamnopyranoside 23 [16]
β-sitosterol 24 [16]
β-sitosterol-3-O-β-D-glycopyranoside 25 [16]
  26 [16]
Anthocyanins Cyanidin 3-rutinoside 27 [18]
Petunidin 3-rutinoside 28 [18]
Delphinidin 3-rutinoside 29 [18]
Pelargonidin 3-rutinoside 30 [18]
Peonidin 3-rutinoside 31 [18]
Malvidin 3-rutinoside 32 [18]
Delphinidin 3-glucoside 33 [18]
Cyanidin 3-glucoside 34 [18]
Petunidin 3-glucoside 35 [18]
Pelargonidin 3-glucoside 36 [18]
Peonidin 3-glucoside 37 [18]
Malvidin 3-glucoside 38 [18]
Delphindin 39 [18]
Cyandin 40 [18]
Petunidin 41 [18]
Pelagonidin 42 [18]
Peonidin 43 [18]
Malvidin 44 [18]
* These numbers refer to the chemical structures plotted in Supplementary Data (Figure S2) Supplementary Data (Figure S2).

3.2. Flavonoids

Flavonoids, whose skeleton is based on about 15-carbon and is composed of two benzene rings [73[49][50],74], gather the bioactive compounds with low molecular weight (286–610 g/mol).
These flavonoids are the most active constituents of Rhamnus alaternus. Among these isolated compounds, literature reports quercitin-3-0-rhamninoside, kaempferol-3-0-rhamninoside, quercitin-4’-0-rhamninoside, kaempferol-4’-0-rhamninoside, rhamnetin-3-0-rhamninoside, rhamnocitrin-3-0-rhamninoside, and rhamnocitrin-4’-0-rhamninoside (Figure S2(1)–(7)), identified from green fruits of Rhamnus alaternus [55][44]. Other flavonols —including quercitin, kaempferol, isorhamnetin, rhamnetin, rhamnazin (Figure S2(8)–(12))—were extracted by maceration, from methanolic and aqueous extracts from Algerian Rhamnus alaternus barks [21,55][21][44]. More, flavonols such as kaempferol 3-0-β-isorhamninoside, rhamnocitrine 3-0-β-isorhamninoside, and rhamnetin-3-0-isorhamninoside (Figure S2(13)–(15)) were also isolated from Rhamnus alaternus’s leaves by Soxhlet extraction method [24,50][24][46]. Furthermore, other valuable bioactive compounds were isolated from R. alaternus’ leaves such as kaempferol 3-O acetyl-rhamnoside and quercetin-3-rhamnoside [23,48][23][42].

3.3. Anthraquinone Compounds

Anthraquinones are aromatic organic compounds with the 9,10-anthracenedione core [75][51]. These ones, including three new Anthraquinones, were isolated from the extracts of various parts collected from Rhamnus alaternus (i.e., leaves, barks, and roots). Among anthraquinones, rhein, chrysophanol, and physcion (Figure S2(17)–(19)) were also isolated from the bark extract of R. alaternus by ultrasonic extraction [8]. Furthermore, 1,4,6,8 tetrahydroxy-3 methyl anthraquinone 1-O-β-D-glucopyranosyl-4,6-di-O-α-L-rhamnopyranoside, 1,2,6,8 tetrahydroxy-3 methyl anthraquinone 8-O-β-D-glucopyranoside and 1, 6 dihydroxy-3 methyl 6 [2′-Me (heptoxy)] anthraquinone (Figure S2(20)–(22)) were identified from various parts of Rhamnus alaternus such as leaves, bark and roots [16].

3.4. Anthocyanin Constituents

Anthocyanins are structurally related to anthocyanidins (parent class of flavonoids) and are also derived from the 2-phenylbenzopyrilium ion [76,77][52][53].
