Social-Ecological Systems for Basin Governance: Comparison
Please note this is a comparison between Version 2 by Camila Xu and Version 3 by Camila Xu.

A river basin is a complete “nature–society–economy” complex system composed of natural factors such as water resources, land, and plants and human factors such as population, society, and economy. The social-ecological system (SES) framework has been put forward, which provides a new direction for the solution of complex problems in river basins. Through the use of common human language, the SES framework enables researchers to more deeply analyze the interaction between variables in the complex social ecosystem so as to form a systematic knowledge accumulation of research results in different fields.

  • diagnose
  • social-ecological systems
  • watershed environmental governance
  • Weihe River Basin

1. Introduction

With climate change and rapid population growth, governments should consider the interaction between river basins and socio-economic development. A river basin is a complete “nature–society–economy” complex system composed of natural factors such as water resources, land, and plants and human factors such as population, society, and economy [1]. The water resource is an important basic link between different units of this complex system [2]. However, with rapid economic development and population growth, the economic functions of river basins have been overexploited by human beings, while the protection of ecological functions has been neglected. This resulted in a series of eco-environmental problems, including water pollution, water ecological damage, water shortages, and frequent floods. The water eco-environmental crisis has become an important challenge to the sustainable development of human beings [3]. Therefore, river basin eco-environmental management has become an important task of ecological environment governance and should be improved to realize the coordinated and sustainable development of the economy, society, and ecological environment in the entire basin.
At present, the actual management process of river basins in China is mainly to divide the entire river according to administrative regions, which are managed by each administrative region through administrative means [4]. However, the river basin is a complex social-ecological system that involves water resources, ecological environments, and socio-economic factors. Hence, it is difficult for a single department or a single element of administrative management to solve complicated problems associated with it. Further, natural dimensions and social dimensions interweave and influence each other, making it difficult to adapt to the protection of ecological function and sustainable development of the social economy. Thus, it is urgent that researchers innovate and solve related problems to determine the basic function, management goal order, and feasible path of the basin from the perspective of the entire nature and society. The social-ecological system (SES) framework has been put forward [5], which provides a new direction for the solution of complex problems in river basins. Through the use of common human language, the SES framework enables researchers to more deeply analyze the interaction between variables in the complex social ecosystem so as to form a systematic knowledge accumulation of research results in different fields. The SES framework has been applied in the management of the Ganges [6].

