You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Nanostructures Based on Cobalt Oxide: Comparison
Please note this is a comparison between Version 1 by Gayan W. C. Kumarage and Version 3 by Camila Xu.

Cobalt oxide (Co3O4) is known to follow the spinel structure as (Co2+)[Co23+O4. The high spin Co2+occupies the interstitial sites of tetrahedral (8a) whereas low spin Co3+are known to occupy the interstitial sites of octahedral (16d) of the close-packed face-centered cubic lattice of CoO.Co2O3. The p-type conductivity of the material (CoO.Co2O3) is known to originate from the vacancies of Co in the crystal lattices or/and excess oxygen at interstitial sites.  Furthermore, 1D nanostructures of Co3O4  have been investigated over the past decades as an active material for chemical analytes detection owing to its superior catalytic effect together with its excellent stability. This article discusses the state-of-the-art of growth and characterization of Co3O4 1D nanostructures and their functional characterization as chemical/gas sensors. 

  • cobalt oxide
  • 1D nano structures
  • chemical gas sensor
Please wait, diff process is still running!

References

  1. Hulanicki, A.; Glab, S.; Ingman, F. Chemical Sensors: Definitions and Classification. Pure Appl. Chem. 1991, 63, 1247–1250.Hulanicki, A.; Glab, S.; Ingman, F.; Chemical Sensors: Definitions and Classification. Pure Appl. Chem 1991, 63, 1247, 10.1351/pac199163091247.
  2. Qiao, X.; Xu, Y.; Yang, K.; Ma, J.; Li, C.; Wang, H.; Jia, L. Mo Doped BiVO4 Gas Sensor with High Sensitivity and Selectivity Towards H2S. Chem. Eng. Sci. 2020, 395, 125144.Qiao, X.; Xu, Y.; Yang, K.; Ma, J.; Li, C.; Wang, H.; Jia, L.; Mo Doped BiVO4 Gas Sensor with High Sensitivity and Selectivity Towards H2S. Chem. Eng. Sci. 2020, 395, 125144, 10.1016/j.cej.2020.125144.
  3. Choi, K.; Kim, H.; Kim, K.; Liu, D.; Cao, G.; Lee, J. C2H5OH Sensing Characteristics of Various Co3O4 Nanostructures Prepared by Solvothermal Reaction. Sens. Actuators B Chem. 2010, 146, 183–189.Choi, K.; Kim, H.; Kim, K.; Liu, D.; Cao, G.; Lee, J.; C2H5OH Sensing Characteristics of Various Co3O4 Nanostructures Prepared by Solvothermal Reaction. Sens. Actuators B Chem. 2010, 146, 183, 10.1016/j.snb.2010.02.050.
  4. Aqeel, T.; Galstyan, V.; Comini, E. Mesoporous Polycrystalline SnO2 Framework Synthesized by Direct Soft Templating Method for Highly Selective Detection of NO2. Nanotechnology 2019, 31, 105502.4. Aqeel, T.; Galstyan, V.; Comini, E.; Mesoporous Polycrystalline SnO2 Framework Synthesized by Direct Soft Templating Method for Highly Selective Detection of NO2.. Nanotechnology 2019, 31, 105502, 10.1088/1361-6528/ab5a1e.
  5. Comini, E. Metal Oxide Nano-Crystals for Gas Sensing. Anal. Chim. Acta 2006, 568, 28–40.Comini, E.; Metal Oxide Nano-Crystals for Gas Sensing. Anal. Chim. Acta 2006, 568, 28, 10.1016/j.aca.2005.10.069.
  6. Comini, E.; Yubao, L.; Brando, Y.; Sberveglieri, G. Gas Sensing Properties of MoO3 Nanorods to CO and CH3OH. Chem. Phys. Lett. 2005, 407, 368–371.Comini, E.; Yubao, L.; Brando, Y.; Sberveglieri, G.; Gas Sensing Properties of MoO3 Nanorods to CO and CH3OH. Chem. Phys. Lett. 2005, 407, 368, 10.1016/j.cplett.2005.03.116.
  7. Wong, Y.; Ang, B.; Haseeb, A.; Baharuddin, A.; Wong, Y. Review—Conducting Polymers as Chemiresistive Gas Sensing Materials: A Review. J. Electrochem. Soc. 2019, 167, 037503.Wong, Y.; Ang, B.; Haseeb, A.; Baharuddin, A.; Wong, Y.; Conducting Polymers as Chemiresistive Gas Sensing Materials: A Review. J. Electrochem. Soc. 2019, 167, 037503, 10.1149/2.0032003jes.
  8. Husain, A.; Ahmad, S.; Mohammad, F. Synthesis, Characterisation and Ethanol Sensing Application of Polythiophene/Graphene Nanocomposite. Mater. Chem. Phys. 2020, 239, 122324.Husain, A.; Ahmad, S.; Mohammad, F; Synthesis, Characterisation and Ethanol Sensing Application of Polythiophene/Graphene Nanocomposite. Mater. Chem. Phys. 2020, 239, 122324, 10.1016/j.matchemphys.2019.122324.
