Antifungal Essential Oils of Lamiaceae: Comparison
Please note this is a comparison between Version 2 by Vivi Li and Version 1 by Tomasz M. Karpinski.

The incidence of fungal infections has been steadily increasing in recent years. Systemic mycoses are characterized by the highest mortality. At the same time, the frequency of infections caused by drug-resistant strains and new pathogens e.g., Candida auris increases. An alternative to medicines may be essential oils, which can have a broad antimicrobial spectrum. Rich in the essential oils are plants from the Lamiaceae family. 

  • Labiatae
  • fungi
  • Aspergillus
  • Cryptococcus
  • Penicillium
  • dermatophytes
  • β-caryophyllene
  • sesquiterpene
  • monoterpenes
  • minimal inhibitory concentration (MIC)

1. Introduction

Fungal infections belong to the most often diseases of humans. It is estimated that about 1.7 billion people (25% of the population) have skin, nail, and hair fungal infections [1]. The development of most of these infections is affected by dermatophytes, namely Trichophyton spp., Microsporum spp., and Epidermophyton  spp. [2]. Simultaneously, mucosal infections of the oral and genital tracts caused by Candida  spp. are very common. About 0.13 billion of women suffer from vulvovaginal candidiasis. On the other hand, oral candidiases are common in babies and denture wearers. Fungi also cause life-threatening systemic infections, with mortality reaching >1.6 million, which is >3-fold more than malaria [3]. Among life-threatening fungal infections prevail cryptococcosis (Cryptococcus neoformans) with >1,000,000 cases and mortality rate 20–70%, candidiasis (Candida albicans) with >400,000 cases and mortality rate 46–75%, pneumocystosis (Pneumocystis jirovecii) with >400,000 cases and mortality rate 20–80%, and aspergillosis (Aspergillus fumigatus) with >200,000 cases and mortality rate 30–95% [1,4,5][1][4][5]. In  Table 1 are presented diseases caused by some of the most often fungal pathogens among people.
Table 1.  Fungal pathogens of humans and most often observed mycoses (based on [6,7][6][7]).
Superficial mycoses
  • Hortae werneckii (Tinea nigra)
  • Malassezia furfur (Pityriasis versicolor)
  • Piedraia hortae (Black piedra)
  • Trichosporon spp. (White piedra)
Cutaneous and subcutaneous mycoses
  • Aspergillus spp. (Onychomycosis, Keratitis)
  • Candida spp. (Tinea pedis, Tinea cruris, Onychomycosis, Keratitis)
  • Chaetomium spp. (Subcutaneous phaeohyphomycosis)
  • Curvularia spp. (Subcutaneous phaeohyphomycosis)
  • Epidermophyton spp. (Tinea pedis, Tinea cruris, Onychomycosis)
  • Exophiala spp. (Chromoblastomycosis, Subcutaneous phaeohyphomycosis)
  • Fonsecaea spp. (Chromoblastomycosis)
  • Fusarium spp. (Onychomycosis, Keratitis, Eumycotic mycetoma)
  • Geotrichum spp. (Onychomycosis)
  • Microsporum spp. (Tinea corporis, Tinea capitis)
  • Phaeoacremonium spp. (Eumycotic mycetoma)
  • Phialophora spp. (Chromoblastomycosis, Subcutaneous phaeohyphomycosis)
  • Scopulariopsis brevicaulis (Onychomycosis)
  • Sporothrix schenckii (Lymphocutaneous sporotrichosis)
  • Trichophyton spp. (Tinea pedis, Tinea corporis, Tinea cruris, Tinea capitis, Onychomycosis)
  • Trichosporon spp. (Onychomycosis)
Endemic mycoses
  • Blastomyces dermatitidis (Blastomycosis)
  • Histoplasma capsulatum (Histoplasmosis)
  • Coccidioides immitis/posadasii (Coccidioidomycosis)
  • Penicillium marneffei (Penicilliosis)
  • Paracoccidioides brasiliensis (Paracoccidioidomycosis)
Opportunistic mycoses
  • Acremonium spp. (Hyalohyphomycosis-cutaneous, disseminated infection)
  • Alternaria spp. (Phaeohyphomycosis-subcutaneous, sinusitis, disseminated infection)
  • Aspergillus spp. (Allergic reactions, Aspergillosis-nasal, sinusitis, bronchial, pulmonary, systemic dissemination)
  • Bipolaris spp. (Phaeohyphomycosis-subcutaneous, sinusitis, brain abscess)
  • Candida spp. (Candidiasis-superficial mucosal, cutaneous, widespread hematogenous distribution involving target organs)
  • Cryptococcus spp. (Cryptococcosis-cutaneous, pulmonary, meningitis)
  • Curvularia spp. (Phaeohyphomycosis-subcutaneous, sinusitis, disseminated infection)
  • Fusarium spp. (Hyalohyphomycosis-cutaneous, disseminated infection)
  • Lichtheimia spp. (Mucormycosis-cutaneous, invasive)
  • Mucor spp. (Mucormycosis-cutaneous, invasive)
  • Paecilomyces spp. (Hyalohyphomycosis-cutaneous, disseminated infection)
  • Pneumocystis jirovecii (Pneumocystosis-pneumonia, extrapulmonary manifestations)
  • Rhizomucor spp. (Mucormycosis-cutaneous, invasive)
  • Rhizopus spp. (Mucormycosis-cutaneous, invasive)
  • Scedosporium spp. (Hyalohyphomycosis-cutaneous, disseminated infection)
  • Trichosporon spp. (Trichosporonosis-invasive disease)
  • Wangiella spp. (Phaeohyphomycosis-subcutaneous, sinusitis, brain abscess)
The big problem is growing drug-resistance amid fungi. Among Candida and Aspergillus species is observed resistance to azoles, e.g., to fluconazole, voriconazole, and posaconazole. Some Candida species, especially C. glabrata and C. parapsilosis,  can be echinocandin- and multidrug-resistant [8,9][8][9]. Acquired resistance to echinocandins has also been reported for yeasts C. albicansC. tropicalisC. kruseiC. kefyrC. lusitaniae, and C. dubliniensis [10] [10]. More than 3% of Aspergillus fumigatus  isolates are resistant to one or more azoles [11]. Polyene resistance mainly concerns amphotericin B. Resistance to this drug is observed in Fusarium spp., Trichosporon spp., Aspergillus spp., and Sporothrix schenckii [12,13] [12][13]. Resistance to amphotericin B has also been reported for C. albicansC. glabrata, and C. tropicalis [14,15,16] [14][15][16]. Cultures of some Candida species and Cryptococcus neoformans are presented in Figure 1.
Figure 1. Cultures of selected yeast fungi on Sabouraud agar (Author of photos: Tomasz M. Karpiński).
The new epidemiological problem is C. auris, a multidrug-resistant organism first described in Japan in 2009 [17]. Recently, C. auris  has been reported from 36 countries from six continents [18]. About 30% of isolates demonstrate reduced susceptibility to amphotericin B, and 5% can be resistant to the echinocandins [19,20][19][20]. The estimated mortality from C. auris  fungemia range from 28% to 60% [21].
Fundamental issues are also the costs of treatment and hospitalization of patients with invasive fungal diseases. According to Drgona et al., all costs range from around €26,000 up to over €80,000 per patient [5].