The extracts of Rhamnus alaternus’ berries showed many compounds of high nutritional values and were rich in diverse anthocyanins and anthocyanidins constituents, such as delphinidin 3-rutinoside, delphinidin 3-glucoside, delphinidin, cyanidin 3-rutiniside, cyanidin 3-glucoside, cyanidin, pelargonidin 3-rutinoside, pelargonidin 3-glucoside, pelargonidin, petunidin, peonidin, and malvidin [18] [18](Figure S2(Figure S2(27)–(44)27)–(44)).


  1. Stocker, P.; Yousfi, M.; Djerridane, O.; Perrier, J.; Amziani, R. Effect of flavonoids from various Mediterranean plants on enzymatic activity of intestinal carboxylesterase. Biochimie 2004, 86, 919–925.
  2. Lu, C.M.; Yang, J.J.; Wang, P.Y.; Lin, C.C. A new acylated flavonol glycoside and antioxidant effects of Hedyotis diffusa. Planta Med. 2000, 66, 374–377.
  3. Mai, L.P.; Dumontet, V.; Van Tri, M.; Hill, B.; Thoison, O.; Se, T. Cytotoxicity of Rhamnosylanthraquinones and Rhamnosylanthrones from Rhamnus nepalensis. J. Nat. Prod. 2001, 64, 1162–1168.
  4. Locatelli, M.; Epifano, F.; Genovese, S.; Carlucci, G.; Končić, M.Z.; Kosalec, I.; Kremer, D. Anthraquinone profile, antioxidant and antimicrobial properties of bark extracts of Rhamnus catharticus and R. orbiculatus. Nat. Prod. Commun. 2011, 6, 1275–1280.
  5. Coskun, M.; Satake, T.; Hori, K.; Saiki, Y.; Tanker, M. Anthraquinone glycosides from Rhamnus Libanoticus. Phytochemistry 1990, 29, 2018–2020.
  6. Chermat, S.; Gharzouli, R. Ethnobotanical Study of Medicinal Flora in the North East of Algeria—An Empirical Knowledge in Djebel Zdimm (Setif). J. Mater. Sci. Eng. A 2015, 5, 50–59.
  7. Marzouk, M.S.; El-Toumy, S.A.A.; Merfort, I.; Nawwar, M.A.M. Polyphenolic metabolites of Rhamnus disperma. Phytochemistry 1999, 52, 943–946.
  8. Kosalec, I.; Kremer, D.; Locatelli, M.; Epifano, F.; Genovese, S.; Carlucci, G.; Randić, M.; Zovko Končić, M. Anthraquinone profile, antioxidant and antimicrobial activity of bark extracts of Rhamnus alaternus, R. fallax, R. intermedia and R. pumila. Food Chem. 2013, 136, 335–341.
  9. Locatelli, M.; Genovese, S.; Carlucci, G.; Kremer, D.; Randic, M.; Epifano, F. Development and application of high-performance liquid chromatography for the study of two new oxyprenylated anthraquinones produced by Rhamnus species. J. Chromatogr. A 2012, 1225, 113–120.
  10. Lu, T.M.; Ko, H.H. A new anthraquinone glycoside from Rhamnus nakaharai and anti-tyrosinase effect of 6-methoxysorigenin. Nat. Prod. Res. 2016, 30, 2655–2661.
  11. Gonçalves, R.S.; Silva, E.L.; Hioka, N.; Nakamura, C.V.; Bruschi, M.L.; Caetano, W. An optimized protocol for anthraquinones isolation from Rhamnus frangula L. Nat. Prod. Res. 2018, 32, 366–369.
  12. Genovese, S.; Epifano, F.; Curini, M.; Kremer, D.; Carlucci, G.; Locatelli, M. Screening for oxyprenylated anthraquinones in Mediterranean Rhamnus species. Biochem. Syst. Ecol. 2012, 43, 125–127.
  13. Bas, J.M.; Oliveras, J.; Gómez, C. Myrmecochory and short-term seed fate in Rhamnus alaternus: Ant species and seed characteristics. Acta Oecol. 2009, 35, 380–384.