  9. Guo, Z.; Liao, N.; Zhang, M.; Feng, A. Enhanced Gas Sensing Performance of Polyaniline Incorporated with Graphene: A First-Principles Study. Phys. Lett. A 2019, 383, 2751–2754.Guo, Z.; Liao, N.; Zhang, M.; Feng, A.; Enhanced Gas Sensing Performance of Polyaniline Incorporated with Graphene: A First-Principles Study.. Phys. Lett. A 2019, 383, 2751, 10.1016/j.physleta.2019.03.045.
  10. Reddeppa, M.; Chandrakalavathi, T.; Park, B.; Murali, G.; Siranjeevi, R.; Nagaraju, G.; Su Yu, J.; Jayalakshmi, R.; Kim, S.; Kim, M. UV-Light Enhanced CO Gas Sensors Based on Ingan Nanorods Decorated With P-Phenylenediamine-Graphene Oxide Composite. Sens. Actuators B Chem. 2020, 307, 127649.10. Reddeppa, M.; Chandrakalavathi, T.; Park, B.; Murali, G.; Siranjeevi, R.; Nagaraju, G.; Su Yu, J.; Jayalakshmi, R.; Kim, S.; Kim, M.; et al. UV-Light Enhanced CO Gas Sensors Based on Ingan Nanorods Decorated With P-Phenylenediamine-Graphene Oxide Com-posite. Sens. Actuators B Chem. 2020, 307, 127649, 10.1016/j.snb.2019.127649.
  11. Harraz, F.; Faisal, M.; Jalalah, M.; Almadiy, A.; Al-Sayari, S.; Al-Assiri, M. Conducting Polythiophene/A-Fe2O3 Nanocomposite for Efficient Methanol Electrochemical Sensor. Appl. Surf. Sci. 2020, 508, 145226.Harraz, F.; Faisal, M.; Jalalah, M.; Almadiy, A.; Al-Sayari, S.; Al-Assiri, M.; Conducting Polythiophene/Α-Fe2O3 Nanocomposite for Efficient Methanol Electrochemical Sensor. Appl. Surf. Sci. 2020, 508, 145226, 10.1016/j.apsusc.2019.145226.
  12. Choi, J.; Hwang, I.; Kim, S.; Park, J.; Park, S.; Jeong, U.; Kang, Y.; Lee, J. Design of Selective Gas Sensors Using Electrospun Pd-Doped SnO2 Hollow Nanofibers. Sens. Actuators B Chem. 2010, 150, 191–199.12. Choi, J.; Hwang, I.; Kim, S.; Park, J.; Park, S.; Jeong, U.; Kang, Y.; Lee, J.; Design of Selective Gas Sensors Using Electrospun Pd-Doped SnO2 Hollow Nanofibers. . Sens. Actuators B Chem 2010, 150, 191, 10.1016/j.snb.2010.07.013.
  13. Wang, C.; Yin, L.; Zhang, L.; Xiang, D.; Gao, R. Metal Oxide Gas Sensors: Sensitivity and Influencing Factors. Sensors 2010, 10, 2088–2106.Wang, C.; Yin, L.; Zhang, L.; Xiang, D.; Gao, R.; Metal Oxide Gas Sensors: Sensitivity and Influencing Factors. Sensors 2010, 10, 2088, 10.3390/s100302088.
  14. Kim, H.; Lee, J. Highly Sensitive and Selective Gas Sensors Using P-Type Oxide Semiconductors: Overview. Sens. Actuators B Chem. 2014, 192, 607–627.Kim, H.; Lee, J.; Highly Sensitive and Selective Gas Sensors Using P-Type Oxide Semiconductors: Overview. Sens. Actuators B Chem. 2014, 192, 607, 10.1016/j.snb.2013.11.005.
  15. Patil, D.; Patil, P.; Subramanian, V.; Joy, P.; Potdar, H. Highly Sensitive and Fast Responding CO Sensor Based on Co3O4 Nanorods. Talanta 2010, 81, 37–43.Patil, D.; Patil, P.; Subramanian, V.; Joy, P.; Potdar, H.; Highly Sensitive and Fast Responding CO Sensor Based on Co3O4 Nanorods. Talanta 2010, 81, 37, 10.1016/j.talanta.2009.11.034.
  16. Dou, Z.; Cao, C.; Chen, Y.; Song, W. Fabrication of Porous Co3O4 nanowires with High CO Sensing Performance at A Low Operating Temperature. Chem. Commun. 2014, 50, 14889–14891.Dou, Z.; Cao, C.; Chen, Y.; Song, W.; Fabrication of Porous Co3O4 nanowires with High CO Sensing Performance at A Low Operating Temperature. Chem. Commun. 2014, 50, 14889, 10.1039/c4cc05498a.
  17. Zhang, X.; Wang, J.; Xuan, L.; Zhu, Z.; Pan, Q.; Shi, K.; Zhang, G. Novel Co3O4 Nanocrystalline Chain Material as A High Performance Gas Sensor at Room Temperature. J. Alloy. Compd. 2018, 768, 190–197.17. Zhang, X.; Wang, J.; Xuan, L.; Zhu, Z.; Pan, Q.; Shi, K.; Zhang, G.; Novel Co3O4 Nanocrystalline Chain Material as A High Performance Gas Sensor at Room Temperature. J. Alloys Compd. 2018, 768, 190, 10.1016/j.jallcom.2018.07.240.