2. Components of Essential Oils of Lamiaceae Family

The family Lamiaceae or Labiatae contains many valuable medicinal plants. In the family are 236 genera and between 6900 and 7200 species. To the most abundant genera belong Salvia (900 species), Scutellaria (360), Stachys (300), Plectranthus (300), Hyptis (280), Teucrium (250), Vitex (250), Thymus (220), and Nepeta  (200). Lamiaceae plants rich in essential oils have great worth in natural medicine, pharmacology, cosmetology, and aromatherapy [25][22]. The essential oils are mostly present in leaves, however, they can be found in flowers, buds, fruits, seeds, rind, wood, or roots [26][23]. Essential oils are mixtures of volatile compounds, which are secondary plant metabolites. They play a role in the defense system of higher plants [27][24]. Essential oils may contain over 300 different compounds, mainly of molecular weight below 300 [28][25]. Some oils, e.g., obtained from LavandulaGeranium, or Rosmarinus,  contain 450 to 500 chemicals [29][26]. Among the active compounds of essential oils are various chemical classes, e.g., alcohols, ethers, aldehydes, ketones, esters, phenols, terpenes (monoterpenes, sesquiterpenes), and coumarins [30,31][27][28]. To the chemical components most commonly found as the main ingredients in essential oils, among plants presented in Table 2, include β-caryophyllene (41 plants), linalool (27 plants), limonene (26), β-pinene (25), 1,8-cineole (22), carvacrol (21), α-pinene (21), p-cymene (20), γ-terpinene (20), and thymol (20) (Figure 2). Sesquiterpene β-caryophyllene seems particularly important antifungal component in the Lamiaceae family. Its activity and its derivatives, such as caryophyllene oxide is well known [134,135,136][29][30][31]. According to Bona et al. [137][32], essential oils containing high concentrations of phenolic monoterpenes (e.g., carvacrol, p-cymene, thymol) have great antifungal activities. Rich in these substances are, among others Origanum and Thymus  plants. Important antifungal chemicals often presented in Lamiaceae are also other monoterpenes as alcohol linalool and cyclic 1,8-cineole, limonene, pinenes, and terpinenes [138,139,140,141,142,143,144,145,146][33][34][35][36][37][38][39][40][41]Table 1 shows that all of these antifungal substances are common in presented plants.
Figure 2. Chemical formulas of ten substances the most commonly found in essential oils of Lamiaceae plants presented in Table 1.

3. Antifungal Activity of Essential Oils of Lamiaceae Family

In Table 3 are shown the antifungal activities of selected Lamiaceae essential oils. More than half of the essential oils have good activity (<1000 µg/mL) against fungi. In some cases are observed significant discrepancies between different studies. An example could be the action of essential oils from Italian Calamintha nepeta against Candida albicans. In the work of Marongiu et al. [39][42], minimal inhibitory concentrations amounted to 1.25–2.5 µg/mL, while in Božović et al. [40][43] MICs were between 780 to 12,480 µg/mL. Differences may be related to the different biochemical composition of the examined essential oils. In results presented by Marongiu et al. [39] [42] the main components of essential oils were pulegone (39.9–64.4%), piperitenone oxide (2.5–19.1%) and piperitenone (6.4–7.7%), while in Božović et al. [40][43] three main substances were pulegone (37.7–84.7%), crysanthenone (1.3–33.9%) and menthone (0.5–35.4%). Some authors have described that the content of active substances varies depending on the season. In studies of Gonçalves et al. [60] [44] in Mentha cervina  during the flowering phase in August amount of isomenthone and pulegone in essential oil amounted 8.7% and 75.1% respectively. Simultaneously, in the vegetative phase in February, the content of both components changed significantly and amounted to 77.0% for isomenthone and 12.9% for pulegone. Similarly, Al-Maskri et al. [75] [45] presented essential changes in some compounds of Ocimum basilicum essential oil between winter and summer. In the summer essential oil, there is significantly more of linalool, p-allylanisole and β-farnesene, and at the same time much less content of limonene and 1,8-cineole. In this work, a seasonal variation of chemical composition is directly related to other antifungal activities. It is particularly evident in action against Aspergillus niger, which was lower in the summer season. Zone of growth inhibition (ZOI) for winter essential oil was 21 mm and MIC > 50 µg/mL, while for summer essential oil-ZOI was 13 mm and MIC > 100 µg/mL [75][45]. Influence on the content of chemical substances in essential oils also has a method of obtaining them. Ćavar et al. [40] [43] compared the composition of oils obtained from Calamintha glandulosa  using three methods: Hydrodistillation (HD), steam distillation (SD) and aqueous reflux extraction (ARE). For example, the level of menthone was 3.3% in ARE, 4.7% in HD, and 8.3% in SD method, while for shisofuran was only 0.1% in HD and SD, and even 9.7% in ARE [40][43]. Additionally, many other factors can affect antimicrobial activity, such as amount and concentration of inoculum, type of culture medium, pH of the medium and incubation time. All these factors can affect the value of MIC [145][40]. Differences are visible in Table 2. Generally, it can be assumed that the best activity (MICs < 100) have essential oils from Clinopodium spp. (excluding C. nepeta subsp. glandulosum and C. umbrosum), Lavandula spp., Mentha spp. (excluding M. piperita), Thymbra spp., and Thymus spp. (excluding T. migricus and T. vulgaris). The highest values of MICs are presented among others for Aeollanthus suaveolensAgastache rugosaLepechinia muticaMentha × piperita, and Salvia sclarea. Simultaneously, some essential oils have a very different activity, and MIC values differ depending on the region, chemical composition, research methodology, etc. Significant variations can be observed even in Ocimum basilicum (MICs 1–10,000), O. sanctum (MICs 0.1–500), Origanum majorana (MICs 0.5–14,400) or in Thymus vulgaris (MICs 0.08–3600).
Table 3. Minimal inhibitory concentrations (MICs) of essential oils against fungi.
Source of the Essential OilTargeted FungusMICs (µg/mL; µl/mL)Reference(s)
Aeollanthus suaveolens
 Mart. ex Spreng. = 
A. heliotropioides
 Oliv.
Candida albicans1200–5000[34]
1200–5000[46]
Candida glabrata5000[34]
5000[46]
Candida krusei2500[34]
2500[46]
Candida parapsilosis2500[
2500
34]
[46]
Candida tropicalis1200[34]
1200[46]
Cryptococcus neoformans600–5000[34]
600–5000[46]
Agastache rugosa
 (Fisch. and C.A.Mey.) Kuntze
Aspergillus flavus10,000[153]
10,000[47]
Aspergillus niger5000[153]
5000[47]
Blastoschizomyces capitatus5000[153]
5000[47]
Candida albicans28–5000[153,154]
28–5000[47][48]
Candida utilis5000[153]
5000[47]
Candida tropicalis5000[153]
5000[47]
Cryptococcus neoformans10,000[153]
10,000[47]
Trichoderma viride5000[153]
5000[47]
Trichophyton erinacei780[153]
780[47]
Trichophyton mentagrophytes3120[153]
3120[47]
Trichophyton rubrum1560[153]
1560[47]
Trichophyton schoenleinii1560[153]
1560[47]
Trichophyton soudanense1560[153]
1560[47]
Trichophyton tonsurans10,000[
10,000
153]
[47]
Trichosporon mucoides5000[153]
5000[47]
Ballota nigra
 subsp. 
foetida
 (Vis.) Hayek
Alternaria solani750[37]
750[49]
Botrytis cinerea600[37]
600[49]
Fusarium coeruleum350[37]
350[49]
Fusarium culmorum300[37]
300[49]
Fusarium oxysporum300[37]
300[49]
Fusarium solani350[37]
350[49]
Fusarium sporotrichioides350[37]
350[49]
Fusarium tabacinum350[37]
350[49]
Fusarium verticillioides300[37]
300[49]
Clinopodium dalmaticum
 (Benth.) Bräuchler and Heubl = 
Micromeria dalmatica
 Benth.