  14. Tsahar, E.; Friedman, J.; Izhaki, I. Impact on Fruit Removal and Seed Predation of a Secondary Metabolite, Emodin, in Rhamnus alaternus Fruit Pulp. Oikos 2002, 99, 290–299.
  15. Arroyo, J.M.; Rodriguez, R.; Rigueiro, C.; Hampe, A.; Jordano, P. Isolation and characterization of 12 microsatellite loci for Rhamnus alaternus (Rhamnaceae). Mol. Ecol. Resour. 2009, 9, 1214–1216.
  16. Ben Ammar, R.; Miyamoto, T.; Chekir-Ghedira, L.; Ghedira, K.; Lacaille-Dubois, M.-A. Isolation and identification of new anthraquinones from Rhamnus alaternus L. and evaluation of their free radical scavenging activity. Nat. Prod. Res. 2018, 33, 280–286.
  17. Canale, A.; Benvenuti, S.; Raspi, A.; Benelli, G. Insect pollinators of the late winter flowering Rhamnus alaternus L., a candidate for honeybee-friendly scrubland spots in intensively managed agricultural areas. Plant Biosyst. 2014, 37–41.
  18. Longo, L.; Vasapollo, G.; Rescio, L. Identification of anthocyanins in Rhamnus alaternus L. berries. J. Agric. Food Chem. 2005, 53, 1723–1727.
  19. Miralles, J.; Martínez-Sánchez, J.J.; Franco, J.A.; Bañón, S. Rhamnus alaternus growth under four simulated shade environments: Morphological, anatomical and physiological responses. Sci. Hortic. 2011, 127, 562–570.
  20. Ben Ammar, R.; Kilani, S.; Bouhlel, I.; Skandrani, I.; Naffeti, A.; Boubaker, J.; Ben Sghaier, M.; Bhouri, W.; Mahmoud, A.; Chekir-Ghedira, L.; et al. Antibacterial and cytotoxic activities of extracts from (Tunisian) Rhamnus alaternus (Rhamnaceae). Ann. Microbiol. 2007, 57, 453–460.
  21. Boussahel, S.; Speciale, A.; Dahamna, S.; Amar, Y.; Bonaccorsi, I.; Cacciola, F.; Cimino, F.; Donato, P.; Ferlazzo, G.; Harzallah, D.; et al. Flavonoid profile, antioxidant and cytotoxic activity of different extracts from Algerian Rhamnus alaternus L. bark. Pharmacogn. Mag. 2015, 11, S102–S109.
  22. Ammar, B.; Kilani, S.; Bouhlel, I.; Ezzi, L.; Skandrani, I.; Boubaker, J.; Ben Sghaier, M.; Naffeti, A.; Mahmoud, A.; Chekir-Ghedira, L.; et al. Antiproliferative, antioxidant, and antimutagenic activities of flavonoid-enriched extracts from (Tunisian) Rhamnus alaternus L.: Combination with the phytochemical composition. Drug Chem. Toxicol. 2008, 31, 61–80.
  23. Tacherfiout, M.; Petrov, P.D.; Mattonai, M.; Ribechini, E.; Ribot, J.; Bonet, M.L.; Khettal, B. Antihyperlipidemic effect of a Rhamnus alaternus leaf extract in Triton-induced hyperlipidemic rats and human HepG2 cells. Biomed. Pharmacother. 2018, 101, 501–509.
  24. Bhouri, W.; Ben Sghaier, M.; Kilani, S.; Bouhlel, I.; Dijoux-Franca, M.G.; Ghedira, K.; Chekir Ghedira, L. Evaluation of antioxidant and antigenotoxic activity of two flavonoids from Rhamnus alaternus L. (Rhamnaceae): Kaempferol 3-O-β-isorhamninoside and rhamnocitrin 3-O-β-isorhamninoside. Food Chem. Toxicol. 2011, 49, 1167–1173.
