Free Radical: Comparison
Please note this is a comparison between Version 2 by Amina Yu and Version 1 by Paquale Napolitano.
In chemistry, a free radical is an atom, molecule, or ion that has at least one unpaired valence electron. With some exceptions, these unpaired electrons make radicals highly chemically reactive. Many radicals spontaneously dimerize. Most organic radicals have short lifetimes. A notable example of a radical is the hydroxyl radical (HO·), a molecule that has one unpaired electron on the oxygen atom. Two other examples are triplet oxygen and triplet carbene (꞉CH2) which have two unpaired electrons. Radicals may be generated in a number of ways, but typical methods involve redox reactions. Ionizing radiation, heat, electrical discharges, and electrolysis are known to produce radicals. Radicals are intermediates in many chemical reactions, more so than is apparent from the balanced equations. Radicals are important in combustion, atmospheric chemistry, polymerization, plasma chemistry, biochemistry, and many other chemical processes. A majority of natural products are generated by radical-generating enzymes. In living organisms, the radicals superoxide and nitric oxide and their reaction products regulate many processes, such as control of vascular tone and thus blood pressure. They also play a key role in the intermediary metabolism of various biological compounds. Such radicals can even be messengers in a process dubbed redox signaling. A radical may be trapped within a solvent cage or be otherwise bound.

Free radicals can be defined as molecular entities or molecular fragments, capable of independent existence (hence “free”). They contain one or more unpaired electrons in an outer atomic orbital or molecular orbital (hence “radical”). The negative electrical charge of electron(s) may be counterbalanced by the positive nuclear charge of positrons, resulting in a neutral particle; otherwise, having anion or cation radicals.

  • free radicals
  • reactive oxygen species
  • reactive nitrogen species
Please wait, diff process is still running!

References

  1. Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine, 4th ed.; Halliwell, B., Gutteridge, J.M.C., Eds.; Oxford University Press: New York, NY, USA, 2007.
  2. Fridovich, I. Superoxide radical and SODs. Ann. Rev. Biochem. 1995, 64, 97–112.
  3. Babcock, G.T. How oxygen is activated and reduced in respiration. Proc. Natl. Acad. Sci. USA 1999, 96, 13114–13117.
  4. Brand, M.D. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic. Biol. Med. 2016, 100, 14–31.
  5. Inoue, M.; Sato, E.F.; Nishikawa, M.; Parke, A.; Kira, Y.; Imada, I.; Utsumi, K. Mitochondrial generation of reactive oxygen species and its role in aerobic life. Curr. Med. Chem. 2003, 10, 2495–2505.
  6. Min, D.B.; Boff, J.B. Chemistry and reaction of singlet oxygen in foods. Compr. Rev. Food Sci. Food Saf. 2002, 1, 58–72.
  7. Stief, T.W. The physiology and pharmacology of singlet oxygen. Med. Hypotheses 2003, 60, 567–572.
  8. Sayre, L.M.; Moreira, P.I.; Smith, M.A.; Perry, G. Metal ions and oxidative protein modification in neurological disease. Ann. Ist. Super. Sanità 2005, 41, 143–164.
  9. Knight, J.A. Biochemistry of free radicals and oxidative stress. In Free radicals, Antioxidants, Ageing and Disease; Knight, J.A., Ed.; AACC Press: Washington, DC, USA, 1999; pp. 21–43.
  10. Lane, N. Oxygen: The Molecule That Made the World, revised ed.; Oxford University Press: Oxford, UK, 2016.
  11. Korycka-Dahl, M.B.; Richardson, T. Activated oxygen species and oxidation of food constituents. Crit. Rev. Food Sci. Nutr. 1978, 10, 209–241.
  12. Min, B.; Ahn, D.U. Mechanism of lipid peroxidation in meat and meat products—A review. Food Sci. Biotechnol. 2005, 14, 152–163.
  13. Kohen, R.; Nyska, A. Oxidation of biological systems: Oxidative stress and antioxidants. Toxicol. Pathol. 2002, 30, 620–630.