Aspergillus niger0.4[38]
0.4[50]
Aspergillus ochraceus0.4[38]
0.4[50]
Cladosporium cladosporioides0.4[38]
0.4[50]
Fusarium tricinctum0.4[38]
0.4[50]
Penicilium ochrochloron0.4[38]
0.4[50]
Phomopsis helianthi0.2[38]
0.2[50]
Trichoderma viride0.4[38]
0.4[50]
Clinopodium nepeta
 subsp. 
glandulosum
 (Req.) Govaerts = 
Calamintha glandulosa
 (Req.) Bentham = 
Calamintha officinalis
 Moench
Aspergillus niger1250[39]
1250[42]
Candida albicans2500[39]
2500[42]
Clinopodium nepeta
 (L.) Kuntze = 
Calamintha nepeta
 (L.) Savi
Aspergillus flavus1.25–10[41]
1.25–10[51]
Aspergillus fumigatus0.64–5[41]
0.64–5[51]
Aspergillus niger0.32–10[41]
0.32–10[51]
Candida albicans1.25–12,480[41,42]
1.25–12,480[51][52]
Candida guillermondii1.25–2.5[41]
1.25–2.5[51]
Candida krusei1.25–2.5[41]
1.25–2.5[51]
Candida parapsilosis1.25–2.5[41]
1.25–2.5[51]
Candida tropicalis1.25–2.5[41]
1.25–2.5[51]
Cryptococcus neoformans0.32–1.25[41]
0.32–1.25[51]
Epidermophyton floccosum0.64–2.5[41]
0.64–2.5[51]
Microsporum canis0.64–2.5[41]
0.64–2.5[51]
Microsporum gypseum1.25–5[41]
1.25–5[51]
Trichophyton mentagrophytes0.64–5[41]
0.64–5[51]
Trichophyton rubrum0.64–5[41]
0.64–5[51]
Clinopodium thymifolium
 (Scop.) Kuntze = 
Micromeria thymifolia
 (Scop.) Fritsch
Aspergillus niger2[38]
2[50]
Aspergillus ochraceus2[38]
2[50]
Cladosporium cladosporioides2[38]
2[50]
Fusarium tricinctum2[38]
2[50]
Penicillium ochrochloron2[
2
38]
[50]
Phomopsis helianthi0.4[38]
0.4[50]
Trichoderma viride2[38]
2[50]
Clinopodium umbrosum
 (M.Bieb.) Kuntze = 
Calamintha umbrosa
 Benth.
Alternaria solani3000[43]
3000[53]
Fusarium oxysporum2000[43]
2000[53]
Helminthosporium maydis1500[43]
1500[53]
Dracocephalum heterophyllum
 Benth.
Alternaria solani625[155]
625[54]
Candida albicans625–1000[44,155]
625–1000[55][54]
Epidermophyton floccosum2500[155]
2500[54]
Fusarium semitectum313[155]
313[54]
Hymenocrater longiflorus
 Benth.
Aspergillus niger480[45]
480[56]
Candida albicans240[45]
240[56]
Hyptis ovalifolia
 Benth.
Microsporum canis15.6–1000[46,156]
15.6–1000[57][58]
Microsporum gypseum7.8–1000[46,156]
7.8–1000[57][58]
Trichophyton mentagrophytes15.6–1000[46,156]
15.6–1000[57][58]
Trichophyton rubrum7.8–1000[46,156]
7.8–1000[57][58]
Hyssopus officinalis
 L.
Aspergillus niger52,200[47]
52,200[59]
Aspergillus ochraceus26,100[47]
26,100[59]
Aspergillus versicolor10,440[47]
10,440[59]
Candida albicans128–1000[44,48]
128–1000[55][60]
Candida glabrata512–1024[48]
512–1024[60]
Candida krusei128–256[48]
128–256[60]
Candida parapsilosis256–512[48]
256–512[60]
Candida tropicalis512–1024[48]
512–1024[60]
Cladosporium cladosporioides10,440[47]
10,440[59]
Cladosporium fulvum26,100[47]
26,100[59]
Penicillium funiculosum52,200[47]
52,200[59]
Penicillium ochrochloron26,100[47]
26,100[59]
Trichoderma viride10,440[47]
10,440[59]
Lavandula angustifolia
 Mill.
Candida albicans0.125–512[50,51,157]
0.125–512[61][62][63]
Malassezia furfur>4[49]
>4[64]
Trichophyton rubrum1–512[49,51]
1–512[64][62]
Trichosporon beigelii2[49]
2[64]
Lavandula multifida
 L.
Aspergillus flavus0.64[52]
0.64[65]
Aspergillus fumigatus0.32[52]
0.32[65]
Aspergillus niger0.32[52]
0.32[65]
Candida albicans0.32[
0.32
52]
[65]
Candida guilliermondii0.32[52]
0.32[65]
Candida krusei0.64[52]
0.64[65]
Candida parapsilosis0.32[52]
0.32[65]
Candida tropicalis0.32[52]
0.32[65]
Cryptococcus neoformans0.16[52]
0.16[65]
Epidermophyton floccosum0.16[52]
0.16[65]
Microsporum canis0.16[52]
0.16[65]
Microsporum gypseum0.16[52]
0.16[65]
Trichophyton mentagrophytes0.16[52]
0.16[65]
Trichophyton mentagrophytes var. interdigitale0.16[52]
0.16[65]
Trichophyton rubrum0.16[52]
0.16[65]
Trichophyton verrucosum0.16[52]
0.16[65]
Lavandula pedunculata
 (Miller) Cav.
Aspergillus flavus5–10[53]
5–10[66]
Aspergillus fumigatus2.5–5[53]
2.5–5[66]
Aspergillus niger5[53]
5[66]
Candida albicans2.5[53]
2.5[66]
Candida guillermondii1.25[53]
1.25[66]
Candida krusei1.25–2.5[53]
1.25–2.5[66]
Candida parapsilosis2.5–5[53]
2.5–5[66]
Candida tropicalis1.25–2.5[53]
1.25–2.5[66]
Cryptococcus neoformans0.32–1.25[
0.32–1.25
53]
[66]
Epidermophyton floccosum0.32–0.64[53]
0.32–0.64[66]
Microsporum canis0.32–1.25[53]
0.32–1.25[66]
Microsporum gypseum0.64–2.5[53]
0.64–2.5[66]
Trichophyton mentagrophytes0.64–1.25[53]
0.64–1.25[66]
Trichophyton rubrum0.32–1.25[53]
0.32–1.25[66]
Lavandula stoechas
 L.
Aspergillus flavus1.25–10[54]
1.25–10[67]
Aspergillus fumigatus0.64–1.25[54]
0.64–1.25[67]
Aspergillus niger0.32–1.25[54]
0.32–1.25[67]
Candida albicans0.64–512[51,54]
0.64–512[62][67]
Candida guillermondii1.25[54]
1.25[67]
Candida krusei2.5[54]
2.5[67]
Candida parapsilosis2.5[54]
2.5[67]
Candida tropicalis2.5[54]
2.5[67]
Cryptococcus neoformans0.64[54]
0.64[67]
Epidermophyton floccosum0.16–0.32[54]
0.16–0.32[67]
Microsporum canis0.16–0.64[
0.16–0.64
54]
[67]
Microsporum gypseum0.32–0.64[54]
0.32–0.64[67]
Trichophyton mentagrophytes0.32–0.64[54]
0.32–0.64[67]
Trichophyton mentagrophytes var. interdigitale0.16–0.64[54]
0.16–0.64[67]
Trichophyton rubrum0.16–256[51,54]
0.16–256[62][67]
Trichophyton verrucosum0.32[54]
0.32[67]
Lavandula viridis
 L’Her.
Aspergillus flavus5[55]
5[68]
Aspergillus fumigatus2.5[55]
2.5[68]
Aspergillus niger2.5[55]
2.5[68]
Candida albicans1.25–2.5[55]
1.25–2.5[68]
Candida guillermondii0.64–1.25[55]
0.64–1.25[68]
Candida krusei1.25–2.5[55]
1.25–2.5[68]
Candida parapsilosis1.25[55]
1.25[68]
Candida tropicalis1.25–2.5[55]
1.25–2.5[68]
Cryptococcus neoformans0.64[55]
0.64[68]
Epidermophyton floccosum0.32[55]
0.32[68]
Microsporum canis0.32[
0.32
55]
[68]
Microsporum gypseum0.64[55]
0.64[68]
Trichophyton mentagrophytes0.32–0.64[55]
0.32–0.64[68]
Trichophyton mentagrophytes var. interdigitale0.32–0.64[55]
0.32–0.64[68]
Trichophyton rubrum0.32[55]
0.32[68]
Trichophyton verrucosum0.32[55]
0.32[68]
Lepechinia mutica
 (Benth.) Epling
Candida albicans>9000[56]
>9000[69]
Fusarium graminearum>9000[56]
>9000[69]
Microsporum canis2200–4500[56]
2200–4500[69]
Pyricularia oryzae>9000[56]
>9000[69]
Trichophyton rubrum2200–4500[56]
2200–4500[69]
Marrubium vulgare
 L.
