Native Plants from Mexico Used in Herbal Products: Comparison
Please note this is a comparison between Version 3 by Beatrix Zheng and Version 2 by Beatrix Zheng.
Historically, herbal products were the first resource used by man for the improvement of his health. It is the knowledge of these products that perpetuated medicinal practices prevail today as well. Mexico ranks fifth among megadiverse countries as it is home to nearly 23,424 vascular plants, which represent 5000 endemic plant species; of these, a total of 4500 medicinal plants have been estimated, while only 3000 are registered in the herbarium of the Mexican Institute of Social Security (IMSS). However, a pharmacological analysis of only 5% has been reported. The country boasts a wide range of medicine made from plants that are representative of traditional Mexican herbal products. There has been a steady rise in the use and commercialization of herbal products, demonstrative of the increase in world demand in this industry. Further, 90% of the population in Mexico has opted for these products at least once in their lives, as indicated by the Secretaría de Salud (SS) and Comisión Federal para la Protección contra Riesgos Sanitarios (COFEPRIS).
  • sanitary registries
  • popular medicinal plants
  • herbal remedies
  • ethnopharmacalogy
  • complementary medicine
  • Mexican plants
  • medicinal remedies
  • medicinal plants

1. Native Plants from Mexico Used in Herbal Products

The most popular medicinal plants used for herbal medicines are native plants from other regions of the world, mostly Europe and Asia. Out of 241 sanitary registries, only 3 plants are native to Mexico, according to COFEPRIS [1]. On the contrary, for herbal remedies, it was observed that of 129 sanitary registries, at least 21 plants are native Mexican.
The research of popular medicinal plants of herbal products elicited 24 native plants from Mexico: Persea gratissima, Phaseolus vulgaris, Sambucus, Cecropia obtusifolia, Smilax cordifolia, Tilia Mexicana, Tecoma stans, Turnera diffusa, Jacobinia spicigera, Ipomoea purga, Artemisa mexicana, Capsicum annum, Guazuma ulmifolia, Crescentia alata, Sambucus mexicana, Equisetum, Salix taxifolia, Amphipterygium adstringens, Hintonia latiflora, Conyza filaginoides, Coutarea latiflora, Eryngium heterophyllum, Ternstroemia pringlei, and Agastache mexicana.

2. General Characteristics of Mainly Native Plants from Mexico Used in Herbal Products

This research presents information collected from scientific reports on the biological properties of plants with the highest number of registers for herbal medicine and herbal remedies (Table 1 and Table 2) Persea grattisima, Phaseolus vulgaris, Sambucus, Agastache Mexicana, Amphipterygium adstringens, and Turnera diffusa and their potential therapeutic applications. The bioactivities and mechanism of action reported in the literature on the plants are described below, considering that regulation did not require evidence for the registration of these products.
Table 1. Native plants used in herbal medicines with mainly biological activity and number of registers.
Herbal Medicine Status Biological Activity Registers Reference
Persea gratissima Native Antiartritic,
Table 2. Native plants used in herbal remedies with mainly biological activity and number of registers.
Herbal Remedies Status Biological Activity Registers Reference
1 [ Cecropia obtusifolia2]
Native Hypoglycemic 2 [5] Phaseolus vulgaris Native Hypoglycemic, Antihyperlipidemic 1 [3]
Smilax cordifolia Native Antihyperlipidemic, anti-inflamatory 2 [6] Sambucus Native Respiratory diseases 1 [
Tilia mexicana4]
Native
Sedative, anxiolytic 1 [7]
Tecoma stans Native Digestive functions 3 [8]
Turnera diffusa Native Aphrodisiacs 4 [9]
Jacobinia spicigera Native Respiratory diseases 1 [10]
Ipomea purga Native Heart disease 1 [11]
Artemisa mexicana Native Digestive functions 1 [12]
Capsicum annum Native Digestive functions 2 [13]
Guazina ulmifolia Native Digestive functions 1 [14]
Crescentia alata Native Respiratory diseases 1 [15]
Sambucus mexicana Native Respiratory diseases 1 [16]
Equisetum Native Nefropatia 3 [17]
Salix taxifolia Native Nefropatia 1 [18]
Amphipterygium adstringens Native Digestive functions 7 [19]
Hintonia latiflora Native Digestive functions 2 [20]
Conyza filaginoides Native Digestive functions 3 [21]
Coutarea latiflora Native Digestive functions 1 [22]
Eryngium heterophyllum Native Antihyperlipidemic 1 [23]
Ternstroemia pringlei Native Insomnia 1 [24]
Agastache mexicana Native Anti-inflamatory 9 [25]
Persea grattisima and Persea americana unsaponifiable oil, in combination with soybean (33.3:66.6), is prescribed for osteoarthritis. The oil enhances the synthesis of collagen and proteoglycan and decreases the synthesis of fibronectin. Another mechanism of action is the inhibition of the release and activity of metalloproteinases and proinflammatory cytokines such as IL-1, IL-8, and PGE2 [26][27][28]. Additionally, in vitro studies have shown that the oil mixture stimulates aggrecan and matrix component synthesis, reduces catabolic and proinflammatory mediator production, and appears to prevent the osteoarthritic osteoblast-induced inhibition of matrix molecule production, suggesting that this compound may promote osteoarthritis cartilage repair by acting on subchondral bone osteoblasts [26].
The clinical data suggest that unsaponifiable oil from avocado and soybean can efficiently supplement long-term treatments of knee and hip osteoarthritis [26][28][29].