  18. Tan, J.; Dun, M.; Li, L.; Zhao, J.; Tan, W.; Lin, Z.; Huang, X. Synthesis of Hollow and Hollowed-Out Co3O4 Microspheres Assembled by Porous Ultrathin Nanosheets For Ethanol Gas Sensors: Responding and Recovering in One Second. Sens. Actuators B Chem. 2017, 249, 44–52.Tan, J.; Dun, M.; Li, L.; Zhao, J.; Tan, W.; Lin, Z.; Huang, X.; Synthesis of Hollow and Hollowed-Out Co3O4 Microspheres Assembled by Porous Ultrathin Nanosheets For Ethanol Gas Sensors: Responding and Recovering in One Second.. Sens. Actuators B Chem. 2017, 249, 44, 10.1016/j.snb.2017.04.063.
  19. Tan, W.; Tan, J.; Li, L.; Dun, M.; Huang, X. Nanosheets-Assembled Hollowed-Out Hierarchical Co3O4 Microrods For Fast Response/Recovery Gas Sensor. Sens. Actuators B Chem. 2017, 249, 66–75.Tan, W.; Tan, J.; Li, L.; Dun, M.; Huang, X.; Nanosheets-Assembled Hollowed-Out Hierarchical Co3O4 Microrods For Fast Response/Recovery Gas Sensor.. Sens. Actuators B Chem. 2017, 249, 66, 10.1016/j.snb.2017.04.068.
  20. Yuan, Y.; Wang, Y.; He, X.; Chen, M.; Liu, J.; Liu, B.; Zhao, H.; Liu, S.; Yang, H. Increasing Gas Sensitivity of Co3O4 Octahedra by Tuning Co-Co3O4 (111) Surface Structure and Sensing Mechanism of 3-Coordinated Co Atom as An Active Center. J. Mater. Sci.: Mater. Electron. 2020, 31, 8852–8864.20. Yuan, Y.; Wang, Y.; He, X.; Chen, M.; Liu, J.; Liu, B.; Zhao, H.; Liu, S.; Yang, H; . Increasing Gas Sensitivity of Co3O4 Octahedra by Tuning Co-Co3O4 (111) Surface Structure and Sensing Mechanism of 3-Coordinated Co Atom as An Active Center. . J. Mater. Sci.: Mater. Electron. 2020, 31, 8852, 10.1007/s10854-020-03420-9.
  21. Zhou, Q.; Zeng, W. Shape Control of Co3O4 Micro-Structures for High-Performance Gas Sensor. Phys. E Low Dimens. Syst. Nanostruct. 2018, 95, 121–124.Zhou, Q.; Zeng, W.; Shape Control of Co3O4 Micro-Structures for High-Performance Gas Sensor. . Phys. E Low Dimens. Syst. Nanostruct. 2018, 95, 121, 10.1016/j.physe.2017.09.009.
  22. Xu, K.; Yu, X.; Zhao, W.; Zeng, W. Density-Dependent of Gas-Sensing Properties of Co3O4 Nanowire Arrays. Phys. E Low Dimens. Syst. Nanostruct. 2020, 118, 113956.Xu, K.; Yu, X.; Zhao, W.; Zeng, W.; Density-Dependent of Gas-Sensing Properties of Co3O4 Nanowire Arrays. . Phys. E Low Dimens. Syst. Nanostruct. 2020, 118, 113956, 10.1016/j.physe.2020.113956.
  23. Kozlovskiy, A.; Zdorovets, M. The Study of The Structural Characteristics and Catalytic Activity of Co/CoCo2O4 Nanowires. Compos. B. Eng. 2020, 191, 107968.Kozlovskiy, A.; Zdorovets, M.; The Study of The Structural Characteristics and Catalytic Activity of Co/CoCo2O4 Nanowires. Compos. B. Eng. 2020, 191, 107968, 10.1016/j.compositesb.2020.107968.
  24. Nguyen, H.; El-Safty, S. Meso and Macroporous Co3O4 Nanorods for Effective VOC Gas Sensors. J. Phys. Chem. C 2011, 115, 8466–8474.Nguyen, H.; El-Safty, S.; Meso and Macroporous Co3O4 Nanorods for Effective VOC Gas Sensors. . J. Phys. Chem. C 2011, 115, 8466, 10.1021/jp1116189.
  25. Wen, Z.; Zhu, L.; Mei, W.; Hu, L.; Li, Y.; Sun, L.; Cai, H.; Ye, Z. Rhombus-Shaped Co3O4 Nanorod Arrays for High-Performance Gas Sensor. Sens. Actuators B Chem. 2013, 186, 172–179.Wen, Z.; Zhu, L.; Mei, W.; Hu, L.; Li, Y.; Sun, L.; Cai, H.; Ye, Z; Rhombus-Shaped Co3O4 Nanorod Arrays for High-Performance Gas Sensor. Sens. Actuators B Chem. 2013, 186, 172, 10.1016/j.snb.2013.05.093.