Aspergillus niger>1180[58]
>1180[70]
Botrytis cinerea>1100[58]
>1100[70]
Fusarium solani>1190[58]
>1190[70]
Penicillium digitatum>1120[58]
>1120[70]
Melissa officinalis
 L.
Aspergillus niger313[158]
313[71]
Candida albicans30–313[59,158]
30–313[72][71]
Cryptococcus neoformans78[158]
78[71]
Epidermophyton floccosum30[
30
59]
[72]
Microsporum canis30[59]
30[72]
Penicillium verrucosum125[159]
125[73]
Trichophyton mentagrophytes var. mentagrophytes15[59]
15[72]
Trichophyton rubrum15[59]
15[72]
Trichophyton tonsurans15[59]
15[72]
Mentha cervina
 L.
Aspergillus flavus2.5–5[60]
2.5–5[44]
Aspergillus fumigatus1.25–2.5[60]
1.25–2.5[44]
Aspergillus niger1.25–2.5[60]
1.25–2.5[44]
Candida albicans1.25–2.5[60]
1.25–2.5[44]
Candida guillermondii1.25–2.5[60]
1.25–2.5[44]
Candida krusei1.25–2.5[60]
1.25–2.5[44]
Candida parapsilosis1.25–2.5[60]
1.25–2.5[44]
Candida tropicalis1.25–2.5[60]
1.25–2.5[44]
Cryptococcus neoformans1.25[60]
1.25[44]
Epidermophyton floccosum0.64–1.25[60]
0.64–1.25[44]
Microsporum canis1.25[60]
1.25[44]
Microsporum gypseum1.25–2.5[60]
1.25–2.5[44]
Trichophyton mentagrophytes1.25–2.5[60]
1.25–2.5[44]
Trichophyton rubrum1.25[60]
1.25[44]
Mentha
 × 
piperita
 L.
Aspergillus flavus1450–5000[62,64]
1450–5000[74][75]
Aspergillus niger625–10,000[64,158]
625–10,000[75][71]
Aspergillus parasiticus2500[64]
2500[75]
Candida albicans225–1125[63,158,160]
225–1125[76][71][77]
Candida glabrata225[62]
225[74]
Candida tropicalis225–230[62]
225–230[74]
Cryptococcus neoformans313[158]
313[71]
Fusarium oxysporum125[161]
125[78]
Penicillium chrysogenum1250[64]
1250[75]
Penicillium minioluteum2050–2200[62]
2050–2200[74]
Penicillium oxalicum1300–2050[62]
1300–2050[74]
Penicillium verrucosum2500[90]
2500[79]
Mentha pulegium
 L.
Aspergillus niger0.25–1.25[65,162]
0.25–1.25[80][81]
Aspergillus flavus1.25[162]
1.25[81]
Aspergillus fumigatus1.25[162]
1.25[81]
Candida albicans0.94–3.75[65,66,162,163]
0.94–3.75[80][82][81][83]
Candida bracarensis3.75[163]
3.75[83]
Candida guillermondii1.25[
1.25
162]
[81]
Candida krusei0.94–1.25[162,163]
0.94–1.25[81][83]
Candida parapsilosis1.25[162]
1.25[81]
Candida tropicalis1.25[162]
1.25[81]
Cryptococcus neoformans0.64[162]
0.64[81]
Epidermophyton floccosum1.25[162]
1.25[81]
Microsporum canis1.25[162]
1.25[81]
Microsporum gypseum1.25–2.5[162]
1.25–2.5[81]
Saccharomyces cervisiae<0.3–0.94[66,163]
<0.3–0.94[82][83]
Trichophyton mentagrophytes1.25–2.5[162]
1.25–2.5[81]
Trichophyton mentagrophytes var. interdigitale2.5[
2.5
162]
[81]
Trichophyton rubrum1.25[162]
1.25[81]
Trichophyton verrucosum1.25[162]
1.25[81]
Mentha requienii
 Bentham
Alternaria spp.>40[67]
 spp.>40[84]
Aspergillus fumigatus>60[67]
>60[84]
Candida albicans0.94–40[67,163]
0.94–40[84][83]
Candida bracarensis3.75[163]
3.75[83]
Candida krusei0.94[163]
0.94[83]
Fusarium spp.>40[67]
 spp.>40[84]
Penicillum spp.>60[67]
 spp.>60[84]
Rhodotorula spp.45[67]
 spp.45[84]
Saccharomyces cerevisiae0.94[163]
0.94[83]
Mentha spicata
 L.
Aspergillus flavus1.25[162]
1.25[81]
Aspergillus fumigatus0.64[
0.64
162]
[81]
Aspergillus niger0.64–313[158,162]
0.64–313[71][81]
Candida albicans1.25–625162]
1.25–625
[51,158,
[62][71][81]
Candida guillermondii1.25[162]
1.25[81]
Candida krusei1.25[162]
1.25[81]
Candida parapsilosis1.25[
1.25
162]
[81]
Candida tropicalis1.25[162]
1.25[81]
Cryptococcus neoformans0.32–313[158,162]
0.32–313[71][81]
Epidermophyton floccosum0.64[162]
0.64[81]
Fusarium graminearum2.5[164]
2.5[85]
Fusarium moniliforme2.5[164]
2.5[85]
Malassezia furfur>4[49]
>4[64]
Microsporum canis0.64–2[68,162]
0.64–2[86][81]
Microsporum gypseum0.64–3[162]
0.64–3[81]
Penicillium corylophilum0.625[165]
0.625[87]
Penicillium expansum2.5[
2.5
164]
[85]
Trichophyton erinacei3[68]
3[86]
Trichophyton mentagrophytes0.64–3[68,162]
0.64–3[86][81]
Trichophyton mentagrophytes var. interdigitale0.64[162]
0.64[81]
Trichophyton rubrum0.25–512[49,51,162]
0.25–512[64][62][81]
Trichophyton terrestre
3[
68
]
Trichophyton verrucosum0.32[162]
0.32[81]
Trichosporon beigelii0.25[49]
0.25[64]
Mentha suaveolens
 Ehrh.
Candida albicans0.34–1250[69,71,166]
0.34–1250[88][89][90]
Candida glabrata0.69–2.77[69]
0.69–2.77[88]
Cryptococcus neoformans300[167]
300[91]
Microsporum canis1250[167]
1250[91]
Microsporum gypseum1250[167]
1250[91]
Trichophyton mentagrophytes600–1250[167]
600–1250[91]
Trichophyton rubrum5000[167]
5000[91]
Trichophyton violaceum600[167]
600[91]
Micromeria albanica
 (Griseb. ex K. Maly) Silic
Aspergillus niger0.2[38]
0.2[50]
Aspergillus ochraceus0.2[38]
0.2[50]
Cladosporium cladosporioides0.2[38]
0.2[50]
Fusarium tricinctum0.4[38]
0.4[50]
Penicilium ochrochloron0.2[38]
0.2[50]
Phomopsis helianthi0.2[38]
0.2[50]
Trichoderma viride0.4[38]
0.4[50]
Moluccella spinosa
 L.
Aspergillus niger50[72]
50[92]
Candida albicans100[72]
100[92]
Fusarium oxysporum100[72]
100[92]
Nepeta ciliaris
 Benth. = 
Nepeta leucophylla
 Benth.
