1. Introduction
Skin and subcutaneous disorders affect approximately one-third of the global population and are associated with a burden encompassing psychological, social and financial dimensions
[1]. In particular, chronic skin diseases, such as psoriasis, eczema and atopic dermatitis, result in significant morbidity and affect patient quality of life
[2]. On the other hand, malignant skin diseases, such as malignant melanoma, are frequently fatal
[3]. The high prevalence of skin diseases combined with the emergence of new technological advancements in drug development is fueling the growth of the skin-targeted drug delivery market.
Skin-targeted drug delivery systems include topical, dermal and transdermal approaches. In topical drug delivery, the active substances are intended to remain on the skin’s surface (e.g., barrier creams, sunscreens and repellents) whereas dermal delivery targets active substances into the relevant skin layers (e.g., corticosteroids and antibiotics). In parallel, transdermal drug delivery research has also seen an upsurge in recent years. This approach could circumvent the complications of oral and intramuscular drug delivery and achieve controlled systemic delivery of drugs. Recent innovations in this field include a transdermal patch indicated against symptoms of Parkinson’s disease
[4] and a skin-targeted vaccine against COVID-19
[5].
The successful development of skin-targeted drug delivery systems requires careful consideration of the human skin’s anatomy, physiology and physicochemical properties. This evaluation is important to achieve the desired drug effect and avoid adverse reactions such as skin sensitization and/or irritation. The development of new pharmaceutical drugs would greatly benefit from biomimetic in vitro skin models that could replicate the key components of the in vivo healthy and diseased human skin.
Conventional preclinical drug testing relies on in vitro cell cultures and animal models. Most commonly, in vitro cell culture relies on two-dimensional (2D) cell culture systems, typically monolayers of epidermal keratinocytes and/or dermal fibroblasts. While these models offer a rapid, reproducible system to study drug responses, they are not good predictors of the complex interactions seen in vivo
[6]. The lack of a 3D physiological tissue environment greatly minimizes the models’ physiological relevance and applicability. On the other hand, in vivo animal models offer information on systemic effects but cannot replicate human skin anatomy and physiology. During the development of pharmaceutical skin-targeted formulations, mouse models are often mandatory for in vivo translational research. However, mouse skin is structurally and functionally different from human skin; it is thinner, contains more hair follicles, includes fewer keratinocyte layers, presents decreased barrier function and greater absorption
[7]. Moreover, animal models suffer from low throughput and interspecies variability
[8]. These flaws in the conventional testing methods result in a lack of correlation between the input (drug candidates) and output (approved drugs), contributing to the R&D decline
[9].
From an ethical perspective, the replacement of animal models satisfies a growing societal concern regarding animal experimentation. Ethical guidelines dictate that, where possible, animal experimentation should be replaced, reduced, or refined (3R principle). The cosmetic industry has been greatly affected by the restrictions imposed on animal testing. Since 2009, the European Commission has been approving regulations on cosmetics, establishing a testing and marketing ban: a prohibition against testing finished cosmetic products or ingredients on animals and commercializing any cosmetic product or ingredient that has been tested on animals within the European Union
[10]. The European Centre for the Validation of Alternative Methods (ECVAM) was established in 2010 as a reference laboratory for researching and validating alternative methods, following 3R principles
[11]. In 2013, a full marketing ban was put in place for all human health effects tested in animals, including repeated-dose toxicity, reproductive toxicity and toxicokinetics, irrespective of the availability of alternative non-animal tests.
The combinatory effect of the high prevalence of skin diseases, R&D decline and restrictions on animal testing pressured the development of physiologically relevant skin models that could replace conventional, inefficient approaches. Recently, 3D cell culturing techniques have improved the relevance of the available models and demonstrated the synergistic effects that different cell types have on each other
[12]. These models can be assembled into complex structures to simulate more physiologically relevant conditions. Both reconstructed human epidermis (RHEm) and full-thickness skin models (FTSm) have been used for many applications including basic, pharmacological and cosmetic research. Innovative techniques such as 3D printing and scaffolds are promising approaches to increase the relevance of these models. However, current tissue-engineered skin models still fall short of the desired controllability and are deficient in several essential key components of the in vivo skin. In particular, their lack of vascularization results in restricted nutrition supply, cell–cell and cell–extracellular matrix (ECM) interactions.
The need for physiologically relevant and functional tissue models led to new technologies for cell cultures such as organ-on-a-chip (OoC) or microphysiological systems. This modern technology aims to surpass the limitations of the 3D cell-based culture platforms and increase the predictive power of in vitro models
[13]. These systems have the potential to achieve experimental controllability and reproducibility similar to 2D cell culture while allowing for increased physiological relevance and complexity. In the last few years, OoC technology has been used to recreate advanced biomimetic skin models, known as skin-on-a-chip (SoC) models
[14][14]. In this Review, key technological and biological aspects for developing physiologically relevant SoC models will be discussed. The state-of-the-art SoC devices will be presented, and the major advancements and drawbacks will be highlighted.
2. Two-Dimensional Skin-on-a-Chip Models
One approach to mimic the human skin’s structure and functional responses consists of culturing layers of 2D cells on-chip, mimicking different skin compartments. Using this approach, Wufuer et al. proposed a model consisting of three layers (epidermal, dermal and vascular) co-cultured inside a SoC device
[15][110]. A porous membrane separated each layer to allow interlayer communication. A model of skin inflammation was generated by perfusion with tumor necrosis factor (TNF-α), followed by measurement of proinflammatory cytokines levels and tight junction analysis. The efficacy of the drug dexamethasone was evaluated using the developed inflammation model. The study demonstrated that this drug could attenuate the effects of TNF-α including endothelial barrier dysfunction.
In the same year, Ramadan et al. described a SoC to develop an immune-competent in vitro skin model
[16][111]. The model included a confluent layer of a human skin keratinocyte cell line (HaCaT), cultured on a porous membrane acting as a model of the epidermis and immune cells (leukemic monocyte lymphoma cell) positioned beneath the membrane. Silver/Silver chloride (Ag/AgCl) wires were inserted into the platform to measure the TEER, thereby monitoring the cell layer integrity through the course of cell culture and in response to chemical/physical stimuli. The group found that the perfusion-based culture promoted the barrier function and the lifespan of the cellular system. Furthermore, they investigated the effects of lipopolysaccharides (LPS) and the effects of UV radiation stimulus on the developed model. These experiments allowed the understanding of the role of the human keratinocyte layer as a protection barrier.
Sasaki et al. developed a photolithography-free device to culture an HaCaT monolayer and perform permeation assays
[17][112].
TIn this work, the group developed a simple platform without using complex microfabrication techniques, which could be a barrier to some researchers. A porous membrane was sandwiched between branched microchannels and bonded using a PDMS mortar. The group tested the effect of potassium dichromate on the permeability of the cell monolayer by introducing fluorescein isothiocyanate-dextran (FITC-Dextran) solution on the top channel.
In the previously referred 2D SoC models, the skin cells were cultured directly in the microfluidic chip (in situ) to simulate the different skin components. These models have been successful in simulating diseases and their interaction with the immune system. However, they do not represent the complexity and 3D architecture of the native human skin.