Subtractive Shading Envelope's Computational Workflow: Comparison
Please note this is a comparison between Version 2 by Rita Xu and Version 1 by Miktha Farid Alkadri.

This study proposes a voxel-based design approach based on the subtractive mechanism of shading envelopes and attributes information of point cloud data in tropical climates. In particular, the proposed method evaluates a volumetric sample of new buildings based on predefined shading performance criteria. With the support of geometric and radiometric information stored in point cloud such as position (XYZ), color (RGB), and reflection intensity (I), an integrated computational workflow between passive design strategy and 3D scanning technology is developed. It aims not only to compensate for some pertinent aspects of the current 3D site modelling such as vegetation and surrounding buildings but also to investigate surface characteristics of existing contexts such as visible sun vectors and material properties. These aspects are relevant for conducting a comprehensively environmental simulation while averting negative microclimatic impacts when locating the new building into the existing context. Ultimately, this study may support architects for taking decision-making in conceptual design stage based on the real contextual conditions.

  • voxel-design approach
  • shading envelopes
  • point cloud data
  • computational design method
  • passive design strategy
Please wait, diff process is still running!

References

  1. Shih, N.-J.; Wu, M.-C. A 3D Point-Cloud-Based Verification of as-Built Construction Progress. In Proceedings of the CAAD Futures 2005 Conference, Vienna, Austria, 20–22 June 2005.
  2. Alsadik, B.; Gerke, M.; Vosselman, G. Visibility analysis of point cloud in close range photogrammetry. ISPRS Ann. Photogr. Remote Sens. Spat. Inf. Sci. 2014, 2, 9–16.
  3. Andriasyan, M.; Moyano, J.J.; Julián, J.E.N.; García, D.A. From Point Cloud Data to Building Information Modelling: An Automatic Parametric Workflow for Heritage. Remote Sens. 2020, 12, 1094.
  4. Shanoer, M.M.; Abed, F.M. Evaluate 3D laser point clouds registration for cultural heritage documentation. Egypt. J. Remote Sens. Space Sci. 2018, 21, 295–304.
  5. Remondino, F. Heritage Recording and 3D Modeling with Photogrammetry and 3D Scanning. Remote Sens. 2011, 3, 1104–1138.
  6. Núñez-Andrés, M.A.; Buill, F.; Costa-Jover, A.; Puche, J.M. Structural assessment of the Roman wall and vaults of the cloister of Tarragona Cathedral. J. Build. Eng. 2017, 13, 77–86.
  7. Bornaz, L.; Lingua, A.; Rinaudo, F. Engineering and Enviroonmental Applications of Laser Scanner Techniques. In Proceedings of the ISPRS Commission III Symposium Photogrammetric Computer Vision, Graz, Austria, 9–13 September 2002.
  8. Kassner, R.; Koppe, W.; Schüttenberg, T.; Bareth, G. Analysis of the Solar Potential of Roofs By Using Official Lidar Data. In Proceedings of the ISPRS Congress, Beijing, China, 3–11 July 2008.
  9. Carneiro, C.; Morello, E.; Desthieux, G. Assessment of Solar Irradiance on the Urban Fabric for the Production of Renewable Energy using LIDAR Data and Image Processing Techniques. In Proceedings of the Advances in GIScience, Hannover, Germany, 2–5 June 2009.
  10. Desthieux, G.; Carneiro, C.; Camponovo, R.; Ineichen, P.; Morello, E.; Boulmier, A.; Abdennadher, N.; Dervey, S.; Ellert, C. Solar Energy Potential Assessment on Rooftops and Facades in Large Built Environments Based on LiDAR Data, Image Processing, and Cloud Computing. Methodological Background, Application, and Validation in Geneva (Solar Cadaster). Front. Built Environ. 2018, 4, 1–22.
  11. Staneva, N.N. Approaches for generating 3D solid models in AutoCAD and solid works. J. Eng. 2008, 3, 28–31.
  12. Shapiro, V. Spatial Automation Laboratoty. In Solid Modeling; University of Wisconsin: Madison, WI, USA, 2001.
  13. Otepka, J.; Ghuffar, S.; Waldhauser, C.; Hochreiter, R.; Pfeifer, N. Georeferenced Point Clouds: A Survey of Features and Point Cloud Management. ISPRS Int. J. Geoinf. 2013, 2, 1038–1065.
  14. Richter, R.; Döllner, J. Concepts and techniques for integration, analysis and visualization of massive 3D point clouds. Comput. Environ. Urban Syst. 2014, 45, 114–124.