  14. Davies, M.J.A. The oxidative environment and protein damage. Biochim. Biophys. Acta 2005, 1703, 93–109.
  15. Vijayalaxmi, R.J.; Reiter, D.X.; Tan, T.S.; Herman, C.R., Jr. Thomas, Melatonin as a radioprotective agent: A review. Int. J. Radiat. Oncol. Biol. Phys. 2004, 59, 639–653.
  16. Lipinski, B.; Pretorius, E. Hydroxyl radical-modified fibrinogen as a marker of thrombosis: The role of iron. Hematology 2012, 17, 241–247.
  17. Dizdaroglu, M.; Jaruga, P. Mechanisms of free radical induced damage to DNA. Free Radic. Res. 2012, 46, 382–419.
  18. Gutowski, M.; Kowalczyk, S. A study of free radical chemistry: Their role and pathophysiological significance. Acta Biochim. Pol. 2013, 60, 1–13.
  19. Augusto, O.; Miyamoto, S. Oxygen radicals and related species. In Principles of Free Radical Biomedicine; Pantopoulos, K., Schipeer, H.M., Eds.; Nova Science Publishers: New York, NY, USA, 2011; pp. 19–42.
  20. León-Carmona, J.R.; Galano, A. Is caffeine a good scavenger of oxygenated free radicals? J. Phys. Chem. B 2011, 115, 4538–4546.
  21. Galano, A. On the direct scavenging activity of melatonin towards hydroxyl and a series of peroxyl radicals. Phys. Chem. Chem. Phys. 2011, 13, 7178–7188.
  22. De Grey, A. HO2•: The forgotten radical. DNA Cell Biol. 2002, 21, 251–257.
  23. Bielski, B.H.J.; Cabelli, B.H.; Arudi, R.L.; Ross, A.B. Reactivity of RO2/O2 radicals in aqueous solution. J. Phys. Chem. Ref. Data 1985, 14, 1041–1100.
  24. Winterbourn, C.C. The biological chemistry of hydrogen peroxide. Methods Enzymol. 2013, 528, 3–25.
  25. Choe, E.; Min, D.B. Mechanisms and factors for edible oil oxidation. Compr. Rev. Food Sci. Food Saf. 2006, 5, 169–186.
  26. Kesheri, M.; Kanchan, S.; Richa, R.P. Sinha. Oxidative stress: Challenges and its mitigation mechanisms in cyanobacteria. In Biological Sciences: Innovations and Dynamics; Rajeshwar, P., Sinha, Richa, Rastogi, R.P., Eds.; New India Publishing Agency: New Delhi, India, 2015; pp. 311–324.
  27. Malanga, G.; Puntarulo, S. The use of electron para-magnetic resonance in studies of oxidative damage to lipids in aquatic systems. In Oxidative Stress in Aquatic Ecosystems; Abele, D., Vazquez-Medina, J., Zenteno-Savin, T., Eds.; Wiley & Sons: London, UK, 2011; pp. 448–457.
  28. Ryter, S.W.; Tyrrell, R.M. Singlet molecular oxygen (1O2): A possible effector of eukaryotic gene expression. Free Radic. Biol. Med. 1998, 24, 1520–1534.
  29. Agnez-Lima, L.F.; Melo, J.T.; Silva, A.E.; Oliveira, A.H.S.; Timoteo, A.R.S.; Lima-Bessa, K.M.; Martinez, G.R.; Medeiros, M.H.G.; Di Mascio, P.; Galhardo, R.S.; et al. DNA damage by singlet oxygen and cellular protective mechanisms. Mutat. Res. Rev. Mutat. Res. 2012, 751, 15–28.
  30. Turrens, J.F. Mitochondrial formation of reactive oxygen species. J. Physiol. 2003, 552, 335–344.
  31. Petrou, A.L.; Terzidaki, A.A. Meta-analysis and review examining a possible role for oxidative stress and singlet oxygen in diverse diseases. Biochem. J. 2017, 474, 2713–2727.
  32. Altenhofer, S.; Radermacher, K.A.; Kleikers, P.W.; Wingler, K.; Schmidt, H.H. Evolution of NADPH oxidase inhibitors: Selectivity and mechanisms for target engagement. Antioxid. Redox Signal. 2015, 23, 406–427.