  25. Martínez-Sánchez, A.; Gil-Izquierdo, A.; Gil, M.I.; Ferreres, F. A comparative study of flavonoid compounds, vitamin C, and antioxidant properties of baby leaf Brassicaceae species. J. Agric. Food Chem. 2008, 56, 2330–2340.
  26. Ferriol, M.; Llorens, L.; Gil, L.; Boira, H. Influence of phenological barriers and habitat differentiation on the population genetic structure of the balearic endemic Rhamnus ludovici-salvatoris Chodat and R. alaternus L. Plant Syst. Evol. 2009, 277, 105–116.
  27. Penzig, O. Flore Coloriée de Poche du Littoral Méditerranéen de Gênes à Barcelone y Compris la Corse; Klincksieck, P., Ed.; Librairie Paris: Paris, France, 1902.
  28. Benarba, B. Medicinal plants used by traditional healers from South-West Algeria: An ethnobotanical study. J. Intercult. Ethnopharmacol. 2016, 5, 320–330.
  29. Chancerel, L. Flore Forestière du Globe; Gauthier-Villars, H., Ed.; University of Michigan Library: Ann Arbor, MI, USA, 1920.
  30. Djidel, S.; Khennouf, S.; Baghiani, A.; Harzallah, D.; Arrar, L. Medicinal plants used traditionally in the algerian folk medicine for gastrointestinal disorders and hypertension: Total polyphenols, flavonoids and antioxidant activity. Acta Hortic. 2010, 854, 59–66.
  31. Bhouri, W.; Boubaker, J.; Kilani, S. Flavonoids from Rhamnus alaternus L. ( Rhamnaceae ): Kaempferol 3-O-β-isorhamninoside and rhamnocitrin 3-O-β-isorhamninoside protect against DNA damage in human lymphoblastoid cell and enhance antioxidant activity. S. Afr. J. Bot. 2012, 80, 57–62.
  32. Boudjelal, A.; Henchiri, C.; Sari, M.; Sarri, D.; Hendel, N.; Benkhaled, A.; Ruberto, G. Herbalists and wild medicinal plants in M’Sila (North Algeria): An ethnopharmacology survey. J. Ethnopharmacol. 2013, 148, 395–402.
  33. Debeaux, M.O. Flore de la Kabylie du Djurdjura, ou, Catalogue Méthodique et Raisonné de Toutes les Plantes Vasculaires et Spontanées Observées Jusq’à ce jour Dans Cette Contrée; P. Klincksieck: Paris, France, 1894.
  34. Gubb, A.S. La flore Algérienne, Naturelle et Acquise; A. Jourdan: Alger, Algeria, 1913.
  35. Quezel, P.S.; Santa, S. Nouvelle Flore de l’Algérie et Des Régions Désertique Méridionales; Centre Nationale de la Recherche Scientifique: Paris, France, 1963.
  36. The Plant List, Version 1.1. 2013. Available online: http://www.theplantlist.org/ (accessed on 1 January 2021).
  37. Herrara, C.M. A Study of Avian Frugivores, Bird-Dispersed Plants, and Their Interaction in Mediterranean Scrublands. Ecol. Soc. Am. 1984, 54, 2–23.
  38. Bas, J.M.; Gómez López, C.; Pons, P. Morphological and structural characterization of evergreen buckthorn (Rhamnus alaternus L.) fruits in the northeastern Iberian Peninsula. Stud. Bot. 2002, 21, 89–103.
  39. El Aou-Ouad, H.; Florez-Sarasa, I.; Ribas-Carbo, M.; Flexas, J.; Medrano, H.; Gulias, J. Trade-offs between seedling growth, plant respiration and water-use efficiency in two Mediterranean shrubs Rhamnus alaternus and Rhamnus ludovici-salvatoris. Photosynthetica 2015, 53, 537–546.