  15. Arayici, Y. Towards building information modelling for existing structures. Struct. Surv. 2008, 26, 210–222.
  16. Alkadri, M.F.; Turrin, M.; Sariyildiz, S. The use and potential applications of point clouds in simulation of solar radiation for solar access in urban contexts. Adv. Comput. Des. 2018, 3, 319–338.
  17. Knowles, R.L. Energy and Form: An Ecological Approach to Urban Growth, Cambridge; The MIT Press: Cambridge, MA, USA, 1974.
  18. Knowles, R.L. Sun, Rhytm and Form, Massachusetts; The MIT Press: Cambridge, MA, USA, 1981.
  19. Alkadri, M.F.; De Luca, F.; Turrin, M.; Sariyildiz, S. Understanding Computational Methods for Solar Envelopes Based on Design Parameters, Tools, and Case Studies: A Review. Energies 2020, 13, 3302.
  20. GlobalABC, IEA and UN. 2019 Global Status Report for Buildings and Construction: Towards a Zero-Emission, Efficient and Resilient Buildings and Construction Sector; IEA and United Nations Environment Programme: Madrin, Spain, 2019.
  21. Chandel, S.; Sharma, V.; Marwah, B.M. Review of energy efficient features in vernacular architecture for improving indoor thermal comfort conditions. Renew. Sustain. Energy Rev. 2016, 65, 459–477.
  22. Ehzan, M.; Farshchi, M.A.; Ford, A. Vernacular Architecture And Energy Use In Buildings: A Comparative Study. IJAMCE 2015, 2, 35–42.
  23. Lepore, M. The right to the sun in the urban design. Vitr. Int. J. Arch. Technol. Sustain. 2017, 2, 24–43.
  24. Mazzone, D. The Dark Side of a Model Community: The Ghetto of el-Lahun. J. Anc. Egypt. Archit. 2017, 2, 19–54.
  25. Butti, K.; Perlin, J. A Golden Threat 2500 Years of Solar Architecture and Technology; Van Nostrand Reinhold Company: New York, NY, USA, 1980.
  26. Giacomo, L. The Architecture of A. Palladio in Four Books; John sWatts: London, UK, 1715.
  27. Curreli, S.; Coch, H. Solar access in the compact city: A study case in Barcelona. In Proceedings of the 3rd International Conference PALENC 2010 Passive & Low Energy Cooling for the Built Environment, Rhodes Island, Greece, 29 September-1 October 2010.
  28. Wang, X.; Wei, Z.-S.; Pang, X. Solar design in the application of the city planning. In Proceedings of the International Conference on Low-Carbon Transportation and Logistics, and Green Buildings, Beijing, China, 12–13 October 2012.
  29. Sarkar, A. Low energy urban block: Morphology and urban guidelines. In Proceedings of the 45th ISOCARP Congress, Porto, Portugal, 18–22 October 2009.
  30. Alkadri, M.F.; Turrin, M.; Sariyildiz, S. The use and potential applications of point clouds in simulation of solar radiation for solar access in urban contexts. Advances Comput. Des. 2018, 3, 319–338.
  31. Littlefair, P.J.; Santamouris, M.; Alvarez, S.; Dupagne, A.; Hall, D. Environmental Site Layout Planning: Solar Access, Microclimate and Passive Cooling in Urban Areas; Construction Research Communications Ltd.: London, UK, 2000.
  32. Dekay, M.; Brown, G.Z. Sun, Wind & Light: Architectural Design Strategies, 3th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2014.
  33. Emmanuel, R. A Hypothetical ‘Shadow Umbrella’ for Thermal Comfort Enhancement in the Equatorial Urban Outdoors. Arch. Sci. Rev. 1993, 36, 173–184.
  34. DeKay, R.M. Climatic urban design: Configuring the urban fabric to support daylighting, passive cooling, and solar heating. Sustain. City VII 2012, 1, 619–630.
  35. Dinić, M.; Mitković, P. Planning regulations in the USA and their implications on urban design in the central city zone. Facta Univ. Arch. Civ. Eng. 2011, 9, 289–299.
  36. Szokolay, S.V. Introduction to Architectural Science: The Basis of Sustainable Design; Architectural Press: Oxford, UK, 2004.
  37. Capeluto, I.G. Energy performance of the self-shading building envelope. Energy Build. 2003, 35, 327–336.
  38. Yezioro, A.; Shaviv, E. Shading: A design tool for analyzing mutual shading between buildings. Sol. Energy 1994, 52, 27–37.