Alternaria solani3000[43]
3000[53]
Candida albicans0.78[168]
0.78[93]
Fusarium oxysporum1000[43]
1000[53]
Trichophyton rubrum0.19[168]
0.19[93]
Helminthosporium maydis1500[43]
1500[53]
Nepeta clarkei
 Hook. f.
Alternaria solani3000[43]
3000[53]
Fusarium oxysporum2000[43]
2000[53]
Helminthosporium maydis2000[43]
2000[53]
Ocimum basilicum
 L.
Aspergillus flavus
10,000[
64
]
Aspergillus fumigatus>50[75]
>50[45]
Aspergillus niger
>50–10,000[
64
,
75
,
158
]
Aspergillus parasiticus
5000[
64
]
Candida albicans
30–625[
73
,
74
,
158
]
Candida guilliermondii
3.125–6.25[
76
]
Cryptococcus neoformans
313–1250[
158
,
169
]
Debaryomyces hansenii
6.25[
76
]
Epidermophyton floccosum
15[
74
]
Microsporum canis
1–15.2[
68
,
74
]
Microsporum gypseum
3[
68
]
Penicillium chrysogenum
10,000[
64
]
Penicillium italicum>50[75]
>50[45]
Rhizopus stolonifer>50[75]
>50[45]
Rhodotorula glutinis86[73]
86[94]
Trichophyton erinacei
2.5[
68
]
Trichophyton mentagrophytes
2.5–8.3[
68
,
74
]
Trichophyton terrestre
3[
68
]
Saccharomyces cerevisiae28[73]
28[94]
Schizosaccharomyces pombe86[73]
86[94]
Trichophyton rubrum
8.3[
74
]
Trichophyton tonsurans
8[
74
]
Yarrowia lypolytica
57[
73
]
Ocimum × africanum
 Lour. = 
Ocimum
 × 
citriodorum
Candida guilliermondii
3.125[
76
]
Debaryomyces hansenii
1.56[
76
]
Ocimum campechianum
 Mill. = 
Ocimum micranthum
 Willd.
Candida albicans69[73]
69[94]
Rhodotorula glutinis139[73]
139[94]
Saccharomyces cerevisiae69[73]
69[94]
Schizosaccharomyces pombe104[73]
104[94]
Yarrowia lypolytica69[73]
69[94]
Ocimum forskolei
 Benth.
Candida albicans
35.3–8600[
77
,
170
]
Ocimum gratissimum
 L.
Aspergillus fumigatus
>1000[
78
]
Candida albicans
350–1500[
78
,
171
]
Candida krusei
750[
171
]
Candida parapsilosis
380[
171
]
Candida tropicalis
1500[
171
]
Cryptococcus neoformans
250–300[
78
,
79
]
Fusarium oxysporum f.
 sp. 
cubense62.5[80]
62.5[95]
Fusarium oxysporum f.
 sp. 
lycopersici31.25[80]
31.25[95]
Fusarium oxysporum f.
 sp. 
tracheiphilum62.5[
62.5
80]
[95]
Fusarium solani62.5[80]
62.5[95]
Macrophomina phaseolina62.5–125[80]
62.5–125[95]
Malassezia pachydermatis
300[
78
]
Microsporum canis
200–500[
78
,
172
]
Microsporum gypseum
150–250[
78
,
172
]
Rhizoctonia solani31.25[80]
31.25[95]
Scopulariopsis brevicaulis
400[
78
]
Trichophyton interdigitale
250[
78
]
Trichophyton mentagrophytes
200–250[
78
,
172
]
Trichophyton rubrum
150–250[
78
,
172
]
Ocimum tenuiflorum
 L. = 
Ocimum sanctum
 L.
Aspergillus flavus
300[
83
]
Candida albicans
0.1–300[
81
,
82
]
Candida glabrata
0.15–300[
81
,
82
]
Candida krusei
0.35–450[
81
,
82
]
Candida parapsilosis
0.25–500[
81
,
82
]
Candida tropicalis
0.1–300[
81
,
82
]
Origanum compactum
 Benth.
Alternaria alternata300[84]
300[96]
Bipolaris oryzae300[84]
300[96]
Fusarium equiseti300[84]
300[96]
Fusarium graminearum300[84]
300[96]
Fusarium verticillioides300[84]
300[96]
Origanum majorana
 L.
Aspergillus flavus
450–650[
62
]
Aspergillus niger
625[
158
]
Botrytis cinerea
5000[
87
]
Candida albicans
625[
158
]
Cryptococcus neoformans
313[
158
]
Fusarium delphinoides
1800–14,400[
85
]
Fusarium incarnatum-equiseti
450–3600[
85
]
Fusarium napiforme
3600–14,400[
85
]
Fusarium oxysporum
900–3600[
85
]
Fusarium solani
900–3600[
85
]
Fusarium verticillioides
14,400[
85
]
Microsporum canis
0.5[
68
]
Microsporum gypseum
2[
68
]
Penicillium expansum
10,000[
87
]
Penicillium minioluteum
400–500[
62
]
Penicillium oxalicum
350–400[
62
]
Sporothrix brasiliensis
≤2250–9000[
86
]
Sporothrix schenckii
≤2250–9000[
86
]
Trichophyton erinacei
1[
68
]
Trichophyton mentagrophytes
1.5[
68
]
Trichophyton terrestre
2[
68
]
Origanum vulgare
 L.
Aspergillus flavus
0.64–2500[
64
,
89
,
91
]
Aspergillus fumigatus
0.32–0.64[
89
]
Aspergillus niger
0.32–623[
62
,
89
,
91
,
158
]
Aspergillus ochraceus
470[
91
]
Aspergillus parasiticus
2500[
64
]
Candida albicans
0.32–700[
74
,
88
,
89
,
91
,
158
]
Candida glabrata
350[
88
]
Candida guillermondii
0.64–1.25[
89
]
Candida krusei
0.64–700[
88
,
89
]
Candida parapsilosis
0.64–170[
88
,
89
]
Candida tropicalis
0.32–700[
88
,
89
]
Cladosporium
 sp.0.05–0.3[
173
]
Cryptococcus neoformans
0.16–78[
89
,
158
]
Epidermophyton floccosum
0.32–2[
74
,
89
]
Fusarium
 sp.0.1–0.5[
173
]
Malassezia furfur
1–780[
49
,
174
]
Microsporum canis
0.025–2[
68
,
74
,
89
]
Microsporum gypseum
0.025–1.25[
68
,
89
]
Penicillium
 sp.0.1–0.5[
173
]
Penicillium chrysogenum
625[
64
]
Penicillium corylophilum
0.625[
165
]
Penicillium funiculosum
610[
91
]
Penicillium ochrochloron
710[
91
]
Penicillium verrucosum
1.1719[
90
,
91
]
Trichophyton mentagrophytes
0.32–1.25[
74
,
89
]
Trichophyton rubrum
0.16–1.25[
49
,
74
,
89
]
Trichophyton tonsurans
1[
74
]
Trichosporon beigelii
0.25[
49
]
Trichophyton erinacei
0.5[
68
]
Trichophyton mentagrophytes
0.5[
68
]
Trichophyton terrestre
0.25[
68
]
Pogostemon cablin
 (Blanco) Benth.
Aspergillus flavus
>1500[
92
]
Aspergillus niger
156[
158
]
Aspergillus oryzae
>1500[
92
]
Candida albicans
32–625[
158
,
175
]
Candida krusei
64–257[
175
]
Candida tropicalis
32–257[
175
]
Cryptococcus neoformans
20[
158
]
Pogostemon heyneanus
 Benth.
Candida albicans
6000[
176
]
Candida glabrata
6000[
176
]
Candida tropicalis
10,000[
176
]
Premna microphylla
 Turcz.
Aspergillus niger
>500[
94
]
Candida albicans
>500[
94
]
Fusarium oxysporum
>500[
94
]
Rosmarinus officinalis
 L.
