Lactic acid bacteria (LAB) are commonly applied to fish as a means of growth promotion and disease prevention. However, evidence regarding whether LAB colonize the gastrointestinal (GI) tract of fish remains sparse and controversial. Here, we investigated whether Lacticaseibacillus casei ATCC 393 (Lc) can colonize the GI tract of crucian carp. Sterile feed irradiated with 60Co was used to eliminate the influence of microbes, and 100% rearing water was renewed at 5-day intervals to reduce the fecal–oral circulation of microbes. The experiment lasted 47 days and was divided into three stages: the baseline period (21 days), the administration period (7 days: day −6 to 0) and the post-administration period (day 1 to 19). Control groups were fed a sterile basal diet during the whole experimental period, whereas treatment groups were fed with a mixed diet containing Lc (1×107 cfu/g) and spore of Geobacillus stearothermophilus (Gs, 1 × 107 cfu/g) during the administration period and a sterile basal diet during the baseline and post-administration periods. An improved and highly sensitive selective culture method (SCM) was employed in combination with a transit marker (a Gs spore) to monitor the elimination of Lc in the GI tract. The results showed that Lc (< 2 cfu/gastrointestine) could not be detected in any of the fish sampled from the treatment group 7 days after the cessation of the mixed diet, whereas Gs could still be detected in seven out of nine fish at day 11 and could not be detected at all at day 15. Therefore, the elimination speed of Lc was faster than that of the transit marker. Furthermore, high-throughput sequencing analysis combined with SCM was used to reconfirm the elimination kinetics of Lc in the GI tract. The results show that the Lc in the crucian carp GI tract, despite being retained at low relative abundance from day 7 (0.11% ± 0.03%) to 21, was not viable. The experiments indicate that Lc ATCC 393 cannot colonize the GI tract of crucian carp, and the improved selective culture in combination with a transit marker represents a good method for studying LAB colonization of fish.
Here, an improved, highly sensitive selective culture method was used to monitor Lc in the GI tract of crucian carp whereby interference from nontarget bacteria was eliminated. Meanwhile, a transit marker was used to assess Lc colonization. In addition, a high-throughput sequencing technique was used to further understand changes in the relative abundance of Lc and Gs.
4.1. Elimination Interference is Essential for Colonization
Compared with terrestrial animals and humans, the intestinal microbiota of fish is more easily affected by feed and rearing water[3,28], Moreover, it is inevitable that there will be Lactobacillus and Bacillus in fish diet. Lactobacillus and Carnobacterium could be detected in the gut of control groups in a probiotic feeding trial [13]. Merrifield et al. [29,30] also reported that Enterococcus and Bacillus could be detected in the gut of rainbow trout that were fed a diet without probiotic supplementation, and they considered that these bacteria may be indigenous species. In the five commercial feeds, we detected different species of LAB and Bacillus at different concentrations. One of the feeds contained Pediococcus at 1.4 × 104 cfu/g, and another feed contained Bacillus at over 106 cfu/g (Table A2). Therefore, we proposed that sterile aquafeed should be used in GI microbe-related experiments. We therefore selected 60Co irradiation, which is a good sterilization method recommended for its wide use in SPF animal feed [20].
In the experiment, the target bacteria were more likely to reenter the gut via residual diet or feces. Merrifield et al. [29] found that 7.4 × 103 cfu/mL of Bacillus and 4.3 × 103 cfu/mL of Enterococcus were detected in the rearing water after feeding the diet supplemented with these bacteria, despite 15% water renewal per 72 h. Therefore, the authors suggested enhancing the water renewal rate to reduce background interference [29,30].
In rearing water with a pH of 8.0–9.0, the concentration of the Lc decreased dramatically from 1.0 × 106 cfu/mL at the beginning to <1 cfu/mL 7 days later (unpublished data). Considering their short life in water, 100% water renewal with an interval of 5 days is enough to control the amount of these Lc in the water. However, if a testing strain can endure the water environment (such as in the case of a Gs spore) or even proliferate, the persistence time would be overestimated, and the reintroduction of the testing strain would be obvious. Thus, a better method for controlling the testing strain in water is needed.
4.2. The Improved, Highly Sensitive Selective Culture Combined with a Transit Marker is a Suitable Method for the Study of Colonization in Fish
Various methods have been developed to evaluate bacterial colonization in complex gut microbiota. Although tagging probiotic strains with fluorescence markers is an alternative, frequent plasmid loss during gut transition, low detection sensitivity and safety concerns hinder its further application. Species-specific PCR has also been developed to directly detect organisms in the extracted genome of fecal or GI tract samples. However, it cannot eliminate the baseline values of indigenous bacteria of the same species in their environments or diets [31]. At present, strain-specific PCR is used to detect and quantify strains; however, these strain-specific DNA fragments are based on a limited number of strains, making the strain-specificity robust only within a narrow confidence interval. These methods focus on humans and mice and are not suitable for colonization studies of aquatic animals such as fish. Although a selective medium method with colony identification is considered arduous and time-consuming, it is still a classic method in microbiology studies [32]. In particular, the method can tell whether the bacteria are alive or dead, whereas molecular methods cannot.