2.2. Phaseolus vulgaris

The seed of this plant (beans) has been investigated for several bioactivities. One of them is the inhibitor of alpha-amylase, which has anti-obesity effects, as well as the ability for reducing post-prandial peaks from blood glucose in clinical trials [7] and facilitates digestion and prevents constipation [30][31]. Otherwise, inhibition in vivo of maltase and saccharase was reported in rats [32].

2.3. Sambucus

Sambucus nigra flower (elderflower) and fruit (elderberry) extract, which is prescribed for flu symptoms, have demonstrated ancestral medicinal properties even for respiratory viral pathogens, such as influenza and cold. The elderflowers are composed of a diversity of bioactive molecules such as free aglycones, flavonol glycosides, phenolic compounds, sterols, triterpenes, free fatty acids, alkanes, and tannins. Antiviral activity has been tested against dengue virus serotype-2, influenza, herpes simplex virus type 1, parainfluenza, influenza, and respiratory syncytial virus. However, reports of clinical trials demonstrating the efficacy of elderflower extract do not exist, even though four trials exist that use elderberry extracts [33][34][35].

2.4. Agastache mexicana

A. mexicana is a Mexican medicinal plant commonly known as “toronjil morado.” It is an endemic plant in Mexico that is prepared as an infusion or decoction, also maceration in ethanol of aerial parts. The biological activity is used for treating nervous system issues, insomnia, cardiovascular disorders, and gastrointestinal diseases [36][37][38]. The major compounds in this medicinal specie are monoterpenes such as limonene and pulegone [39]. The anti-inflammatory activity of limonene has been demonstrated, while the nociceptive behavior of pulegone has been reported [40][41]. Recent scientific evidence showed that the compounds present in the medicinal plant A. mexicana can reduce symptoms such as pain and inflammation in gastrointestinal disorders, implying the potential use of the monoterpenes present in the plant for therapeutic purposes and treatment of abdominal pain, colitis, and ulcers [38].

2.5. Amphipterygium adstringens

Commonly known as “Cuachalalate”, it is a dioecious tree endemic to Mexican tropical dry forests [42]. The biomedical properties have been extensively studied, including astringent and hypocholesterolemic properties, as well as their effectiveness for treating cancer and gastritis. The bark has traditionally been used by healers to treat gastritis, gastric ulcers, gastrointestinal cancer, colic, fever, and also tooth pain. The phytochemical constituents of Cuachalalate bark are categorized into two main groups: triterpenes and long-chain phenolic compounds [43]. In particular, A. adstringens have a high commercial demand in Mexico [44]; 57.5 tons of bark per year are estimated in south-central Mexico [45]. In a recent report, the researchers demonstrated that the extract of A. adstringens (“cuachalalate”) has substantial potential for the treatment of inflammatory colitis [46].