Aspergillus flavus
330[
91
]
Aspergillus ochraceus
590[
91
]
Aspergillus niger
380–10,000[
91
,
98
,
158
]
Botrytis cinerea
2500[
87
]
Candida albicans
30.2–1000[
51
,
91
,
96
,
98
,
158
]
Cryptococcus neoformans
313[
158
]
Epidermophyton floccosum
30[
96
]
Microsporum canis
2.5–30.2[
68
,
96
]
Microsporum gypseum
2.5[
68
]
Penicillium expansum
5000[
87
]
Penicillium ochrochloron
470[
91
]
Penicillium funiculosum
570[
91
]
Trichophyton erinacei
1.5[
68
]
Trichophyton mentagrophytes
5–15.3[
68
,
96
]
Trichophyton rubrum
15–256[
51
,
96
]
Trichophyton terrestre
5[
68
]
Trichophyton tonsurans
15.2[
96
]
Salvia fruticosa
 Miller
Candida albicans
512[
51
]
Fusarium oxysporum
 f. sp. 
dianthi>2000[99]
>2000[97]
Fusarium proliferatum>2000[99]
>2000[97]
Fusarium solani
 f. sp. 
cucurbitae>2000[99]
>2000[97]
Malassezia furfur>4[99]
>4[97]
Rhizoctonia solani>2000[99]
>2000[97]
Sclerotinia sclerotiorum>2000[99]
>2000[97]
Trichophyton rubrum
2–256[
49
,
99
]
Trichosporon beigelii
4[
49
]
Salvia mirzayanii
 Rech. f. and Esfand
Candida albicans0.5–2[100]
0.5–2[98]
Candida krusei1[100]
1[98]
Candida dubliniensis0.06–0.5[100]
0.06–0.5[98]
Candida glabrata0.06–1[100]
0.06–1[98]
Candida parapsilosis0.25–1[100]
0.25–1[98]
Candida tropicalis0.25–2[100]
0.25–2[98]
Trichosporon sp.1
 sp.
[100]
1[98]
Salvia officinalis
 L.
Aspergillus flavus
5–10[
101
]
Aspergillus fumigatus
2.5–5[
101
]
Aspergillus niger
5–1250[
101
,
158
]
Candida albicans
2.5–2780[
96
,
101
,
158
,
177
]
Candida guillermondii
1.25–2.5[
101
]
Candida krusei
2.5–5[
101
]
Candida parapsilosis
5[
101
]
Candida tropicalis
5[
101
]
Cryptococcus neoformans
0.64–625[
101
,
158
]
Epidermophyton floccosum
0.64–100[
96
,
101
]
Microsporum canis
1.25–100.2[
96
,
101
]
Microsporum gypseum
1.25–2.5[
101
]
Trichophyton mentagrophytes
1.25–60[
96
,
101
]
Trichophyton mentagrophytes var. interdigitale
1.25[
101
]
Trichophyton rubrum
0.64–60[
96
,
101
]
Trichophyton tonsurans
60[
96
]
Trichophyton verrucosum
1.25–2.5[
101
]
Salvia sclarea
 L.
Aspergillus niger
1250[
158
]
Candida albicans
1250[
158
]
Cryptococcus neoformans
313[
158
]
Fusarium delphinoides
1800–3600[
85
]
Fusarium incarnatum-equiseti
1800–3600[
85
]
Fusarium napiforme
1800–3600[
85
]
Fusarium oxysporum
1800–3600[
85
]
Fusarium solani
3600–7200[
85
]
Fusarium verticillioides
1800[
85
]
Satureja hortensis
 L.
Alternaria alternata
62.5[
103
]
Aspergillus flavus
31.25–500[
103
,
104
,
117
]
Aspergillus niger471[117]
471[99]
Aspergillus ochraceus423[117]
423[99]
Aspergillus parasiticus373[117]
373[99]
Aspergillus terreus389[117]
389[99]
Aspergillus variecolor125[103]
125[100]
Candida albicans
200–400[
103
,
178
]
Fusarium culmorum125[103]
125[100]
Fusarium oxysporum250[103]
250[100]
Microsporum canis62.5[103]
62.5[100]
Moniliania fructicola31.25[103]
31.25[100]
Penicillium spp.125[103]
 spp.125[100]
Rhizoctonia solani125[103]
125[100]
Rhizopus spp.250[103]
 spp.250[100]
Sclerotinia minor250[103]
250[100]
Sclerotinia sclerotiorum125[103]
125[100]
Trichophyton mentagrophytes62.5[103]
62.5[100]
Trichophyton rubrum31.25[103]
31.25[100]
Satureja montana
 L.
Microsporum canis
0.5[
68
]
Microsporum gypseum
2[
68
]
Trichophyton erinacei
2[
68
]
Trichophyton mentagrophytes
2[
68
]
Trichophyton terrestre
3[
68
]
Satureja thymbra
 L.
Aspergillus flavus
25[
105
]
Aspergillus fumigatus
1.25–25[
105
,
179
]
Aspergillus niger
2.5–25[
105
,
179
]
Aspergillus ochraceus
2.5–25[
105
,
179
]
Aspergillus versicolor
1.25[
179
]
Candida albicans
25–128[
51
,
105
]
Penicillium funiculosum
2.5–25[
105
,
179
]
Penicillium ochrochloron
1–1.25[
105
,
179
]
Trichoderma viride
1.25–25[
105
,
179
]
Trichophyton rubrum
128[
51
]
Stachys cretica
 L.
Candida albicans
625[
106
]
Stachys officinalis
 (L.) Trevis
Aspergillus niger
2500[
107
]
Candida albicans
5000[
107
]
Stachys pubescens
 Ten.
Alternaria alternata1[108]
1[101]
Aspergillus flavus0–5[108]
0–5[101]
Fusarium oxysporum1[108]
1[101]
Teucrium sauvagei
 Le Houerou
Aspergillus fumigatus>1000[109]
>1000[102]
Candida albicans>1000[109]
>1000[102]
Cryptococcus neoformans>1000[109]
>1000[102]
Epidermophyton floccosum850[109]
850[102]
Microsporum canis800[109]
800[102]
Microsporum gypseum900[109]
900[102]
Scopulariopsis brevicaulis>1000[109]
>1000[102]
Scytalidium dimidiatum>1000[
>1000
109]
[102]
Trichophyton mentagrophytes
 var. 
interdigitale950[109]
950[102]
Trichophyton mentagrophytes
 var. 
mentagrophytes900[109]
900[102]
Trichophyton rubrum800[109]
800[102]
Trichophyton soudanense800[109]
800[102]
Teucrium yemense
 Deflers.
Aspergillus niger313[77]
313[103]
Botrytis cinerea313[77]
313[103]
Candida albicans1250[77]
1250[103]
Thymbra capitata
 (L.) Cav. = 
Thymus capitatus
 (L.) Hoffmanns. and Link = 
Coridothymus capitatus
 (L.) Rchb.f. Solms
Aspergillus flavus0.32[111]
0.32[104]
Aspergillus fumigatus0.16–0.32[111]
0.16–0.32[104]
Aspergillus niger0.1–0.16[111,180]
0.1–0.16[104][105]
Aspergillus oryzae0.2[180]
0.2[105]
Candida albicans0.16–128[51,110,111,112]
0.16–128[62][106][104][107]
Candida glabrata0.32[111,112]
0.32[104][107]
Candida guilliermondii0.16–0.32[111,112]
0.16–0.32[104][107]
Candida krusei0.32[111]
0.32[104]
Candida parapsilosis0.32[111,112]
0.32[104][107]
Candida tropicalis0.32[111,
0.32
112]
[104][107]
Epidermophyton floccosum0.08[
0.08
111]
[104]
Fusarium solani0.2[180]
0.2[105]
Microsporum canis0.08[111]
0.08[104]
Microsporum gypseum0.08[111]
0.08[104]
Penicillium digitatum
0.5[
180
]
Trichophyton mentagrophytes0.08[111]
0.08[104]
Trichophyton rubrum0.16–64[51,111]
0.16–64[62][104]
Thymbra spicata
 L.