  33. Goldstein, B.D.; Lodi, C.; Collinson, C.; Balchum, O.J. Ozone and lipid peroxidation. Arch. Environm. Heath 1969, 18, 631–635.
  34. Sharma, V.K.; Graham, N.J.D. Oxidation of amino acids, peptides and proteins by ozone: A review. Ozone Sci. 2010, 32, 81–90.
  35. Lerner, R.A.; Eschenmoser, A. Ozone in biology. Proc. Natl. Acad. Sci. USA 2003, 100, 3013–3015.
  36. Winterbourn, C.C.; Kettle, A.J. Biomarkers of myeloperoxidase derived hypochlorous acid. Free Rad. Biol. Med. 2000, 29, 403–409.
  37. Prütz, W.A. Hypochlorous acid interactions with thiols, nucleotides, DNA, and other biological substrates. Arch. Biochem. Biophys. 1996, 332, 110–120.
  38. Chen, S.N.; Cope, V.W.; Hoffman, M. Behaviour of CO3- radicals generated in the flash photolysis of arbonatoamine complexes of cobalt (III) in aqueous solution. J. Phys. Chem. 1973, 77, 1111–1116.
  39. Meli, R.; Nauser, T.; Latal, P.; Koppenol, W.H. Reaction of peroxynitrite with carbon dioxide: Intermediates and determination of the yield of CO3• and NO2•. J. Biol. Inorg. Chem. 2002, 7, 31–36.
  40. Hoffman, A.; Goldstein, S.; Samuni, A.; Borman, J.B.; Schwalb, H. Effect of nitric oxide and nitroxide SOD-mimic on the recovery of isolated rat heart following ischemia and reperfusion. Biochem. Pharmacol. 2003, 66, 1279–1286.
  41. Radi, R. Nitric oxide, oxidants, and protein tyrosine nitration. Proc. Natl. Acad. Sci. USA 2004, 101, 4003–4008.
  42. Liochev, S.I.; Fridovich, I. CO2, not HCO3−, facilitates oxidations by Cu, Zn superoxide dismutase plus H2O2. Proc. Natl. Acad. Sci. USA 2004, 101, 743–744.
  43. Stadtman, E.R. Protein oxidation in ageing and age-related diseases. Ann. N. Y. Acad. Sci. 2000, 928, 22–38.
  44. Surmeli, N.B.; Litterman, N.K.; Miller, A.F.; Groves, J.T. Peroxynitrite mediates active site tyrosine nitration in manganese superoxide dismutase. Evidence of a role for the carbonate radical anion. J. Am. Chem. Soc. 2010, 132, 17174–17185.
  45. Li, Y.; Qi, J.; Liu, K.; Li, B.; Wang, H.; Jia, J. Peroxynitrite-induced nitration of cyclooxygenase- 2 and inducible nitric oxide synthase promotes their binding in diabetic angiopathy. Mol. Med. 2010, 16, 335–342.
  46. Douki, T.; Cadet, J. Peroxynitrite mediated oxidation of purine bases of nucleosides and isolated DNA. Free Radic. Res. 1996, 24, 369–380.
  47. Ghafourifar, P.; Cadenas, E. Mitochondrial nitric oxide synthase. Trends Pharmacol. Sci. 2005, 26, 190–195.
  48. Nagase, S.; Takemura, K.; Ueda, A.; Hirayama, A.; Aoyagi, K.; Kondoh, M.; Koyama, A. A novel nonenzymatic pathway for the generation of nitric oxide by the reaction of hydrogen peroxide and D- or L-arginine. Biochem. Biophys. Res. Commun. 1997, 233, 150–153.
  49. Singh, R.J.; Hogg, N.; Joseph, J.; Kalyanaraman, B. Mechanism of nitric oxide release from S- nitrosothiols. J. Biol. Chem. 1996, 27, 18596–18603.
  50. Repetto, M.; Semprine, J.; Boveris, A. Lipid peroxidation: Chemical mechanism, biological implications and analytical determination. In Lipid Peroxidation; Catala, D.A., Ed.; InTech: Rijeka, Croatia, 2012; pp. 3–30.
