Post-herpetic neuralgia (PHN) is a very painful neuropathic condition, which occurs after nerve injury (e.g., demyelination, loss of axons, small-fiber-degeneration, reorganization in the dorsal horn of the spinal cord, and neuroplastic central changes) due to herpes-zoster-virus infection and is defined as a local neuropathic pain lasting for more than three months following the initial acute zoster infection. Adjunctive local BoNT A injection is a promising option for severe PHN, as a safe and effective therapy in long-term management for chronic neuropathic pain.
Post-herpetic neuralgia (PHN) is a very painful neuropathic condition. Frequently, the patient’s complaints are burning pain with rushing pain points and dynamic tactile allodynia. Severe PHN reduces QOL (Quality of Life) and often induces sleep disturbance [3][1]. Despite even escalated pharmacological treatment regimens including anticonvulsants, antidepressants, opioids, and local therapy with lidocaine or capsaicin, patients frequently suffer from severe side effects (especially in patients older than 50 years of age) lacking relevant pain relief. A widely accepted therapy goal with oral medication and/or local therapy strategies for PHN is to reduce the pain by about 30–50% [4,5,6,7,8][2][3][4][5][6].
After the first publication on the effect of BoNT A injection against pain due to dystonia by Brin et al. (1987), many studies showed positive effects on chronic pain, including spasticity-associated pain and neurogenic pain [9,10,11,12,13][7][8][9][10][11]. The evidence for the efficacy of BoNT A in neuropathic pain relief in humans was firstly presented by Klein in 2004 [14][12].
Several mechanisms of pain reduction by BoNT A injections have been discussed in the literature, assuming an inhibitory effect on the release of various inflammation-mediated substances (e.g., substance P, glutamate, calcitonin gene-related peptide). This inhibitory effect is mediated by blocking exocytosis by BoNT A, acting via SNAP-25 cleaving [9,10,11,12,13][7][8][9][10][11]. The mechanisms mediating the toxin effects on sensory fibers and nociceptors and on the autonomic system are assumed to be mediated in the same way [15][13]. It was shown that BoNT A leads to a deactivation of sodium channel conductance in cell cultures of central and peripheral neurons [16][14]. In addition, BoNT A inhibits afferents to muscle spindles, reduces sympathetic signal transmission, and, at least, leads to µreceptor-mediated pain relief at the spinal level [17,18,19][15][16][17]. In 2008, Antonucci et al. suggested that central effects of peripherally applied BoNT A might be due to retrograde transport of the toxin or, alternatively, due to transcytosis leading to an inhibition of neurotransmitters release onto dorsal horn neurons [20][18]. Moreover, two recent animal studies showed, that BoNT A diminishes the CCI (chronic constriction injury)-induced level of IL-1β (interleukin-1β) and IL-18 within the spinal cord and/or the dorsal root ganglia and, in parallel, enhances the levels of the anti-nociceptive factors IL-1RA (IL-1-receptor antagonist) and IL-10. However, it is still unclear whether those BoNT A actions are mediated locally or indirectly from distant sites. Another recent in-vitro study by Piotrowska (2017) showed new light on the analgesic effect of BoNT A as they suggested a toll-like receptor (TLR2) mediated inhibition of both intracellular signaling pathways and release of pro-inflammatory substance cultured rat neocortical microglial cells [23][19]. Inhibitory effects of BoNT A were also found on G-proteins and prostaglandin synthase COX-2 (cyclooxygenase-2), the latter known to activate the proinflammatory cytokine Interleukin-1 (IL-1) [24,25][20][21]. On that basis, Rojewska et al. (2018) suggested that BoNT A not only exerts its analgesic action directly neuronal but also indirectly via modulating microglial-astrocytic-neuronal crosstalk on the spinal level. In summary, non-neuronal cells are one of the targets of the pain-modulating BoNT A action and have to be taken into account in the context of neuropathic pain treatment [4][2]. However, the detailed and widely accepted mechanism of BoNT A’s effects against neuropathic pain remains elusive and is still under debate. The positive effect of BoNT A on PHN at the clinical aspect is nevertheless clearly proven lacking data for long-term efficacy and safety. The local BoNT A treatment of PHN is still an “off-label” option without reimbursement of the drug, at least in Germany and other European countries.
Botulinumtoxin A seems to be a good option for long-term management in severe PHN, inducing significant pain reduction (up to 30–50% VAS reduction) for up to 3–4 months per injection cycle. It is difficult to reach such distinct effects by classical oral medication and/or local anesthetic therapies.
Adding intra-/subcutaneous BoNT A injections to standard oral medication is more helpful for pain reduction in severe PHN, especially in cases with non-response or non-tolerance of oral medication. There are no differences in both efficacy and safety of the different available BoNT A products and injection techniques (intra- or subcutaneous), respectively. It seems that a longer duration of pain reduction will be achieved by more injection points per session. In the case of ona- and incobotulinumtoxin A, the doses of 5–10 IU per injection point are recommended. The injection interval can be decided individually however, as in the proven range of BoNT A efficacy between 10 and 14 weeks.