Aspergillus fumigatus0.3[
0.3
179]
[108]
Aspergillus niger0.6[179]
0.6[108]
Aspergillus versicolor0.3[179]
0.3[108]
Aspergillus ochraceus0.6[179]
0.6[108]
Candida albicans1.12–3750[51,113,114]
1.12–3750[62][109][110]
Candida krusei1.12[114]
1.12[110]
Candida parapsilosis0.6–1.12[114]
0.6–1.12[110]
Penicillium funiculosum0.3[179]
0.3[108]
Penicillium ochrochloron0.3[179]
0.3[108]
Trichoderma viride0.3[179]
0.3[108]
Trichophyton rubrum64[
64
51]
[62]
Thymus bovei
 Benth.
Candida albicans250[
250
115]
[111]
Thymus daenensis
 Celak.
Alternaria alternata>8[
>8
108]
[101]
Aspergillus flavus1[108]
1[101]
Fusarium oxysporum4[108]
4[101]
Thymus kotschyanus
 Boiss. and Hohen.
Alternaria alternata1[108]
1[101]
Aspergillus flavus0.5[108]
0.5[101]
Fusarium oxysporum0–5[108]
0–5[101]
Thymus mastichina
 (L.) L.
Candida albicans1.25–2.5[116]
1.25–2.5[112]
Candida glabrata1.25–1.5[116]
1.25–1.5[112]
Candida guilliermondii1.25[116]
1.25[112]
Candida krusei1.25–2.5[116]
1.25–2.5[112]
Candida parapsilosis2.5–5[116]
2.5–5[112]
Candida tropicalis2.5–10[116]
2.5–10[112]
Thymus migricus
 Klokov et Des.-Shost.
Aspergillus flavus452[117]
452[99]
Aspergillus niger460[117]
460[99]
Aspergillus ochraceus430[117]
430[99]
Aspergillus parasiticus581[117]
581[99]
Aspergillus terreus447[117]
447[99]
Thymus pulegioides
 L.
Aspergillus flavus0.32[119]
0.32[113]
Aspergillus fumigatus0.16[119]
0.16[113]
Aspergillus niger0.32[119]
0.32[113]
Candida albicans0.32–0.64[119]
0.32–0.64[113]
Candida glabrata0.32–0.64[119]
0.32–0.64[113]
Candida guilliermondii0.32[119]
0.32[113]
Candida krusei0.32–0.64[119]
0.32–0.64[113]
Candida parapsilosis0.64[
0.64
119]
[113]
Candida tropicalis0.32–0.64[119]
0.32–0.64[113]
Epidermophyton floccosum0.16[119]
0.16[113]
Microsporum canis0.16[119]
0.16[113]
Microsporum gypseum0.16[119]
0.16[113]
Trichophyton mentagrophytes0.16[119]
0.16[113]
Trichophyton rubrum0.32[119]
0.32[113]
Thymus schimperi
 Ronninger
Aspergillus minutus0.512–2[120]
0.512–2[114]
Aspergillus niger0.16[181]
0.16[115]
Aspergillus tubingensis1–4[120]
1–4[114]
Beauveria bassiana0.128–1[120]
0.128–1[114]
Candida albicans0.16[181]
0.16[115]
Microsporum spp.0.08[181]
 spp.0.08[115]
Microsporum gypseum0.128–1[120]
0.128–1[114]
Penicillium chrysogenum0.512–2[120]
0.512–2[114]
Rhodotorula spp.0.08
 spp.
[181]
0.08[115]
Tricophyton spp.0.08–0.31[181]
 spp.0.08–0.31[115]
Verticillium sp.0.512–2[120]
 sp.0.512–2[114]
Thymus serpyllum
 L.
Aspergillus carbonarius1.25[
1.25
182]
[116]
Aspergillus ochraceus0.625[182]
0.625[116]
Aspergillus niger2.5[182]
2.5[116]
Microsporum canis0.025[68]
0.025[86]
Microsporum gypseum0.25[68]
0.25[86]
Trichophyton erinacei0.1[68]
0.1[86]
Trichophyton mentagrophytes0.2[68]
0.2[86]
Trichophyton terrestre0.1[68]
0.1[86]
Thymus striatus
 Vahl.
Alternaria alternata1[121]
1[117]
Aspergillus flavus1.5[121]
1.5[117]
Aspergillus niger1[121]
1[117]
Aspergillus ochraceus1[121]
1[117]
Aspergillus terreus1[121]
1[117]
Aspergillus versicolor1[121]
1[117]
Cladosporium cladosporioides0.5[121]
0.5[117]
Epidermophyton floccosum1[121]
1[117]
Microsporum canis1.5[121]
1.5[117]
Penicillium funiculosum2[121]
2[117]
Penicillium ochrochloron2[121]
2[117]
Phomopsis helianthi0.5[121]
0.5[117]
Trichoderma viride2[121]
2[117]
Trichophyton mentagrophytes1[
1
121]
[117]
Thymus vulgaris
 L.
Absidia spp.7 ± 4
 spp.
[122]
7 ± 4[118]
Alternaria spp.9.4 ± 4.5[122]
 spp.9.4 ± 4.5[118]
Alternaria alternata4.7–500[122,
4.7–500
183]
[118][119]
Aspergillus spp.3.2
 spp.
[122]
3.2[118]
Aspergillus flavus
9.35–1500[
64
,
104
,
122
,
125
,
184
]
Aspergillus fumigatus
144–1000[
124
,
184
]
Aspergillus niger
9.35–1250[
64
,
122
,
158
,
184
]
Aspergillus ochraceus2.5–750[164,184]
2.5–750[85][120]
Aspergillus parasiticus1250[64]
1250[75]
Aspergillus sulphureus10.88 ± 3.1[122]
10.88 ± 3.1[118]
Aspergillus versicolor9.6 ± 9.25[122]
9.6 ± 9.25[118]
Botrytis cinerea
312[
87
]
Candida albicans0.16–313[73,74,116,158]
0.16–313[94][121][112][71]
Candida glabrata0.16–0.32[
0.16–0.32
116]
[112]
Candida krusei0.08–0.16[116]
0.08–0.16[112]
Candida guillermondii0.16[116]
0.16[112]
Candida parapsilosis0.16–0.32[116]
0.16–0.32[112]
Candida tropicalis0.16–0.32[116]
0.16–0.32[112]
Chaetomium globosum1.6[122]
1.6[118]
Cladosporium spp.12.8[122]
 spp.12.8[118]
Cladosporium sphaerospermum19.6[122]
19.6[118]
Cryptococcus neoformans78[158]
78[71]
Epidermophyton floccosum4[74]
4[121]
Fusarium spp.62.5[185]
 spp.62.5[122]
Fusarium delphinoides900–1800[85]
900–1800[123]
Fusarium incarnatum-equiseti450–3600[85]
450–3600[123]
Fusarium napiforme900[85]
900[123]
Fusarium oxysporum5–900[85,126]
5–900[123][124]
Fusarium solani1800–3600[85]
1800–3600[123]
Fusarium verticillioides900[85]
900[123]
Malassezia furfur920[174]
920[125]
Microsporum canis2.2[74]
2.2[121]
Mortierella spp.250[185]
 spp.250[122]
Mucor spp.50.2 ± 8.4[122]
 spp.50.2 ± 8.4[118]
Penicilium spp.18.95–500[122,185]
 spp.18.95–500[118][122]
Penicilium brevicompactum19.6[122]
19.6[118]
Penicillium chrysogenum312.5–1750[64,184]
312.5–1750[75][120]
Penicilium chrysogenum19.6[122]
19.6[118]
Penicillium citrinum1250[184]
1250[120]
Penicillium expansum625[87]
625[126]
Penicillium griseofulvum19.6[122]
19.6[118]
Rhizopus spp.12.6[122]
 spp.12.6[118]
Rhodotorula glutinis72[
72
73]
[94]
Rhizopus oryzae256–512[123]
256–512[127]
Saccharomyces cerevisiae72[73]
72[94]
Schizosaccharomyces pombe36[73]
36[94]
Stachybotrys chartarum6.2[122]
6.2[118]
Trichoderma spp.16.8[122]
 spp.16.8[118]
Trichophyton mentagrophytes2.2[74]
2.2[121]
Trichophyton rubrum2–72[74,124]
2–72[121][128]
Trichophyton tonsurans2.2[74]
2.2[121]
Ulocladium spp.5.45 ± 1.5
 spp.