  26. Wang, S.; Cao, J.; Cui, W.; Fan, L.; Li, X.; Li, D.; Zhang, T. One-Dimensional Porous Co3O4 Rectangular Rods for Enhanced Acetone Gas Sensing Properties. Sens. Actuators B Chem. 2019, 297, 126746.Wang, S.; Cao, J.; Cui, W.; Fan, L.; Li, X.; Li, D.; Zhang, T.; One-Dimensional Porous Co3O4 Rectangular Rods for Enhanced Acetone Gas Sensing Properties. Sens. Actuators B Chem 2019, 297, 126746, 10.1016/j.snb.2019.126746.
  27. Wang, L.; Deng, J.; Lou, Z.; Zhang, T. Nanoparticles-Assembled Co3O4 Nanorods P-Type Nanomaterials: One-Pot Synthesis and Toluene-Sensing Properties. Sens. Actuators B Chem. 2014, 201, 1–6.Wang, L.; Deng, J.; Lou, Z.; Zhang, T.; Nanoparticles-Assembled Co3O4 Nanorods P-Type Nanomaterials: One-Pot Synthesis and Toluene-Sensing Properties. . Sens. Actuators B Chem. 2014, 201, 1, 10.1016/j.snb.2014.04.074.
  28. Vetter, S.; Haffer, S.; Wagner, T.; Tiemann, M. Nanostructured Co3O4 as a CO Gas Sensor: Temperature-Dependent Behavior. Sens. Actuators B Chem. 2015, 206, 133–138.Vetter, S.; Haffer, S.; Wagner, T.; Tiemann, M; Nanostructured Co3O4 as a CO Gas Sensor: Temperature-Dependent Behavior. Sens. Actuators B Chem 2015, 206, 133, 10.1016/j.snb.2014.09.025.
  29. Jiang, R.; Jia, L.; Guo, X.; Zhao, Z.; Du, J.; Wang, X.; Wang, P.; Xing, F. Dimethyl Sulfoxide-Assisted Hydrothermal Synthesis of Co3O4-Based Nanorods For Selective and Sensitive Diethyl Ether Sensing. Sens. Actuators B Chem. 2019, 290, 275–284.Jiang, R.; Jia, L.; Guo, X.; Zhao, Z.; Du, J.; Wang, X.; Wang, P.; Xing, F.; Dimethyl Sulfoxide-Assisted Hydrothermal Synthesis of Co3O4-Based Nanorods For Selective and Sensitive Diethyl Ether Sensing. Sens. Actuators B Chem. 2019, 290, 275, 10.1016/j.snb.2019.03.136.
  30. Deng, S.; Liu, X.; Chen, N.; Deng, D.; Xiao, X.; Wang, Y. A Highly Sensitive VOC Gas Sensor Using P-Type Mesoporous Co3O4 Nanosheets Prepared by A Facile Chemical Coprecipitation Method. Sens. Actuators B Chem. 2016, 233, 615–623.Deng, S.; Liu, X.; Chen, N.; Deng, D.; Xiao, X.; Wang, Y.; Highly Sensitive VOC Gas Sensor Using P-Type Mesoporous Co3O4 Nanosheets Prepared by A Facile Chemical Coprecipita-tion Method. Sens. Actuators B Chem. 2016, 233, 615, 10.1016/j.snb.2016.04.138.
  31. Zhang, Z.; Wen, Z.; Ye, Z.; Zhu, L. Gas Sensors Based on Ultrathin Porous Co3O4 Nanosheets to Detect Acetone at Low Temperature. RSC Adv. 2015, 5, 59976–59982.Zhang, Z.; Wen, Z.; Ye, Z.; Zhu, L.; Gas Sensors Based on Ultrathin Porous Co3O4 Nanosheets to Detect Acetone at Low Temperature. RSC Adv. 2015, 5, 59976, 10.1039/c5ra08536e.
  32. Lü, Y.; Zhan, W.; He, Y.; Wang, Y.; Kong, X.; Kuang, Q.; Xie, Z.; Zheng, L. MOF-Templated Synthesis of Porous Co3O4 Concave Nanocubes with High Specific Surface Area and Their Gas Sensing Properties. ACS Appl. Mater. Interfaces 2014, 6, 4186–4195.Lü, Y.; Zhan, W.; He, Y.; Wang, Y.; Kong, X.; Kuang, Q.; Xie, Z.; Zheng, L.; MOF-Templated Synthesis of Porous Co3O4 Concave Nanocubes with High Specific Surface Area and Their Gas Sensing Properties. ACS Appl. Mater. Interfaces 2014, 6, 4186, 10.1021/am405858v.
  33. Cao, J.; Wang, S.; Zhao, X.; Xing, Y.; Li, J.; Li, D. Facile synthesis and enhanced toluene gas sensing performances of Co3O4 hollow nanosheets. Mater. Lett. 2020, 263, 127215.Wen, Z.; Zhu, L.; Li, Y.; Zhang, Z.; Ye, Z; Mesoporous Co3O4 Nanoneedle Arrays for High-Performance Gas Sensor12. Sens. Actuators B Chem. 2020, 263, 127215, 10.1016/j.snb.2014.06.124.