2.6. Turnera diffusa

Turnera diffusa, commonly known “damiana”, is a shrub that grows in arid and semiarid regions of South America, Mexico, the United States, and the West Indies. Several properties have been attributed to this plant. Usually, the leaves of the plant are used to prepare a decoction [47][48]. Phytochemical investigations have been conducted to isolate and identify some components present in the plant, among which are flavonoids, sesquiterpenes, triterpenes, polyterpenes, fatty acids, and xanthine-derived sugars [9][49]. In a recent study, methanolic extract of T. diffusa was demonstrated to have an antidiabetic effect of Teuhetenone A in a diabetic mice model [50].

References

  1. Comisión Federal para la Prevención de Riesgos Sanitarios (COFEPRIS). Listados de Registros Sanitarios de Medicamentos. 2022. Available online: https://www.gob.mx/cofepris/documentos/registros-sanitarios-medicamentos (accessed on 12 February 2022).
  2. Bhuyan, D.J.; Alsherbiny, M.A.; Perera, S.; Low, M.; Basu, A.; Devi, O.K.; Barooah, M.S.; Li, C.G.; Papoutsis, K. The Odyssey of Bioactive Compounds in Avocado (Persea americana) and their Health Benefits. Antioxidants 2019, 8, 426.
  3. Alcázar-Valle, M.; Lugo-Cervantes, E.; Mojica, L.; Morales-Hernández, N.; Reyes-Ramírez, H.; Enríquez-Vara, J.N.; García-Morales, S. Bioactive Compounds, Antioxidant Activity, and Antinutritional Content of Legumes: A Comparison between Four Phaseolus Species. Molecules 2020, 25, 3528.
  4. Mota, A.H.; Andrade, J.M.; Rodrigues, M.J.; Custódio, L.; Bronze, M.R.; Duarte, N.; Baby, A.; Rocha, J.; Gaspar, M.M.; Simões, S.; et al. Synchronous insight of in vitro and in vivo biological activities of Sambucus nigra L. extracts for industrial uses. Ind. Crops Prod. 2020, 154, 112709.
  5. Pérez-Guerrero, C.; Herrera, M.D.; Ortiz, R.; de Sotomayor, M.A.; Fernández, M.A. A pharmacological study of Cecropia obtusifolia Bertol aqueous extract. J. Ethnopharmacol. 2001, 76, 279–284.
  6. Xu, M.; Xue, H.; Li, X.; Zhao, Y.; Lin, L.; Yang, L.; Zheng, G. Chemical composition, antibacterial properties, and mechanism of Smilax china L. polyphenols. Appl. Microbiol. Biotechnol. 2019, 103, 9013–9022.
  7. Aguirre-Hernández, E.; Rosas-Acevedo, H.; Soto-Hernández, M.; Martínez, A.L.; Moreno, J.; González-Trujano, M.E. Bioactivity-guided isolation of beta-sitosterol and some fatty acids as active compounds in the anxiolytic and sedative effects of Tilia americana var. mexicana. Planta Med. 2007, 73, 1148–1155.
  8. Bakr, R.O.; Fayed, M.; Salem, M.A.; Hussein, A.S. Tecoma stans: Alkaloid Profile and Antimicrobial Activity. J. Pharm. Bioallied Sci. 2019, 11, 341–347.
  9. Szewczyk, K.; Zidorn, C. Ethnobotany, phytochemistry, and bioactivity of the genus Turnera (Passifloraceae) with a focus on damiana—Turnera diffusa. J. Ethnopharmacol. 2014, 152, 424–443.
  10. Ajuru, M.G.; Kpekot, K.A.; Robinson, G.E.; Amutadi, M.C. Proximate and Phytochemical Analysis of the Leaves of Justicia carnea Lindi. and Justicia secunda Vahl and its Taxonomic Implications. J. Biomed. Biosens. 2022, 2, 1–12.