  51. Moncada, S.; Palmer, R.; Higgs, E. Nitric oxide: Physiology, patophysiology and pharmacology. Pharmacol. Rev. 1991, 43, 109–141.
  52. Noguchi, N.; Niki, E. Chemistry of active oxygen species and antioxidants. In Antioxidant Status, Diet, Nutrition, and Health; Papas, A.M., Ed.; CRC Press: Boca Raton, FL, USA, 1999; pp. 3–20.
  53. Papas, A.M. Diet and antioxidant status. Food. Chem. Toxicol. 1999, 37, 999–1007.
  54. Beckman, J.S.; Koppenol, W.H. Nitric oxide, superoxide and peroxynitrite: The good, the bad, and ugly. Am. J. Physiol. Cell Physiol. 1996, 271, C1424–C1437.
  55. Olson, K.R.; Straub, K.D. The role of hydrogen sulfide in evolution and the evolution of hydrogen sulfide in metabolism and signaling. Physiology 2016, 31, 60–72.
  56. Giles, G.I.; Jacob, C. Reactive sulfur species: An emerging concept in oxidative stress. J. Biol. Chem. 2002, 383, 375–388.
  57. Paul, B.D.; Snyder, S.H. H2S: A novel gasotransmitter that signals by sulfhydration. Trends Biochem. Sci. 2015, 40, 687–700.
  58. Kabil, O.; Banerjee, R. Enzymology of H2S biogenesis, decay and signaling. Antioxid. Redox Signal. 2014, 20, 770–782.
  59. Goubern, M.; Andriamihaja, M.; Nübel, T.; Blachier, F.; Bouillaud, F. Sulfide, the first inorganic substrate for human cells. FASEB J. 2007, 21, 1699–1706.
  60. Shibuya, N.; Koike, S.; Tanaka, M.; Ishigami-Yuasa, M.; Kimura, Y.; Ogasawara, Y.I.; Fukui, K.; Nagahara, N.; Kimura, H. A novel pathway for the production of hydrogen sulfide from Dcysteine in mammalian cells. Nat. Commun. 2013, 4, 1366.
  61. Nicholls, P. Inhibition of cytochrome c oxidase by sulphide. Biochem. Soc. Trans. 1975, 3, 316–319.
  62. Mustafa, A.K.; Sikka, G.; Gazi, S.K.; Steppan, J.; Jung, S.M.; Bhunia, A.K.; Barodka, V.M.; Gazi, F.K.; Barrow, R.K.; Wang, R.; et al. Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels. Circ. Res. 2011, 109, 1259–1268.
  63. Xie, Z.Z.; Shi, M.M.; Xie, L.; Wu, Z.Y.; Li, G.; Hua, F.; Bian, J.S. Sulfhydration of p66Shc at cysteine59 mediates the antioxidant effect of hydrogen sulfide. Antioxid. Redox Signal. 2014, 21, 2531–2542.
  64. Zhou, H.; Ding, L.; Wu, Z.; Cao, X.; Zhang, Q.; Lin, L.; Bian, J.S. Hydrogen sulfide reduces RAGE toxicity through inhibition of its dimer formation. Free Radic. Biol. Med. 2017, 104, 262–271.
  65. Li, L.; Bhatia, M.; Zhu, Y.Z.; Ramnath, R.D.; Wang, Z.J.; Anuar, F.B.M.; Moore, P.K.; Zhu, Y.C.; Whiteman, M.; Salto-Tellez, M. Hydrogen sulfide is a novel mediator of lipopolysaccharide- induced inflammation in the mouse. FASEB J. 2005, 19, 1196–1198.
  66. Zanardo, R.C.O.; Brancaleone, V.; Distrutti, E.; Fiorucci, S.; Cirino, G.; Wallace, J.L. Hydrogen sulfide is an endogenous modulator of leukocyte-mediated inflammation. FASEB J. 2006, 20, 2118–2120.
  67. Hellmich, M.R.; Coletta, C.; Chao, C.; Szabo, C. The therapeutic potential of cystathionine b- synthetase/hydrogen sulfide inhibition in cancer. Antioxid. Redox Signal. 2015, 22, 424–448.