  34. Wen, Z.; Zhu, L.; Li, Y.; Zhang, Z.; Ye, Z. Mesoporous Co3O4 Nanoneedle Arrays for High-Performance Gas Sensor. Sens. Actuators B Chem. 2014, 203, 873–879.Wen, Z.; Zhu, L.; Li, Y.; Zhang, Z.; Ye, Z.; Mesoporous Co3O4 Nanoneedle Arrays for High-Performance Gas Sensor. Sens. Actuators B Chem. 2014, 203, 873, 10.1016/j.snb.2014.06.124.
  35. Park, J.; Shen, X.; Wang, G. Solvothermal Synthesis and Gas-Sensing Performance of Co3O4 Hollow Nanospheres. Sens. Actuators B Chem. 2009, 136, 494–498.Park, J.; Shen, X.; Wang, G.; Solvothermal Synthesis and Gas-Sensing Performance of Co3O4 Hollow Nanospheres. Sens. Actuators B Chem. 2009, 136, 467, 10.1016/j.snb.2008.11.041.
  36. Shen, S.; Xu, M.; Lin, D.; Pan, H. The Growth of Urchin-Like Co3O4 Directly on Sensor Substrate and Its Gas Sensing Properties. Appl. Surf. Sci. 2017, 396, 327–332.Shen, S.; Xu, M.; Lin, D.; Pan, H.; The Growth of Urchin-Like Co3O4 Directly on Sensor Substrate and Its Gas Sensing Properties. Appl. Surf. Sci 2017, 396, 327, 10.1016/j.apsusc.2016.10.147.
  37. Li, C.; Yin, X.; Wang, T.; Zeng, H. Morphogenesis of Highly Uniform CoCo3 Submicrometer Crystals and Their Conversion to Mesoporous for Gas-Sensing Applications. Chem. Mater. 2009, 21, 4984–4992.Li, C.; Yin, X.; Wang, T.; Zeng, H; Morphogenesis of Highly Uniform CoCo3 Submicrometer Crystals and Their Conversion to Mesoporous for Gas-Sensing Ap-plications. Chem. Mater. 2009, 21, 4984, 10.1021/cm902126w.
  38. Deng, S.; Chen, N.; Deng, D.; Li, Y.; Xing, X.; Wang, Y. Meso and Macroporous Coral-Like Co3O4 for VOCs Gas Sensor. Ceram. Int. 2015, 41, 11004–11012.Deng, S.; Chen, N.; Deng, D.; Li, Y.; Xing, X.; Wang, Y; Meso and Macroporous Coral-Like Co3O4 for VOCs Gas Sensor. Sensor. Ceram. Int. 2015, 41, 11004, 10.1016/j.ceramint.2015.05.045.
  39. Lee, J. Gas Sensors Using Hierarchical and Hollow Oxide Nanostructures: Overview. Sens. Actuators B Chem. 2009, 140, 319–336.Lee, J.; Gas Sensors Using Hierarchical and Hollow Oxide Nanostructures: Overview. Sens. Actuators B Chem 2009, 140, 319, Sens. Actuators B Chem.
  40. Xu, J.; Zhang, Y.; Chen, Y.; Xiang, Q.; Pan, Q.; Shi, L. Uniform ZnO Nanorods Can be Used to Improve the Response of ZnO Gas Sensor. Mater. Sci. Eng. B 2008, 150, 55–60.Xu, J.; Zhang, Y.; Chen, Y.; Xiang, Q.; Pan, Q.; Shi, L.; Uniform ZnO Nanorods Can be Used to Improve the Response of ZnO Gas Sensor. Mater. Sci. Eng. B 2008, 150, 55, 10.1016/j.mseb.2008.01.010.
  41. Xu, J.; Wang, D.; Qin, L.; Yu, W.; Pan, Q. SnO2 Nanorods and Hollow Spheres: Controlled Synthesis and Gas Sensing Properties. Sens. Actuators B Chem. 2009, 137, 490–495.Xu, J.; Wang, D.; Qin, L.; Yu, W.; Pan, Q.; SnO2 Nanorods and Hollow Spheres: Controlled Synthesis and Gas Sensing Properties. Sens. Actuators B Chem 2009, 137, 490, 10.1016/j.snb.2009.01.011.
  42. Wang, L.; Song, S.Y.; Hong, B.; Xu, J.C.; Han, Y.B.; Jin, H.X.; Jin, D.F.; Li, J.; Yang, Y.T.; Peng, X.L.; et al. Highly improved toluene gas-sensing performance of mesoporous Co3O4 nanowires and physical mechanism. Mater. Res. Bull 2021, 140, 111329.Wang, L.; Song, S.Y.; Hong, B.; Xu, J.C.; Han, Y.B.; Jin, H.X.; Jin, D.F.; Li, J.; Yang, Y.T.; Peng, X.L.; et al. Highly improved toluene gas-sensing performance of mesoporous Co3O4 nanowires and physical mechanism. Mater. Res. Bull 2021, 140, 111329, 10.1016/j.materresbull.2021.111329.