  40. Bas, J.M.; Pons, P.; Gómez, C.; Ecology, S.P.; Bas, J.M.; Pons, P. Exclusive Frugivory and Seed Dispersal of Rhamnus alaternus in the Bird Breeding Season breeding frugivory and seed dispersal season of Rhamnus alaternus in the bird. Plant Ecol. 2005, 183, 77–89.
  41. Gulias, J.; Traveset, A.; Riera, N.; Mus, M. Critical Stages in the Recruitment Process of Rhamnus alaternus L. Ann. Bot. 2004.
  42. Moussi, K.; Nayak, B.; Perkins, L.B.; Dahmoune, F. HPLC-DAD profile of phenolic compounds and antioxidant activity of leaves extract of Rhamnus alaternus L. Ind. Crop. Prod. 2015, 74, 858–866.
  43. Abou-Chaar, C.I.; Kabbara, R.A.; Shamlian, S.N. A chromatographic study of the anthraquinones of rhamnus alaternus L. III. Extraction, isolation and chromatographic characterization of the anthraglycosides of the stem bark. Pharm. Biol. 1982, 20, 13–18.
  44. Cuoco, G.; Mathe, C.; Vieillescazes, C. Liquid chromatographic analysis of flavonol compounds in green fruits of three Rhamnus species used in Stil de grain. Microchem. J. 2014, 115, 130–137.
  45. Zeouk, I.; Ouedrhiri, W.; Jiménez, I.A.; Lorenzo-morales, J.; Bazzocchi, I.L.; Bekhti, K.; Universitario, I.; Tropicales, D.E.; De Canarias, P.; De, U.; et al. Intra-combined antioxidant activity and chemical characterization of three fractions from Rhamnus alaternus extract: Mixture design. Ind. Crop. Prod. 2020, 144, 112054.
  46. Ben Ammar, R.; Bhouri, W.; Ben Sghaier, M.; Boubaker, J.; Skandrani, I.; Neffati, A.; Bouhlel, I.; Kilani, S.; Mariotte, A.M.; Chekir-Ghedira, L.; et al. Antioxidant and free radical-scavenging properties of three flavonoids isolated from the leaves of Rhamnus alaternus L. (Rhamnaceae): A structure-activity relationship study. Food Chem. 2009, 116, 258–264.
  47. Izhaki, I.; Tsahar, E.; Paluy, I.; Friedman, J. Within population variation and interrelationships between morphology, nutritional content, and secondary compounds of Rhamnus alaternus fruits. New Phytol. 2002, 217–223.
  48. Ben Ghezala, H.; Chaouali, N.; Gana, I.; Snouda, S.; Nouioui, A.; Belwaer, I.; Ouali, J.; Kaddour, M.; Masri, W.; Ben Salah, D.; et al. Toxic Effects of Rhamnus alaternus: A Rare Case Report. Case Rep. Emerg. Med. 2015, 2015, 182951.
  49. Kumar, S.; Pandey, A.K. Chemistry and Biological Activities of Flavonoids: An Overview. Sci. World J. 2013, 1–16.
  50. Wang, T.; Li, Q.; Bi, K. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J. Pharm. Sci. 2018, 13, 12–23.
  51. Simpson, D.; Amos, S. Other Plant Metabolites. In Pharmacognosy; Elsevier Inc.: Cedarville, OH, USA, 2017; pp. 267–280. ISBN 9780128021040.
  52. Celli, G.B.; Tan, C.; Selig, M.J. Anthocyanidins and Anthocyanins. In Encyclopedia of Food Chemistry; Elsevier: New York, NY, USA, 2018; pp. 218–223.
  53. Goto, T.; Chemistry, O.; Agriculture, F. Structure, Stability and Color Variation of Natural Anthocyanins. In Progress in the Chemistry of Organic Natural Products; Springer: Vienna, Austria, 1987; pp. 113–158. ISBN 978-3-7091-8906-1.