  11. Meira, M.; Silva, E.P.; David, J.M.; David, J.P. Review of the genus Ipomoea: Traditional uses, chemistry and biological activities. Rev. Bras. Farmacogn. 2012, 22, 682–713.
  12. Palacios-Espinosa, J.F.; Núñez-Aragón, P.N.; Gomez-Chang, E.; Linares, E.; Bye, R.; Romero, I. Anti-Helicobacter pylori Activity of Artemisia ludoviciana subsp. mexicana and Two of Its Bioactive Components, Estafiatin and Eupatilin. Molecules 2021, 26, 3654.
  13. Srinivasan, K. Biological Activities of Red Pepper (Capsicum annuum) and Its Pungent Principle Capsaicin: A Review. Crit. Rev. Food Sci. Nutr. 2016, 3, 1488–1500.
  14. Pereira, G.A.; Araujo, N.M.; Arruda, H.S.; Farias, D.P.; Molina, G.; Pastore, G.M. Phytochemicals and biological activities of mutamba (Guazuma ulmifolia Lam.): A review. Food Res. Int. 2019, 126, 108713.
  15. Valladares-Cisneros, M.G.; Rios-Gomez, M.Y.; Aldana-Llanos, L.; Valdes-Estrada, M.E.; Gutierrez-Ochoa, M. Biological Activity of Crescentia alata (Lamiales: Bignoniaceae) Fractions on Larvae of Spodoptera frugiperda (Lepidoptera: Noctuidae). Fla. Entomol. 2014, 97, 770–777.
  16. Villa-Ruano, N.; Zurita-Vásquez, G.G.; Pacheco-Hernández, Y.; Betancourt-Jiménez, M.G.; Cruz-Durán, R.; Duque-Bautista, H. Anti-Iipase and antioxidant properties of 30 medicinal plants used in Oaxaca, México. Biol. Res. 2013, 46, 153–160.
  17. Pallag, A.; Filip, G.A.; Olteanu, D.; Clichici, S.; Baldea, I.; Jurca, T.; Micle, O.; Vicaş, L.; Marian, E.; Soriţău, O.; et al. Equisetum arvense L. Extract Induces Antibacterial Activity and Modulates Oxidative Stress, Inflammation, and Apoptosis in Endothelial Vascular Cells Exposed to Hyperosmotic Stress. Oxid. Med. Cell. Longev. 2018, 14, 3060525.
  18. Vargas, R.; Pérez, R.M. Antiurolithiatic Activity of Salix taxifolia Aqueous Extract. Pharm. Biol. 2002, 40, 561–563.
  19. Rodriguez-Garcia, A.; Peixoto, I.T.; Verde-Star, M.J.; De la Torre-Zavala, S.; Aviles-Arnaut, H.; Ruiz, A.L. In Vitro Antimicrobial and Antiproliferative Activity of Amphipterygium adstringens. Evid.-Based Complementary Altern. Med. 2015, 2015, 175497.
  20. Cristians, S.; Bye, R.; Navarrete, A.; Mata, R. Gastroprotective effect of Hintonia latiflora and Hintonia standleyana aqueous extracts and compounds. J. Ethnopharmacol. 2013, 30, 530–535.
  21. Ovalle-Magallanes, B.; Rivero-Cruz, I.; Mata, R. Quality control tests for the crude drug ofConyza filaginoides. Pharm. Biol. 2013, 52, 117–123.
  22. Noster, S.; Kraus, L. In vitro antimalarial activity of Coutarea latiflora and Exostema caribaeum extracts on Plasmodium falciparum. Planta Med. 1990, 56, 63–65.
  23. Carreón-Sánchez, R.; Marroquín-Segura, R.; Mora-Guevara, J.L.A.; Valadez-Sánchez, C.S.; Flores-Cabrera, Y.; Flores-Pimentel, M.; Hernández-Abad, V.J. Estudio del extracto etanólico de Eryngium heterophyllum (hierba del sapo): Para comprobar su actividad hipoglucemiante y anti-inflamatoria. Rev. Mex. Cienc. Farm. 2013, 44, 41–45.