  43. Qiao, X.; Ma, C.; Chang, X.; Li, X.; Li, K.; Zhu, L.; Xia, F.; Xue, Q. 3D radial Co3O4 nanorod cluster derived from cobalt-based layered hydroxide metal salt for enhanced trace acetone detection. Sens. Actuators B Chem. 2021, 324, 128926.Qiao, X.; Ma, C.; Chang, X.; Li, X.; Li, K.; Zhu, L.; Xia, F.; Xue, Q; 3D radial Co3O4 nanorod cluster derived from cobalt-based layered hydroxide metal salt for enhanced trace acetone detec-tion. Sens. Actuators B Chem 2021, 324, 128926, 10.1016/ j.snb.2020.128926.
  44. Xu, J.; Cheng, J. The Advances of Co3O4 as Gas Sensing Materials: A Review. J. Alloy. Compd. 2016, 686, 753–768.Xu, J.; Cheng, J.; The Advances of Co3O4 as Gas Sensing Materials: A Review. J. Alloys Compd. 2016, 686, 753, 10.1016/j.jallcom.2016.06.086.
  45. Chen, J.; Wu, X.; Selloni, A. Electronic structure and bonding properties of cobalt oxide in the spinel structure. Phys. Rev. B. 2011, 83, 245204.Kaur, N.; Singh, M.; Moumen, A.; Duina, G.; Comini, E; 1D Titanium Dioxide: Achievements in Chemical Sensing. Materials 2020, 13, 2974, 10.3390/ma13132974.
  46. Kaur, N.; Singh, M.; Moumen, A.; Duina, G.; Comini, E. 1D Titanium Dioxide: Achievements in Chemical Sensing. Materials 2020, 13, 2974.Barsan, N.; Simion, C.; Heine, T.; Pokhrel, S.; Weimar, U; Modeling of Sensing and Transduction for P-Type Semiconducting Metal Oxide Based Gas Sensors. J. Electroceram 2009, 25, 11, 10.1007/s10832-009-9583-x.
  47. Bagga, S.; Akhtar, J.; Mishra, S. Synthesis and Applications of ZnO Nanowire: A Review. AIP Conf. Proc. 2018, 1989, 020004.Feng, Q.; Li, X.; Wang, J.; Gaskov, A.; Reduced Graphene Oxide (RGO) Encapsulated Co3O4 Composite Nanofibers for Highly Selective Ammonia Sensors. Sensor actuat. B-chem 2016, 2222, 864, 10.1016/j.snb.2015.09.021.
  48. Moseley, P. Progress in the Development of Semiconducting Metal Oxide Gas Sensors: A Review. Meas. Sci. Technol. 2017, 28, 082001.Thungon, P.; Kakoti, A.; Ngashangva, L.; Goswami, P; Advances in Developing Rapid, Reliable and Portable Detection Systems for Alcohol. Biosens. Bioelectron 2017, 97, 83, 10.1016/j.bios.2017.05.041.
  49. Barsan, N.; Simion, C.; Heine, T.; Pokhrel, S.; Weimar, U. Modeling of Sensing and Transduction for P-Type Semiconducting Metal Oxide Based Gas Sensors. J. Electroceram. 2009, 25, 11–19.Mirzaei, A.; Janghorban, K.; Hashemi, B.; Bonyani, M.; Leonardi, S.; Neri, G.; Highly Stable and Selective Ethanol Sensor Based on Α-Fe2O3 Nanoparticles Prepared by Pechini Sol–Gel Method. Ceram. Int. 2016, 42, 6136, 10.1016/j.ceramint.2015.12.176.
  50. Barsan, N.; Weimar, U. Conduction Model of Metal Oxide Gas Sensors. J. Electroceram. 2001, 7, 143–167.Yoon, J.; Choi, J.; Lee, J.; . Design of a Highly Sensitive and Selective C2H5OH Sensor Using P-Type Co3O4 Nanofibers. Sens. Actuators B Chem. 2012, 161, 570, 10.1016/j.snb.2011.11.002.
  51. Mijatovic, D.; Eijkel, J.; van den Berg, A. Technologies for Nanofluidic Systems: Top-Down vs. Bottom-Up—A Review. Lab Chip 2005, 5, 492.Cao, J.; Wang, S.; Zhang, H.; Zhang, T; Constructing One Dimensional Co3O4 Hierarchical Nanofibers as Efficient Sensing Materials for Rapid Acetone Gas Detec-tion. J. Alloys Compd 2019, 799, 513, 10.1016/j.jallcom.2019.05.356.
  52. Cao, J.; Wang, S.; Zhang, H.; Zhang, T. Constructing One Dimensional Co3O4 Hierarchical Nanofibers as Efficient Sensing Materials for Rapid Acetone Gas Detection. J. Alloy. Compd. 2019, 799, 513–520.
  53. Deng, J.; Zhang, R.; Wang, L.; Lou, Z.; Zhang, T. Enhanced Sensing Performance of The Co3O4 Hierarchical Nanorods To NH3 Gas. Sens. Actuators B Chem. 2015, 209, 449–455.
  54. George, G.; Anandhan, S. Tuning Characteristics of Co3O4 Nanofiber Mats Developed for Electrochemical Sensing of Glucose and H2O2. Thin Solid Films 2016, 610, 48–57.
