Connectivity Architecture: Comparison
Please note this is a comparison between Version 2 by Rita Xu and Version 1 by Marko Höyhtyä.

Connectivity architecture connects main functional blocks or entities of a system with well-defined interfaces enabling interoperability, fluent data flows and information sharing in timely manner. Local connectivity architecture defines e.g. the architecture inside an autonomous ship. The wider-scale architecture includes geographically distributed entities such as vessels, databases, and remote operations centers.

  • Autonomous systems
  • Wireless communications
  • Maritime autonomous surface ships
  • 5G and Beyond
  • Integrated satellite-terrestrial connectivity
Please wait, diff process is still running!

References

  1. Mukhtar, A.; Xia, L.; Tang, T.B. Vehicle detection techniques for collision avoidance systems: A review. IEEE Trans. Intell. Transp. Syst. 2015, 16, 2318–2338. doi:10.1109/TITS.2015.2409109.
  2. Zhang, J.; Wang F.-Y.; Wang K.; Lin W.-H.; Xu X.; Chen C. Data-driven intelligent transportation systems: A survey. IEEE Trans. Intell. Transp. Syst. 2011, 12, 1624–1639. doi:10.1109/TITS.2011.2158001.
  3. Siegel, J.E.; Erb, D.C.; Sarma, S.E. A survey of the connected vehicle landscape—Architectures, enabling technologies, applications, and development areas. IEEE Trans. Intell. Transp. Syst. 2018, 19, 2391–2406. doi:10.1109/TITS.2017.2749459.
  4. Tomic, T.; Schmid K.; Lutz P.; Domel A.; Kassecker M.; Mair E.; Lynne I.; Ruess F.; Suppa M.; Burschka D. Towards a fully autonomous UAV: Research platform for indoor and outdoor urban search and rescue. IEEE Robot. Autom. Mag. 2012, 19, 46–56. doi:10.1109/MRA.2012.2206473.
  5. Höyhtyä, M.; Huusko, J.; Kiviranta, M.; Rokka, J.; Solberg, K. Connectivity for autonomous ships: Architecture, use cases, and research challenges. In Proceedings of the International Conference of ICT Convergence (ICTC), Jeju Island, Korea, 18–20 October 2017. doi:10.1109/ICTC.2017.8191000.
  6. Poikonen, J. Requirements and challenges of multimedia processing and broadband connectivity in remote and autonomous vessels. In Proceedings of the International Symposium of Broadband Multimedia Systems and Broadcasting (BMSB), Valencia, Spain, 6–8 June 2018. doi:10.1109/BMSB.2018.8436799.
  7. Rødseth, Ø.J.; Kvamstad, B.; Porathe, T.; Burmeister, H.-C. Communication architecture for an unmanned merchant ship. In Proceedings of theOCEANS13 MTS IEEE, Bergen, Norway, 10–13 June 2013.
  8. Höyhtyä, M. Connectivity manager: Ensuring robust connections for autonomous ships. In Proceedings of the International Conference on Intelligent Autonomous Systems (ICoIAS), Singapore, 28 February–2 March 2019. doi:10.1109/ICoIAS.2019.00022.
  9. Sasaki, S.; Okazaki, T. Development of telexistence on a ship using satellite communication. Int. J. Mar. Navig. Saf. Sea Transp. 2017, 11, 175–180, doi:10.12716/1001.11.01.21.
  10. Gupta, L.; Jain, R.; Vaszkun, G. Survey of important issues in UAV communication networks. IEEE Commun. Surv. Tuts. 2016, 18, 1123–1152. doi:10.1109/COMST.2015.2495297.
  11. Li, B.; Fei, Z.; Zhang, Y. UAV communications for 5G and beyond: Recent advances and future trends. IEEE Internet Things J. 2019, 6, 2241–2263. doi:10.1109/JIOT.2018.2887086.
  12. Galceran, E.; Carreras, M. A survey on coverage path planning for robotics. Robot. Auton. Syst. 2013, 61, 1258–1276. doi:10.1016/j.robot.2013.09.004.
  13. Yuh, J. Design and control of autonomous underwater robots. Auton. Robots. 2000, 8, 7–24. doi:10.1023/A:1008984701078.
  14. Gussen, C.M.G.; Diniz P.; Campos M.; Martins W.; Costa F.; Gois J. A survey of underwater wireless communication technologies. J. Commun. Inf. Syst. 2016, 31, 242–255. doi:10.14209/jcis.2016.22.
  15. Schiaretti, M.; Chen, L.; Negenborn, R.R. Survey on autonomous surface vessels: Part II—Categorization of 60 prototypes and future applications. In Computational Logistics. ICCL 2017. Lecture Notes in Computer Science; Bektaş, T., Coniglio, S., Martinez-Sykora, A., Voß, S., Eds.; Springer: Berlin, Germany, 2017; Volume 10572, doi:10.1007/978-3-319-68496-3_16.
  16. Liu, Z.; Zhang, Y.; Yu. X.; Yuan, C. Unmanned surface vehicles: An overview of development and challenges. Annu. Rev. Control 2016, 41, 71–93. doi:10.1016/j.arcontrol.2016.04.018.
  17. Wrobel, K.; Montewka, J.; Kujala, P. System-theoretic approach to safety of remote-controlled merchant vessel. Ocean. Eng. 2018, 152, 334–345. doi:10.1016/j.oceaneng.2018.01.020.
  18. Zolich, A.; Palma D.; Kansanen K.; Fjortoft K.; Sousa J.; Johansson K.; Jiang Y.; Dong H.; Johansen T. Survey on communications and networks for autonomous marine systems. J. Intell. Robot. Syst. 2019, 95, 789–813. doi:10.1007/s10846-018-0833-5.
  19. Kavallieratos, G.; Diamantapoulou, V.; Katsikas, S. Shipping 4.0: Security requirements for the cyber-enabled ship. IEEE Trans. Ind. Informat., 2020, doi:10.1109/TII.2020.2976840.
  20. IMO. Convention on the International Regulations for Preventing Collisions at Sea, 1972 (COLREGs). Available online: http://www.imo.org/en/About/Conventions/ListOfConventions/Pages/COLREG.aspx (accessed on 5 May 2020).
  21. Höyhtyä, M.; Lähetkangas K.; Suomalainen J.; Hoppari M.; Kujanpää K.; Ngo K. T. Kippola T.; Heikkilä M.; Posti H.; Mäki J. et al. Critical communications over mobile operators’ networks: 5G use cases enabled by licensed spectrum sharing, network slicing, and QoS control. IEEE Access. 2018, 6, 73572–73582. doi:10.1109/ACCESS.2018.2883787.
More
Video Production Service