  24. Lozada-Lechuga, J.; Villarreal, M.L.; Fliniaux, M.A.; Bensaddek, L.; Mesnard, F.; Gutiérrez, M.C.; Cardoso-Taketa, A.T. Isolation of jacaranone, a sedative constituent extracted from the flowers of the Mexican tree Ternstroemia pringlei. J. Ethnopharmacol. 2010, 127, 551–554.
  25. Palma-Tenango, M.; Sánchez-Fernández, R.E.; Soto-Hernández, M. A Systematic Approach to Agastache mexicana Research: Biology, Agronomy, Phytochemistry, and Bioactivity. Molecules 2021, 26, 3751.
  26. Christensen, R.; Bartels, E.; Astrup, A.; Bliddal, H. Symptomatic efficacy of avocado–soybean unsaponifiables (ASU) in osteoarthritis (OA) patients: A meta-analysis of randomized controlled trials. Osteoarthr. Cartil. 2008, 16, 399–408.
  27. Ranade, S.S.; Thiagarajan, P. A review on Persea Americana Mill. (Avocado)-Its fruit and oil. Int. J. PharmTech Res. 2015, 8, 72–77.
  28. Christiansen, B.A.; Bhatti, S.; Goudarzi, R.; Emami, S. Management of Osteoarthritis with Avocado/Soybean Unsaponifiables. Cartilage 2015, 6, 30–44.
  29. Maheu, E.; Cadet, C.; Marty, M. Randomised, controlled trial of avocado-soybean unsaponifiable (Piascledine) effect on structure modification in hip osteoarthritis: The ERADIAS study. Ann. Rheum. Dis. 2014, 73, 376–384.
  30. Barrett, M.J.; Udani, J.K. Un Inhibidor del Alfa-Amilasa de la Judía Blanca (Phaseolus vulgaris): Un Examen de los Estudios Clínicos Sobre la Pérdida de Peso y el Control de la Glucemia. 2020. Available online: https://www.cienciaynutricion.net/index.php/2020/09/14/un-inhibidor-del-alfa-amilasa-de-la-judia-blanca-phaseolus-vulgaris-un-examen-de-los-estudios-clinicos-sobre-la-perdida-de-peso-y-el-control-de-la-glucemia/ (accessed on 7 December 2020).
  31. Guaranda, A.J.M.; Franco-Rivera, L.A. Sustitución de Harina de Trigo por Harina de Fréjol rojo (Phaseolus vulgaris) y su Aplicación en Masas Pesadas, Livianas y Quebradas de Pastelería en la Ciudad de Guayaquil. Bachelor´s Thesis, Universidad de Guayaquil, Guayaquil, Ecuador, 2018.
  32. Morón, M.; Carmona, A.; Ávila, A. Efecto del consumo de harina de avena (avena sativa) y frijoles negros (phaseolus vulgaris) sobre la actividad de las disacaridasas intestinales en ratas. Nutr. Clínica Dietética Hosp. 2017, 37, 98–106.
  33. Ulbricht, C.; Basch, E.; Cheung, L. An evidence-based systematic review of elderberry and elderflower (Sambucus nigra) by the natural standard research collaboration. J. Diet. Suppl. 2014, 11, 80–120.
  34. Knudsen, B.F.; Kaack, K.V. A review of traditional herbal medicinal products with disease claims for elder (Sambucus nigra) flower. Acta Hortic. 2015, 1061, 109–120.
  35. Mahboubi, M. Sambucus nigra (black elder) as alternative treatment for cold and flu. Adv. Tradit. Med. 2020, 21, 405–414.
  36. González-Ramírez, A.E.; González-Trujano, M.E.; Hernandez-Leon, A.; Valle-Dorado, M.G.; Carballo-Villalobos, A.; Orozco-Suárez, S.; Alvarado-Vásquez, N.; López-Muñoz, F.J. Limonene from Agastache mexicana essential oil produces antinociceptive effects, gastrointestinal protection and improves experimental ulcerative colitis. J. Ethnopharmacol. 2021, 280, 114462.