  55. Sun, C.; Su, X.; Xiao, F.; Niu, C.; Wang, J. Synthesis of Nearly Monodisperse Co3O4 Properties. Sens. Actuators B Chem. 2011, 157, 681–685.
  56. Xu, K.; Zou, J.; Tian, S.; Yang, Y.; Zeng, F.; Yu, T.; Zhang, Y.; Jie, X.; Yuan, C. Single-Crystalline Porous Nanosheets Assembled Hierarchical Co3O4 Microspheres for Enhanced Gas-Sensing Properties to Trace Xylene. Sens. Actuators B Chem. 2017, 246, 68–77.
  57. Feng, S.; Li, G. Hydrothermal and Solvothermal Syntheses. In Modern Inorganic Synthetic Chemistry, 2nd ed.; Xu, R., Xu, R., Eds.; John Fedor: Cambridge, CA, USA, 2017; pp. 73–104.
  58. Wang, X.; Hu, A.; Meng, C.; Wu, C.; Yang, S.; Hong, X. Recent Advance in Co3O4 and Co3O4-Containing Electrode Materials for High-Performance Supercapacitors. Molecules 2020, 25, 269.
  59. Jeong, H.; Kim, H.; Rai, P.; Yoon, J.; Lee, J. Cr-Doped Co3O4 Nanorods as Chemiresistor for Ultraselective Monitoring of Methyl Benzene. Sens. Actuators B Chem. 2014, 201, 482–489.
  60. Koo, A.; Yoo, R.; Woo, S.; Lee, H.; Lee, W. Enhanced Acetone-Sensing Properties of Pt-Decorated Al-Doped Zno Nanoparticles. Sens. Actuators B Chem. 2019, 280, 109–119.
  61. Bhardwaj, N.; Kundu, S. Electrospinning: A Fascinating Fiber Fabrication Technique. Biotechnol. Adv. 2010, 28, 325–347.
  62. Busacca, C.; Donato, A.; Lo Faro, M.; Malara, A.; Neri, G.; Trocino, S. CO Gas Sensing Performance of Electrospun Co3O4 Nanostructures at Low Operating Temperature. Sens. Actuators B Chem. 2020, 303, 127193.
  63. Yoon, J.; Kim, H.; Jeong, H.; Lee, J. Gas Sensing Characteristics of P-Type Cr2O3 and Co3O4 Nanofibers Depending on Inter-Particle Connectivity. Sens. Actuators B Chem. 2014, 202, 263–271.
  64. Shankar, P.; Bosco, J.; Rayappan, B. Gas sensing mechanism of metal oxides: The role of ambient atmosphere, type of semiconductor and gases—A review. Sci. Jet 2015, 4, 126.
  65. Yoon, J.; Choi, J.; Lee, J. Design of a Highly Sensitive and Selective C2H5OH Sensor Using P-Type Co3O4 Nanofibers. Sens. Actuators B Chem. 2012, 161, 570–577.
  66. Choi, S.; Ryu, W.; Kim, S.; Cho, H.; Kim, I. Bi-Functional Co-Sensitization of Graphene Oxide Sheets and Ir Nanoparticles on P-Type Co3O4 Nanofibers for Selective Acetone Detection. J. Mater. Chem. B 2014, 2, 7160–7167.
  67. Qu, F.; Feng, C.; Li, C.; Li, W.; Wen, S.; Ruan, S.; Zhang, H. Preparation and Xylene-Sensing Properties of Co3O4 nanofibers. Int. J. Appl. Ceram. Technol. 2013, 11, 619–625.
  68. Shin, J.; Choi, S.; Youn, D.; Kim, I. Exhaled Vocs Sensing Properties of WO3 Nanofibers Functionalized by Pt and IrO2 Nanoparticles for Diagnosis of Diabetes and Halitosis. J. Electroceramics 2012, 29, 106–116.
  69. Brugha, R.; Edmondson, C.; Davies, J. Outdoor Air Pollution and Cystic Fibrosis. Paediatr. Respir. Rev. 2018, 28, 80–86.
  70. Mirzaei, A.; Lee, J.; Majhi, S.; Weber, M.; Bechelany, M.; Kim, H.; Kim, S. Resistive Gas Sensors Based on Metal-Oxide Nanowires. J. Appl. Phys. 2019, 126, 241102.
  71. Feng, Q.; Li, X.; Wang, J.; Gaskov, A. Reduced Graphene Oxide (RGO) Encapsulated Co3O4 Composite Nanofibers for Highly Selective Ammonia Sensors. Sens. Actuators B Chem. 2016, 222, 864–870.
  72. Wang, M.; Zhu, Y.; Meng, D.; Wang, K.; Wang, C. A Novel Room Temperature Ethanol Gas Sensor Based on 3D Hierarchical Flower-Like TiO2 Microstructures. Mater. Lett. 2020, 277, 128372.
  73. Thungon, P.; Kakoti, A.; Ngashangva, L.; Goswami, P. Advances in Developing Rapid, Reliable and Portable Detection Systems for Alcohol. Biosens. Bioelectron. 2017, 97, 83–99.