  68. Koike, S.Y.; Ogasawara, N.; Shibuya, H.; Kimura, K. Ishii. Polysulfide exerts a protective effect against cytotoxicity caused by t-buthylhydroperoxide through Nrf2 signaling in neuroblastoma cells. FEBS Lett. 2013, 587, 3548–3555.
  69. Mani, S.; Untereiner, A.; Wu, L.; Wang, R. Hydrogen sulfide and the pathogenesis of atherosclerosis. Antioxid. Redox Signal. 2014, 20, 805–817.
  70. Elrod, J.W.; Calvert, J.W.; Morrison, J.; Doeller, J.E.; Kraus, D.W.; Tao, L.; Jiao, X.; Scalia, R.; Kiss, L.; Szabo, C.; et al. Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function. Proc. Natl. Acad. Sci. USA 2007, 104, 15560–15565.
  71. Bianco, C.L.; Akaike, T.; Ida, T.; Nagy, P.; Bogdandi, V.; Toscano, J.P.; Kumagai, Y.; Henderson, C.F.; Goddu, R.N.; Lin, J.; et al. The reaction of hydrogen sulfide with disulfides: Formation of a stable trisulfide and implications for Biological systems. J. Pharmacol. 2019, 176, 671–683.
  72. Cuevasanta, E.; Lange, M.; Bonanata, J.; Coitiño, E.L.; Ferrer-Sueta, G.; Filipovic, M.R.; Alvarez, B. Reaction of hydrogen sulfide with disulfide and sulfenic acid to form the strongly nucleophilic persulfide. J. Biol. Chem. 2015, 290, 26866–26880.
  73. Symons, M.C.R. Radicals generated by bone cutting and fracture. Free Radic. Biol. Med. 1996, 20, 831–835.
  74. Dröge, W. Free radicals in the physiological control of cell function. Physiol. Rev. 2002, 82, 47–95.
  75. Pham-Huy, L.A.; He, H.; Pham-Huy, C. Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci. 2008, 4, 89–96.
  76. Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84.
  77. Srinivasan, S.; Avadhani, N. Cytochrome c oxidase dysfunction in oxidative stress. Free Rad. Biol. Med. 2012, 53, 1252–1263.
  78. Rich, P.R.; Marechal, A. The mitochondrial respiratory chain. Essays Biochem. 2010, 47, 1–23.
  79. Deas, E.; Cremades, N.; Angelova, P.R.; Ludtmann, M.H.R.; Yao, Z.; Chen, S.; Horrocks, M.H.; Banushi, B.; Little, D.; Devine, M.J.; et al. Alpha-synuclein oligomers interact with metal ions to induce oxidative stress and neuronal death in Parkinson’s disease. Antioxid. Redox Sign. 2016, 24, 376–391.
  80. Cadenas, E.; Davies, K.J. Mitochondrial free radical generation, oxidative stress, and ageing. Free Radic. Biol. Med. 2000, 29, 222–230.
  81. Lüthje, S.; Möller, B.; Perrineau, F.C.; Wöltje, K. Plasma membrane electron pathways and oxidative stress. Antioxid. Redox Signal. 2013, 18, 2163–2183.
  82. Vartanian, L.S.; Gurevich, S.M. NADH- and NADPH-dependent formation of superoxide radicals in liver nuclei. Biokhimiia 1989, 54, 1020–10255.
  83. Brignac-Huber, L.; Reed, J.R.; Backes, W.L. Organization of NADPH-cytochrome P450 reductase and CYP1A2 in the endoplasmic reticulum microdomain localization affects monooxygenase function. Mol. Pharmacol. 2011, 79, 549–557.
  84. Wang, W.; Gong, G.; Wang, X.; Wei-LaPierre, L.; Cheng, H.; Dirksen, R.; Sheu, S.S. Mitochondrial flash: Integrative reactive oxygen species and pH signals in cell and organelle biology. Antioxid. Redox Signal. 2016, 25, 534–549.
  85. Wong, H.S.; Dighe, P.A.; Mezera, V.; Monternier, P.A.; Brand, M.D. Production of superoxide and hydrogen peroxide from specific mitochondrial sites under different bioenergetic conditions. J. Biol. Chem. 2017, 292, 16804–16809.