  37. Argueta, V.; Cano, L.; Rodarte, M. Atlas of Plants from Mexican Traditional Medicine; Indigenous National Institute: Mexico City, México, 1994; pp. 1355–1356.
  38. Linares, E.; Flores, B.; Bye, R. Medicinal Plants of Mexico: Uses and Traditional Remedies; Electronic and Computer Technology Center and Biology Institute at the National Autonomous University of Mexico: México City, México, 1995.
  39. Estrada-Reyes, R.; Aguirre Hernandez, E.; García-Argaez, A.; Soto Hernandez, M.; Linares, E.; Bye, R.; Heinze, G.; Martínez-Vazquez, M. Comparative chemical composition of Agastache mexicana subsp. mexicana and A. mexicana subsp. xolocotziana. Biochem. Systemat. Ecol. 2004, 32, 685–694.
  40. Hirota, R.; Roger, N.N.; Nakamura, H.; Song, H.S.; Sawamura, M.; Suganuma, N. Anti-inflammatory effects of limonene from yuzu (Citrus junos Tanaka) essential oil on eosinophils. J. Food Sci. 2010, 75, 87–92.
  41. de Sousa, D.P. Analgesic-like activity of essential oils constituents. Molecules 2011, 16, 2233–2252.
  42. Cuevas, X. A revision of the genus Amphipterygium (Julianiaceae). Ibugana 2005, 13, 27–47.
  43. Oviedo-Chavez, I.; Ramírez-Apan, T.R.; Soto-Hernández, M.; Martínez-Vázquez, M. Principles of the bark of Amphipterygium adstringens (Julianaceae) with anti-inflammatory activity. Phytomedicine 2004, 11, 436–445.
  44. Beltrán-Rodríguez, L.; Cristians, S.; Sierra-Huelsz, A.; Blancas, J.; Maldonado-Almanza, B.; Bye, R. Barks as Non-Timber Forest Products in Mexico: National Analysis and Recommendations for their Sustainable Use, 1st ed.; Instituto de Biología, Universidad Nacional Autónoma de México (UNAM): Mexico City, Mexico, 2020; ISBN 978-607-30-4054-9.
  45. Solares, F.; Vázquez-Alvarado, J.; Gálvez-Cortés, M. Commercialization channels of cuachalalate (Amphipterigium adstringens Schiede ex Schlecht.) bark in Mexico. Rev. Mex. Cienc. For. 2012, 3, 29–42.
  46. Rodriguez-Canales, M.; Jimenez-Rivas, R.; Canales-Martinez, M.M.; Garcia-Lopez, A.J.; Rivera-Yañez, N.; Nieto-Yañez, O.; Ldesma-Soto, Y.; Sanchez-Torres, L.E.; Rodríguez-Sosa, M.; Rodríguez-Sosa, M.; et al. Protective Effect of Amphipterygium adstringens Extract on Dextran Sulphate Sodium-Induced Ulcerative Colitis in Mice. Mediat. Inflamm. 2016, 2016, 8543561.
  47. Biblioteca Digital de Tradicional Mexicana. Available online: http://www.medicinatradicionalmexicana.unam.mx/monografia.php?l=3&t=Damiana&id=7387 (accessed on 27 January 2017).
  48. Braun, L.; Cohen, M. Damiana. In Herbs and Natural Supplements. An Evidence Based Guide, 4th ed.; Braun, L., Arthur, R., Eds.; Elsevier: Sydney, Australia, 2015; Volume 2, pp. 270–272.
  49. Zhao, J.; Pawar, R.S.; Ali, Z.; Khan, I.A. Phytochemical Investigation of Turnera diffusa. J. Nat. Prod. 2007, 48, 289–292.
  50. Parra-Naranjo, A.; Delgado-Montemayor, C.; Fraga-López, A.; Castañeda-Corral, G.; Salazar-Aranda, R.; Acevedo-Fernández, J.; Waksman, N. Acute Hypoglycemic and Antidiabetic Effect of Teuhetenone A Isolated from Turnera diffusa. Molecules 2017, 22, 599.
More
Video Production Service