  74. Mirzaei, A.; Janghorban, K.; Hashemi, B.; Bonyani, M.; Leonardi, S.; Neri, G. Highly Stable and Selective Ethanol Sensor Based on A-Fe2O3 Nanoparticles Prepared by Pechini Sol–Gel Method. Ceram. Int. 2016, 42, 6136–6144.
  75. Deng, C.; Zhang, J.; Yu, X.; Zhang, W.; Zhang, X. Determination of acetone in human breath by gas chromatography–mass spectrometry and solid-phase microextraction with on-fiber derivatization. J. Chromatogr. B 2004, 810, 269–275.
  76. Ma, H.; Xu, Y.; Rong, Z.; Cheng, X.; Gao, S.; Zhang, X.; Zhao, H.; Huo, L. Highly Toluene Sensing Performance Based on Monodispersed Cr2O3 Porous Microspheres. Sens. Actuators B Chem. 2012, 174, 325–331.
  77. Kwak, D.; Lei, Y.; Maric, R. Ammonia gas sensors: A comprehensive review. Talanta 2019, 204, 713–730.
  78. National Research Council. Acute Exposure Guideline Levels for Selected Airborne Chemicals; National Academies Press: Washington, DC, USA, 2008; Volume 6.
  79. Balamurugan, C.; Lee, D. A Selective NH3 Gas Sensor Based on Mesoporous P-Type NiV2O6 Semiconducting Nanorods Synthesized Using Solution Method. Sens. Actuators B Chem. 2014, 192, 414–422.
  80. Sun, M.; Yu, H.; Dong, X.; Xia, L.; Yang, Y. Sedum Lineare Flower-Like Ordered Mesoporous In2O3/Zno Gas Sensing Materials with high Sensitive Response to H2S at Room Temperature Prepared by Self-Assembled of 2D Nanosheets. J. Alloy. Compd. 2020, 844, 156170.
  81. Zhong, K.; Chen, L.; Yan, X.; Tang, Y.; Hou, S.; Li, X.; Tang, L. Dual-Functional Multi-Application Probe: Rapid Detection of H2S And Colorimetric Recognition of HSO3—In Food and Cell. Dyes Pigments 2020, 182, 108656.
  82. Quang, P.; Cuong, N.; Hoa, T.; Long, H.; Hung, C.; Le, D.; Hieu, N. Simple Post-Synthesis of Mesoporous P-Type Co3O4 Nanochains for Enhanced H2S Gas Sensing Performance. Sens. Actuators B Chem. 2018, 270, 158–166.
  83. Song, M.; Choi, J.; Jeong, H.; Song, K.; Jeon, S.; Cha, J.; Baeck, S.; Shim, S.; Qian, Y. A Comprehensive Study of Various Amine-Functionalized Graphene Oxides for Room Temperature Formaldehyde Gas Detection: Experimental and Theoretical Approaches. Appl. Surf. Sci. 2020, 529, 147189.
  84. Zhu, L.; Wang, J.; Liu, J.; Nasir, M.; Zhu, J.; Li, S.; Liang, J.; Yan, W. Smart Formaldehyde Detection Enabled by Metal Organic Framework-Derived Doped Electrospun Hollow Nanofibers. Sens. Actuators B Chem. 2021, 326, 128819.
  85. Wang, S.; Xiao, C.; Wang, P.; Li, Z.; Xiao, B.; Zhao, R.; Yang, T.; Zhang, M. Co3O4 Hollow Nanotubes: Facile Synthesis and Gas Sensing Properties. Mater. Lett. 2014, 137, 289–292.
  86. Bai, S.; Liu, H.; Sun, J.; Tian, Y.; Luo, R.; Li, D.; Chen, A. Mechanism of enhancing the formaldehyde sensing properties of Co3O4via Ag modification. RSC Adv. 2015, 5, 48619–48625.
  87. Hurtado, I.D.; Chávarri, J.G.; Morandi, S.; Samà, J.; Rodríguez, A.R.; Castaño, E.; Mandayo, G.G. Formaldehyde sensing mechanism of SnO2 nanowires grown on-chip by sputtering techniques. RSC Adv. 2016, 6, 18558–18566.
  88. Yang, X.; Yu, Q.; Zhang, S.; Sun, P.; Lu, H.; Yan, X.; Liu, F.; Zhou, X.; Liang, X.; Gao, Y.; et al. Highly sensitive and selective triethylamine gas sensor based on porous SnO2/Zn2SnO4 composites. Sens. Actuators B Chem. 2018, 266, 213–220.
  89. Alali, K.; Liu, J.; Moharram, D.; Liu, Q.; Yu, J.; Chen, R.; Li, R.; Wang, J. Fabrication of Electrospun Co3O4/CuO P-P Heterojunctions Nanotubes Functionalized with HFIP for Detecting Chemical Nerve Agent Under Visible Light Irradiation. Sens. Actuators B Chem. 2020, 314, 128076.
  90. Gui, Y.; Tian, K.; Liu, J.; Yang, L.; Zhang, H.; Wang, Y. Superior Triethylamine Detection at Room Temperature By {-112} Faceted WO3 Gas Sensor. J. Hazard. Mater. 2019, 380, 120876.
More
Video Production Service