2. Literature and Theoretical Analysis

The basin is a special multi-dimensional natural region linked by rivers, which has strong integrity and relevance. The global water resources management cooperation organization defines watershed governance as management to promote the coordinated development of water, land, and other related resources and to maximize economic and social welfare within the affordability of the ecosystem. The ecology regards the watershed as a complete natural unit and considers that the main content of watershed management is to plan the agriculture, forestry, animal husbandry, and fishery scientifically and to exploit natural resources such as water and land reasonably [7]. From the perspective of public management, watershed management is mainly carried out in the form of multi-agent cooperation with the participation of government, society, and the public, that is, a multi-center management process and action network with the interaction of government, society, and the market [8]. This multi-center management model will inform the development direction of watershed management in the future. When natural science studies ecological environmental problems, it usually takes the natural ecosystem as its main research object and treats humans simply as external, neglecting the relationship between human and ecological environmental communities [9][10]. However, when social science studies ecological environmental problems, it emphasizes the importance of human social interaction, and it is relatively easy to ignore the natural background of this human interaction [11]. In fact, the watershed system is a composite system dominated by humans, resources, and ecology, including social subsystems, economic subsystems, and natural subsystems, that is, a watershed social-economic-natural composite system [12]. When any discipline studies the watershed ecological environment, it is inadequate to focus only on the specific problems within that research field. The reasons behind the watershed ecological problems are complex and diverse. The relationship between human society and the water environment is not a simple linear relationship; rather, there are complex effects, such as nonlinearity, circular feedback, heterogeneity, and mutation [13]. Based on these explorations of the relationship between human society and eco-environmental systems, also known as a human-environmental system (HES), SES has gradually developed and formed. SES regards the human social system and the ecological environment system as a multi-dimensional interactive coupled whole, the constituent parts of which are closely related and interdependent; all the natural resources used by human beings are embedded in them, whether in the form of organization or in time and space [5]. From the perspective of SES coupling, the deterioration of water ecological environments is caused by the disharmony among the population, economy, politics, science, and technology. As a part of the broader SES interaction chain, to formulate an institution suited to the local situation and to achieve success in watershed ecological environment governance, it is necessary to clarify the complex relationship between human social systems and the natural ecosystem in the organizational category, as well as in space and time [14]. This requires a common analysis framework that can not only integrate a variety of knowledge concepts in social, economic, ecological, and geographical disciplines but also accommodate multi-scale, nonlinear key variables across time and space in the social ecosystem [15]. To this end, Elinor Ostrom developed a new diagnostic method (multi-level nested framework), namely, the SES diagnostic framework, based on the common-pool resources governance theory and the institutional analysis and development framework [16]. The SES framework can integrate interdisciplinary related knowledge and provide a path for different disciplines to identify, diagnose, and analyze the sustainable development of social ecosystems. In this analysis framework, resource systems, resource units, governance systems, and actors are considered first-level variables (Figure 1). Under the regulation of the governance system, actors carry out a series of interactions around the use and maintenance of the resource system and produce corresponding results, thus forming a feedback effect on the resource system. This process closely connects human social systems and natural resource systems, constituting the action situation of ecological environment governance, and can be considered the core of the SES diagnostic analysis framework. As nodes nested in social-ecological systems, resource systems and governance systems are also affected by a wider range of social, economic, political, and ecological environmental background variables. Therefore, the SES diagnostic analysis framework is composed of eight construction units.
Figure 1. SES framework concept diagram. Source: Adapted with permission from Ref. [Social-ecological system framework: Initial changes and continuing challenges]. 2014, McGinnis and Ostrom.
Ostrom summarized previous research results and further subdivided the eight primary variable groups of the SES framework into several secondary variables [17]. Researchers can also continue to subdivide these secondary variable groups according to specific research needs. The application of the SES framework to diagnose the complex watershed ecological environment and identify the key factors and variables affecting the sustainable development of the watershed ecological environment is a new methodology for the research of watershed ecological environment governance. Based on the existing research literature, this research uses the SES framework to bring complex potential variables affecting the ecological environment of the river basin into a systematic and multi-level analysis framework (Table 1) to find the key factors affecting the sustainable development and governance of the ecological environment of the river basin.
Table 1. Second-tier variables of an SES.