  39. Marsh, A. Computer-Optimised Shading Design. In Proceedings of the Eight International IBPSA Conference,Eindhoven, The Netheerlands, 11-14 August 2003.
  40. Stevanović, S.; Stevanović, D.; Dehmer, M. On optimal and near-optimal shapes of external shading of windows in apartment buildings. PLoS ONE 2019, 14, e0212710.
  41. Kabre, C. Winshade: A computer design tool for solar control. Build. Environ. 1998, 34, 263–274.
  42. Etzion, Y. An improved solar shading design tool. Build. Environ. 1992, 27, 297–303.
  43. Sargent, J.; Niemasz, J.; Reinhart, C.F. In Proceedings of the SHADERADE: Combining Rhinoceros and Energyplus for the Design of Static Exterior Shading Devices, Sydney, Australia, 14–16 November 2011.
  44. Kaftan, E.; Marsh, A. Integrating the cellular method for shading design with a thermal simulation. In Proceedings of the International Conference “Passive and Low Energy Cooling for the Built Environment”, Santorini, Greek, 19–1 May 2005.
  45. Leidi, M.; Schlüter, A. Exploring urban space—Volumetric site analysis for conceptual design in the urban context. Internatl. J. Archit. Comput. 2013, 11, 157–182.
  46. Leidi, M.; Schlüter, A. Volumetric insolation analysis. In Proceedings of the CleanTech for Sustainable Buildings—From Nano to Urban Scale (CISBAT 2011), Lausanne, Switzerland, 14–16 September 2011.
  47. Ozel, F. SolarPierce: A Solar Path-Based Generative System. In Proceedings of the Computation and Performance—Proceedings of the 31st eCAADe Conference, Delft, Netherlands, 18–20 September 2013.
  48. Da Veiga, J.; La Roche, P. A Computer Solar Analysis Tool for the Design and Manufacturing of Complex Architectural Envelopes: EvSurf. In Proceedings of the SIGraDi 2002, 6th Iberoamerican Congress of Digital Graphics, Caracas, Venezuela, 27–29 November 2002.
  49. Littlefair, P. Passive solar urban design: Ensuring the penetration of solar energy into the city. Renew. Sustain. Energy Rev. 1998, 2, 303–326.
  50. De Luca, F. Solar form finding. In Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture: Disciplines and Disruption, ACADIA, Cambridge, UK, 2–4 November 2017.
  51. De Luca, F.; Dogan, T. A novel solar envelope method based on solar ordinances for urban planning. Build. Simul. 2019, 12, 817–834.
  52. De Luca, F.; Voll, H. Computational method for variable objectives and context-aware solar envelopes generation. In Proceedings of the 8th Annual Symposium on Simulation for Architecture and Urban Design, SimAUD, Toronto, ON, Canada, 22–24 May 2017.
  53. Darmon, I. Voxel computational morphogenesis in urban context: Proposition and analysis of rules-based generative algorithms considering solar access. In Proceedings of the Advanced Building Skins, Bern, Switzerland, 28–29 October 2019.
  54. Kaasalainen, S.; Krooks, A.; Kukko, A.; Kaartinen, H. Radiometric Calibration of Terrestrial Laser Scanners with External Reference Targets. Remote Sens. 2009, 1, 144–158.
  55. Kashani, A.G.; Olsen, M.J.; Parrish, C.E.; Wilson, N. A Review of LIDAR Radiometric Processing: From Ad Hoc Intensity Correction to Rigorous Radiometric Calibration. Sensors 2015, 15, doi:10.3390/s151128099.
  56. Alkadri, M.F.; De Luca, F.; Turrin, M.; Sariyildiz, S.; Making use of point cloud for generating subtractive solar envelopes. In Proceedings of the eCAADe SIGraDi 2019: Architecture in the Age of the 4th Industrial Revolution, Porto, Portugal, 7 September 2020.
  57. Alkadri, M.; De Luca, F.; Turrin, M.; Sariyildiz, I.S. An integrated approach to subtractive solar envelopes based on attribute information from point cloud data. Renew. Sustain. Energy Rev. 2020, 123, 109742.
  58. Fujita, Y.; Hoshino, Y.; Ogata, S.; Kobayashi, I. Attribute Assignment to Point Cloud Data and Its Usage. Glob. J. Comp. Sci. Technol. 2015, 15, 2.
  59. Zhan, Q.; Yu, L.; Liang, Y. A point cloud segmentation method based on vector estimation and color clustering. In Proceedings of the 2nd International Conference on Information Science and Engineering (ICISE), Hangzhou, China, 4–6 December 2010.