  86. Zou, X.; Ratti, B.A.; O’Brien, J.G.; Lautenschlager, S.O.; Gius, D.R.; Bonini, M.G.; Zhu, Y. Manganese superoxide dismutase (SOD2): Is there a center in the universe of mitochondrial redox signaling? J. Bioenerg. Biomembr. 2017, 49, 325–333.
  87. Leitão, E.F.V.; de Ventura, E.; Souza, M.A.F.; Riveros, J.M.; do Monte, S.A. Spin-forbidden branching in the mechanism of the intrinsic haber-weiss reaction. Chemistry Open 2017, 6, 360–363.
  88. Mahaseth, T.; Kuzminov, A. Potentiation of hydrogen peroxide toxicity: From catalase inhibition to stable DNA-iron complexes. Mutat. Res. 2017, 773, 274–281.
  89. Pollack, M.; Leeuwenburgh, C. Molecular mechanisms of oxidative stress in ageing: Free radicals, ageing, antioxidants and disease. In Handbook of Oxidants and Antioxidants in Exercise; Sen, C.K., Paker, O., Hannine, L., Eds.; Elsevier: Amesterdam, The Nederland, 1999; pp. 881–923.
  90. Hauptmann, N.; Grimsby, J.; Shih, J.C.; Cadenas, E. The metabolism of tyramine by monoamine oxidase A/B causes oxidative damage to mitochondrial DNA. Arch. Biochem. Biophys. 1996, 335, 295–304.
  91. Fhan, S.; Cohen, G. The oxidant stress hypothesis in Parkinson’s disease: Evidence supporting it. Ann. Neurol. 1992, 32, 804–812.
  92. Quinlan, C.L.; Perevoshchikova, I.V.; Brand, M.D. Sites of reactive oxygen species generation by mitochondria oxidizing different substrates. Redox Biol. 2013, 1, 304–312.
  93. Andreyev, A.Y.; Kushnareva, Y.E.; Murphy, A.N.; Starkov, A.A. Mitochondrial ROS metabolism: 10 years later. Biochemistry 2015, 80, 517–531.
  94. Grivennikova, V.G.; Vinogradov, A.D. Partitioning of superoxide and hydrogen peroxide production by mitochondrial respiratory complex I. Biochim. Biophys. Acta 2013, 1827, 446–454.
  95. Sherer, T.B.; Betarbet, R.; Testa, C.M.; Seo, B.B.; Richardson, J.R.; Kim, J.H.; Miller, G.W.; Yagi, T.; Matsuno-Yagi, A.; Greenamyre, J.T. Mechanism of toxicity in rotenone models of Parkinson’s disease. J. Neurosci. 2003, 23, 10756–10764.
  96. Ishii, T.; Yasuda, K.; Akatsuka, A.; Hino, O.; Hartman, P.S.; Ishii, N. A mutation in the SDHC gene of complex II increases oxidative stress, resulting in apoptosis and tumorigenesis. Cancer Res. 2005, 65, 203–209.
  97. Lin, M.T.; Beal, M.F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006, 443, 787–795.
  98. Heather, L.C.; Carr, C.A.; Stuckey, D.J.; Pope, S.; Morten, K.J.; Carter, E.E.; Edwards, L.M.; Clarke, K. Critical role of complex III in the early metabolic changes following myocardial infarction. Cardiovasc. Res. 2010, 85, 127–136.
  99. Dröse, S. Differential effects of complex II on mitochondrial ROS production and their relation to ardioprotective pre- and postconditioning. Biochim. Biophys. Acta 2013, 1827, 578–587.
  100. Pagano, G.; Talamanca, A.A.; Castello, G.; Cordero, M.D.; D’Ischia, M.; Gadaleta, M.N.; Pallardó, F.V.; Petrović, S.; Tiano, L.; Zatterale, A. Oxidative stress and mitochondrial dysfunction across broad-ranging pathologies: Toward mitochondria-targeted clinical strategies. Oxid. Med. Cell. Longev. 2014, 2014, 541230.
  101. Hamanaka, R.B.; Chandel, N.S. Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem. Sci. 2010, 35, 505–513.
  102. Ristow, M.; Schmeisser, K. Mitohormesis: Promoting health and lifespan by increased levels of reactive oxygen species (ROS). Dose Response 2014, 12, 288–341.