References

  1. Marshall, A.; Duram, L.A. Factors influencing local stakeholders’ perceptions of Tisza River Basin management: The role of employment sector and education. Environ. Sci. Policy 2017, 77, 69–76.
  2. Fidélis, T.; Roebeling, P. Water resources and land use planning systems in Portugal—Exploring better synergies through Ria de Aveiro. Land Use Policy 2014, 39, 84–95.
  3. Yuan, F.; Wei, Y.D.; Gao, J.; Chen, W. Water crisis, environmental regulations and location dynamics of pollution-intensive industries in China: A study of the Taihu Lake watershed. J. Clean. Prod. 2019, 216, 311–322.
  4. Zhou, R.; Li, Y.; Wu, J.; Gao, M.; Wu, X.; Bi, X. Need to link river management with estuarine wetland conservation: A case study in the Yellow River Delta, China. Ocean. Coast. Manag. 2017, 146, 43–49.
  5. Ostrom, E. A General Framework for Analyzing Sustainability of Social-Ecological Systems. Science 2009, 325, 419–422.
  6. Gain, A.K.; Rahman, A.U.; Vafeidis, A.T. Exploring human-nature interaction on the coastal floodplain in the Ganges-Brahmaputra delta through the lens of Ostrom’s social-ecological systems framework. Environ. Res. Commun. 2019, 1, 051003.
  7. Simms, R.; Harris, L.; Joe, N.; Bakker, K. Navigating the tensions in collaborative watershed governance: Water governance and Indigenous communities in British Columbia, Canada. Geoforum 2016, 73, 6–16.
  8. Barnhart, B.L.; Golden, H.E.; Kasprzyk, J.R.; Pauer, J.J.; Jones, C.E.; Sawicz, K.A.; Hoghooghi, N.; Simon, M.; McKane, R.B.; Mayer, P.M.; et al. Embedding co-production and addressing uncertainty in watershed modeling decision-support tools: Successes and challenges. Environ. Model. Softw. 2018, 109, 368–379.
  9. Auad, G.; Blythe, J.; Coffman, K.; Fath, B.D. A dynamic management framework for socio-ecological system stewardship: A case study for the United States Bureau of Ocean Energy Management. J. Environ. Manag. 2018, 225, 32–45.
  10. Liu, J.; Dietz, T.; Carpenter, S.R.; Alberti, M.; Folke, C.; Moran, E.; Pell, A.N.; Deadman, P.; Kratz, T.; Lubchenco, J.; et al. Complexity of Coupled Human and Natural Systems. Science 2007, 317, 1513–1516.
  11. Pritchett, L.; Woolcock, M. Solutions When the Solution is the Problem: Arraying the Disarray in Development. World Dev. 2004, 32, 191–212.
  12. Deng, X.; Zhao, Y.; Wu, F.; Lin, Y.; Lu, Q.; Dai, J. Analysis of the trade-off between economic growth and the reduction of nitrogen and phosphorus emissions in the Poyang Lake Watershed, China. Ecol. Model. 2011, 222, 330–336.
  13. Walker, B.; Holling, C.S.; Carpenter, S.R.; Kinzig, A. Resilience, adaptability and transformability in social–ecological systems. Ecol. Soc. 2004, 9, 5–12.
  14. Ostrom, E. Beyond Markets and States: Polycentric Governance of Complex Economic Systems. Am. Econ. Rev. 2010, 100, 641–672.
  15. Ostrom, E. A diagnostic approach for going beyond panaceas. Proc. Natl. Acad. Sci. USA 2007, 104, 15181–15187.
  16. McGinnis, M.D.; Ostrom, E. Social-ecological system framework: Initial changes and continuing challenges. Ecol. Soc. 2014, 19, 30.
  17. Ostrom, E.; Walker, J.; Gardner, R. Covenants with and without a Sword: Self-Governance Is Possible. Am. Political Sci. Rev. 1992, 86, 404–417.
  18. Tishchenko, P.Y.; Tishchenko, P.P.; Lobanov, V.B.; Mikhaylik, T.A.; Sergeev, A.F.; Semkin, P.Y.; Shvetsova, M.G. Impact of the transboundary Razdolnaya and Tumannaya Rivers on deoxygenation of the Peter the Great Bay (Sea of Japan). Estuar. Coast. Shelf Sci. 2020, 239, 106731.
  19. Walter, M.T.; Walter, M.F.; Brooks, E.S.; Steenhuis, T.S.; Boll, J.; Weiler, K. Hydrologically sensitive areas: Variable source area hydrology implications for water quality risk assessment. J. Soil Water Conserv. 2000, 55, 277–284.
  20. King, R.S.; Richardson, C.J. Integrating Bioassessment and Ecological Risk Assessment: An Approach to Developing Numerical Water-Quality Criteria. Environ. Manag. 2003, 31, 795–809.
  21. Dowd, B.M.; Press, D.; Los Huertos, M. Agricultural nonpoint source water pollution policy: The case of California’s Central Coast. Agric. Ecosyst. Environ. 2008, 128, 151–161.
  22. Ayana, A.N.; Arts, B.; Wiersum, K.F. How environmental NGOs have influenced decision making in a ‘semi-authoritarian’ state: The case of forest policy in Ethiopia. World Dev. 2018, 109, 313–322.
  23. Moore, S. Toward effective river basin management (RBM): The politics of cooperation, sustainability, and collaboration in the Delaware River basin. J. Environ. Manag. 2021, 298, 113421.
  24. Meinzen-Dick, R.S.; Brown, L.R.; Feldstein, H.S.; Quisumbing, A.R. Gender, property rights, and natural resources. World Dev. 1997, 25, 1303–1315.
  25. Farhad, S.; Gual, M.A.; Ruiz-Ballesteros, E. Linking governance and ecosystem services: The case of Isla Mayor (Andalusia, Spain). Land Use Policy 2015, 46, 91–102.
  26. Mu, Z.; Liu, G.; Lin, S.; Fan, J.; Qin, T.; Li, Y.; Cheng, Y.; Zhou, B. Base Flow Variation and Attribution Analysis Based on the Budyko Theory in the Weihe River Basin. Water 2022, 14, 334.
More