  60. Kobayashi, I.; Fujita, Y.; Sugihara, H.; Yamamoto, K. Attribute Analysis of Point Cloud Data with Color Information. J. Jpn. Soc. Civ. Eng. Ser. F3 Civil Eng. Inform. 2011, 67, doi:10.2208/jscejcei.67.i_95.
  61. Aijazi, A.K.; Checchin, P.; Trassoudaine, L. Segmentation Based Classification of 3D Urban Point Clouds: A Super-Voxel Based Approach with Evaluation. Remote Sens. 2013, 5, 1624–1650.
  62. Fujita, Y.; Kobayashi, I.; Chanseawrassamee, W.; Hoshino, Y. Application of Attributed Road Surface Point Cloud Data in Road Maintenance. J. Jpn. Soc. Civ. Eng. Ser. F3 Civil Eng. Inform. 2014, 70, doi:10.2208/jscejcei.70.i_185.
  63. Tamke, M.; Blümel, I.; Ochman, S.; Vock R.; Wessel, R. From point clouds to definitions of architectural space: Potentials of automated extraction of semantic information frompoint clouds for the building profession. In Proceedings of the eCAADe, Newcastle upon Tyne, UK, 10 September 2014.
  64. Turner, E.; Cheng, P.; Zakhor, A. Fast, Automated, Scalable Generation of Textured 3D Models of Indoor Environments. IEEE J. Sel. Top. Signal Process. 2014, 9, 409–421.
  65. Tan, K.; Cheng, X. Correction of Incidence Angle and Distance Effects on TLS Intensity Data Based on Reference Targets. Remote Sens. 2016, 8, 251.
  66. Shin, J.-I.; Park, H.; Kim, T. Characteristics of Laser Backscattering Intensity to Detect Frozen and Wet Surfaces on Roads. J. Sens. 2019, 2019, 1–9.
  67. Kaasalainen, S.; Kaartinen, H.; Kukko, A. Snow cover change detection with laser scanning range and brightness measurements. EARSeL eProc. 2008, 7, 133–141.
  68. Alkadri, M.F.; Turrin, M.; Sariyildiz, S. A computational workflow to analyse material properties and solar radiation of existing contexts from attribute information of point cloud data. Build. Envir. 2019, 155, 268–282.
  69. Suchocki, C.; Błaszczak-Bąk, W. Down-Sampling of Point Clouds for the Technical Diagnostics of Buildings and Structures. Geoscience 2019, 9, 70.
  70. Armesto, J.; Riveiro, B.; González-Aguilera, D.; Rivas-Brea, M.T. Terrestrial laser scanning intensity data applied to damage detection for historical buildings. J. Archaeol. Sci. 2010, 37, 3037–3047.
  71. Soudarissanane, S. The Geometry of Terrestrial Laser Scanning; Identification of Errors, Modeling and Mitigation of Scanning Geometry. Ph.D. Thesis, Faculty of Civil Engineering and Geosciences, TU Delft, Delft, The Netherlands, January 2016.
  72. TOPCON. GLS-2000 Series: Multi Functional 3D Laser Scanner. Available online: https://www.topconpositioning.com/sites/default/files/product_files/gls-2000series_broch_7010-2152_reve_team_en_us_lores.pdf (accessed on 6 January 2020).
  73. Maptek. Maptek I-Site Studio; Maptek: Denver, USA, 2015.
  74. Compare, C. Cloud Compare: 3D point cloud and mesh processing software, open source project. 2019. Available online: http://www.cloudcompare.org/ (accessed on 1 April 2020).
  75. Matlab. MathWorks. 2020. Available online: https://nl.mathworks.com/products/matlab.html?s_tid=hp_ff_p_matlab (accessed on 2 April 2020).
  76. Rhinoceros. Rhinoceros: design, model, present, realize, analyse...2020. Available online: https://www.rhino3d.com/ (accessed on 4 April 2020).
  77. Davidson, Scoot. Grasshopper: Algorithmic modelling for rhino. 2020. Available online: https://www.grasshopper3d.com/ (accessed on 4 April 2020).
  78. Ladybug. Ladybug tools. 2020. Available online: https://www.ladybug.tools/ (accessed on 5 April 2020).
  79. Boulch, A.; Marlet, R. Deep Learning for Robust Normal Estimation in Unstructured Point Clouds. In Proceedings of the Eurographics Symposium on Geometry Processing, Berlin, Germany, 20–24 June 2016.
More