  103. Scheibye-Knudsen, M.; Fang, E.F.; Croteau, D.L.; Wilson, D.M.; Bohr, V.A. Protecting the mitochondrial powerhouse. Trends Cell Biol. 2015, 25, 158–170.
  104. De Duve, C.; Baudhuin, P. Peroxisomes (microbodies and related particles). Physiol. Rev. 1966, 46, 323–357.
  105. Iuliano, L. Pathways of cholesterol oxidation via non-enzymatic mechanisms. Chem. Phys. Lipids 2011, 164, 457–468.
  106. Schrader, M.; Fahimi, H.D. Peroxisomes and oxidative stress. Biochim. Biophys. Acta 2006, 1763, 1755–1766.
  107. Islinger, M.; Voelkl, A.; Fahimi, H.D.; Schrader, M. The peroxisome: An update on mysteries 2.0. Histochem. Cell Biol. 2018, 150, 443–471.
  108. Cheeseman, K.H.; Slater, T.F. An introduction to free radicals chemistry. Br. Med. Bull. 1993, 49, 481–493.
  109. Gross, E.; Sevier, C.S.; Heldman, N.; Vitu, E.; Bentzur, M.; Kaiser, C.A.; Thorpe, C.; Fass, D. Generating disulfides enzymatically: Reaction products and electron acceptors of the endoplasmic reticulum thiol oxidase Ero1p. Proc. Natl. Acad. Sci. USA 2006, 103, 299–304.
  110. Bonnefont-Rousselot, D. Glucose and reactive oxygen species. Curr. Opin. Clin. Nutr. Metab. Care 2002, 5, 561–568.
  111. Spiteller, G. Lipid oxidation in ageing and age-dependent disease. Exp. Gerontol. 2001, 36, 1425–1457.
  112. Rosen, G.M.; Pou, S.; Ramos, C.L.; Cohen, M.S.; Britigan, B.E. Free radicals and phagocytic cells. FASEB J. 1995, 9, 200–209.
  113. Kohchi, C.; Inagawa, H.; Nishizawa, T.; Soma, G. ROS and innate immunity. Anticancer Res. 2009, 29, 817–821.
  114. Klebanoff, S.J. Myeloperoxidase: Friend and foe. J. Leukoc. Biol. 2005, 77, 598–625.
  115. Heinecke, J.W.; Li, W.; Francis, G.A.; Goldstein, J.A. Tyrosyl radical generated by myeloperoxidase catalyzes the oxidative cross-linking of proteins. J. Clin. Investig. 1993, 91, 2866–2872.
  116. Lieber, C.S. Cytochrome P450 2E1: Its physiological and pathological role. Physiol. Rev. 1997, 77, 517–544.
  117. Bokare, A.D.; Choi, W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. J. Hazard. Mater. 2014, 275, 121–135.
  118. Faustman, C.; Sun, Q.; Mancini, R.; Suman, S.P. Myoglobin and lipid oxidation interactions: Mechanistic bases and control: A review. Meat Sci. 2010, 86, 86–94.
  119. Tsukamoto, H.; Lu, S.C. Current concepts in the pathogenesis of alcoholic liver injury. FASEB J. 2001, 15, 1335–1349.
  120. Liochev, S.I.; Fridovich, I. Lucigenin as mediator of superoxide production: Revisited. Free Radic. Biol. Med. 1998, 25, 926–928.
  121. Khramtsov, V.V. In vivo electron paramagnetic resonance: Radical concepts for translation to the clinical cetting. Antioxid. Redox Signal. 2018, 28, 1341–1344.
  122. Loibl, S.; von Minckwitz, G.; Weber, S.; Peter, H.S.; Schini-Kerth, V.B.; Lobysheva, I.; Nepveu, F.; Wolf, G.; Strebhardt, K.; Kaufmann, M. Expression of endothelial and inducible nitric oxide synthase in benign and malignant lesions of the breast and measurement of nitric oxide using electron paramagnetic resonance spectroscopy. Cancer 2002, 95, 1191–1198.
More
ScholarVision Creations