The MRS agar with a pH of 5.4–5.5 had high specificity and sensitivity for detecting acid-resistant bacterial species in the GI tract, such as the Lc strains used in our study. The weight of GI tract samples usually does not exceed 1 g after an appropriate starvation period when the bodyweight of the fish is less than 30 g. Then, a 10% homogenate of less than 10 mL can be entirely spread on agar on fewer than 50 plates at 200 μL/plate. The detection limit using this approach is 1 cfu/gastrointestine. Other culture-dependent methods have poor accuracy and a detection limit usually higher than 10 cfu/g [13,15], whereas our improved selective culture method is very suitable for fish colonization experiments.
Colonization was defined by Conway and Cohen as the indefinite persistence of a particular bacterial population without the reintroduction of that bacterium[18]. If a microbe can exit the GI tract in the extreme long term (such as its whole life) or extreme short term (such as a couple of days), then the conclusion of colonization is not easy to make. However, if a microbe merely exits the GI tract for “a period of time”, how should we define the length of that time? Marteau and Vesa [21] indicated that using a transit marker is necessary when studying the colonization of potential probiotics, and the colonizer should persist for a longer period than the marker. A Gs spore is a good transit marker [21,25,26] for the following reasons: Firstly, its growing temperature ranges from 40 to 70°C[33], so it usually cannot germinate, grow or reproduce in rearing water and fish gut. Secondly, the spores cannot be easily destroyed in the GI tract and feed preparation process. Thirdly, the spores can easily be counted based on high-temperature selective culture where other gastrointestinal bacteria usually cannot grow. Our study showed that the detection limit of Gs can reach 1 cfu/gastrointestine.
4.3. Monitored Relative Abundance Changes by High-throughput Sequencing
With the second-generation sequencing technique for gut microbiome community analysis, we can identify bacterial components at the genus level. Some researchers employed 16S rRNA amplicon sequencing to study colonization [34,35]. Howitt compared traditional microbiological cultures and 16S polymerase chain reaction analyses for the identification of preoperative airway colonization in patients undergoing lung resection. The results showed that 16S PCR analyses identify colonizing bacteria in a similar proportion of preoperative BAL samples as traditional cultures [36]. An approach based on Illumina HiSeq 16S rRNA amplicon was used by Xia et al. [11], with results showing that Lactococcus lactis JCM5805 was below the detection level after the cessation of probiotics for 5 days, and they inferred that this strain could not colonize the gut; rather, the evaluation of colonization based on the 16S rRNA amplicon technology that they used is limited, for two reasons. First, the detection level of the method on a fish’s gastrointestinal sample is unknown. Metagenomics is only able to distinguish bacteria with concentrations greater than 106 bacteria per gram of feces [37]; thus, some low-abundance bacteria would be missed by metagenomic analysis. Second, the method is based on DNA samples and cannot determine the viability of bacteria, i.e., whether the bacteria are alive or dead, which could influence the interpretation of the results [2]. Of course, this method is feasible as an auxiliary means to understand changes in the abundance of the target bacteria.
4.4. Lc ATCC 393 Cannot Colonize the Gastrointestinal Tract
The persistence of probiotics in the gut is species-specific. In our previous study, even though an exogenous Bacillus licheniformis A1(Bli-A1) supplement was withdrawn, the concentration of Bli-A1 in the intestinal content was sustained at 3.3×102 cfu/g for at least 42 days with continuous sterile feed supplements [38]. In this study, when the detection limit was 1 cfu/gastrointestine, the elimination speed of Lc was even faster than that of the transit marker, indicating that Lc could not colonize in the gastrointestine of crucian carp. This is consistent with our previous studies of Lc on catfish [27]. We speculate that there are three reasons that Lc could not colonize in the gastrointestine of crucian carp. First, indigenous microbiomes drive colonization resistance to probiotics and/or additional bacteria [39]. Second, Gastrointestinal contents are not conducive to Lc reproduction. Third, Lc lacks the ability to adhere to the mucosa of the GI tract of crucian carp.
However, the supplement of Lc changed the gastrointestinal microbiota structure of crucian carp (Table S1), compared with day −7, the number of the high-abundant taxa(≥1%) increased from 9 (except other bacteria abundance) to 24 (except other bacteria abundance) on day 7, and recovered to the previous (day −7) microbiota structure until day 21.
The elimination speed of Lc was faster than the transit marker. Meanwhile, although Lc retained a low relative abundance from day 7 (0.11% ± 0.03%) to 21 in the crucian carp gastrointestine, they were not viable. The results indicate that the Lc ATCC 393 cannot colonize crucian carp. This study presents a method with a low detection limit for the colonization of LAB in fish and provides the idea of crucian carp to screen for beneficial probiotics.