[122]
5.45 ± 1.5[118]
Yarrowia lypolytica36[73]
36[94]
Thymus zygis
 L.
Candida albicans0.16–0.32
0.16–0.32
[116]
[112]
Candida glabrata0.32[116]
0.32[112]
Candida krusei0.16–0.32[116]
0.16–0.32[112]
Candida guillermondii0.16[116]
0.16[112]
Candida parapsilosis0.32[116]
0.32[112]
Candida tropicalis0.16–0.32[116]
0.16–0.32[112]
Penicillium corylophilum0.3125–0.625[165]
0.3125–0.625[87]
Vitex agnus-castus
 L.
Candida albicans0.53–512[51,129]
0.53–512[62][129]
Candida dubliniensis
0.27[129]
Candida famata
2.13[129]
Candida glabrata
0.27[129]
Candida krusei
0.27[129]
Candida lusitaniae
2.13[129]
Candida parapsilosis
1.06[129]
Candida tropicalis
0.13[129]
Epidermophyton floccosum0.64–2.5[128]
0.64–2.5[130]
Microsporum canis0.64–5[128]
0.64–5[130]
Microsporum gypseum1.25–10[128]
1.25–10[130]
Trichophyton mentagrophytes1.25–10[128]
1.25–10[130]
Trichophyton rubrum0.64–512[51,128]
0.64–512[62][130]
Zataria multiflora
 Boiss.
Aspergillus flavus358[117]
358[99]
Aspergillus niger358[117]
358[99]
Aspergillus ochraceus341[
341
117]
[99]
Aspergillus parasiticus367[117]
367[99]
Aspergillus terreus447[117]
447[99]
Microsporum canis0.125–0.25[130]
0.125–0.25[131]
Microsporum gypseum0.03–0.06[130]
0.03–0.06[131]
Trichophyton mentagrophytes0.03[130]
0.03[131]
Trichophyton rubrum0.03–0.06[130]
0.03–0.06[131]
Trichophyton schoenleinii0.125–0.6[130]
0.125–0.6[131]
Ziziphora clinopodioides
 Lam.
Aspergillus flavus48.82[184,186]
48.82[120][132]
Aspergillus fumigatus1750[184]
1750[120]
Aspergillus niger3000[184]
3000[120]
Aspergillus ochraceus1500[184]
1500[120]
Aspergillus parasiticus48.82[186]
48.82[132]
Penicillium chrysogenum3000[184]
3000[120]
Penicillium citrinum1750[184]
1750[120]
Ziziphora tenuior
 L.
Aspergillus flavus
1.25[133]
Aspergillus fumigatus
0.64[133]
Aspergillus niger
0.64[133]
Candida albicans
1.25[133]
Candida guillermondii
1.25[133]
Candida krusei
1.25[133]
Candida parapsilosis
1.25[133]
Candida tropicalis
1.25[133]
Cryptococcus neoformans
0.16[133]
Epidermophyton floccosum
0.64[133]
Microsporum canis
0.64–1.25[133]
Microsporum gypseum
1.25[133]
Trichophyton mentagrophytes
1.25[133]
Trichophyton mentagrophytes
 var. 
interdigitale
1.254[133]
Trichophyton rubrum
0.64[133]
Trichophyton verrucosum
0.64[133]
The mode of action of essential oils is multidirectional. Essential oils lead to disruption of the cell wall and cell membrane through a permeabilization process. The lipophilic compounds of essential oils can pass through the cell wall and damage polysaccharides, fatty acids, and phospholipids, eventually making them permeable [146,147][41][134]. Change of the permeability for H+ and K+  cations affects cellular pH and damage of cellular organelles [148,149][135][136]. Additionally, essential oils inhibit the synthesis of fungal DNA, RNA, proteins, and polysaccharides [150][137]. Essential oils can also disintegrate mitochondrial membrane [151,152][138][139]. It has also been shown that essential oil from Thymus vulgaris inhibits the production of aflatoxins by Aspergillus flavus  and leads to the reduction of ergosterol production [123][127].

References

  1. Brown, G.D.; Denning, D.W.; Gow, N.A.; Levitz, S.M.; Netea, M.G.; White, T.C. Hidden killers: Human fungal infections. Sci. Transl. Med. 2012, 4.
  2. White, T.C.; Findley, K.; Dawson, T.L., Jr.; Scheynius, A.; Boekhout, T.; Cuomo, C.A.; Xu, J.; Saunders, C.W. Fungi on the skin: Dermatophytes and Malassezia. Cold Spring Harb. Perspect. Med. 2014, 4.
  3. Bongomin, F.; Gago, S.; Oladele, R.O.; Denning, D.W. Global and multi-national prevalence of fungal diseases—estimate precision. J. Fungi 2017, 3, 57.
  4. Park, B.J.; Wannemuehler, K.A.; Marston, B.J.; Govender, N.; Pappas, P.G.; Chiller, T.M. Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS 2009, 23, 525–530.
  5. Drgona, L.; Khachatryan, A.; Stephens, J.; Charbonneau, C.; Kantecki, M.; Haider, S.; Barnes, R. Clinical and economic burden of invasive fungal diseases in Europe: Focus on pre-emptive and empirical treatment of Aspergillus and Candida species. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 7–21.
  6. Murray, P.R.; Rosenthal, K.S.; Pfaller, M.A. Section 6. Mycology. In Medical Microbiology, 7th ed.; Saunders: Philadelphia, PA, USA, 2013; pp. 605–711.
  7. Reddy, K.R. Fungal infections (Mycoses): Dermatophytoses (Tinea, Ringworm). J. Gandaki Med. Coll. Nepal 2017, 10.
  8. Lortholary, O.; Desnos-Ollivier, M.; Sitbon, K.; Fontanet, A.; Bretagne, S.; Dromer, F. Recent exposure to caspofungin or fluconazole influences the epidemiology of candidemia: A prospective multicenter study involving 2,441 patients. Antimicrob. Agents Chemother. 2011, 55, 532–538.
  9. Alexander, B.D.; Johnson, M.D.; Pfeiffer, C.D.; Jiménez-Ortigosa, C.; Catania, J.; Booker, R.; Castanheira, M.; Messer, S.A.; Perlin, D.S.; Pfaller, M.A. Increasing echinocandin resistance in Candida glabrata: Clinical failure correlates with presence of FKS mutations and elevated minimum inhibitory concentrations. Clin. Infect. Dis. 2013, 56, 1724–1732.
  10. Arendrup, M.C.; Perlin, D.S. Echinocandin resistance: An emerging clinical problem? Curr. Opin. Infect. Dis. 2014, 27, 484–492.
  11. Van der Linden, J.W.; Arendrup, M.C.; Warris, A.; Lagrou, K.; Pelloux, H.; Hauser, P.M.; Chryssanthou, E.; Mellado, E.; Kidd, S.E.; Tortorano, A.M.; et al. Prospective multicenter international surveillance of azole resistance in Aspergillus fumigatus. Emerg. Infect. Dis. 2015, 21, 1041–1044.
  12. Pfaller, M.A.; Diekema, D.J. Rare and emerging opportunistic fungal pathogens: Concern for resistance beyond Candida albicans and Aspergillus fumigatus. J. Clin. Microbiol. 2004, 42, 4419–4431.
  13. Perlin, D.S.; Rautemaa-Richardson, R.; Alastruey-Izquierdo, A. The global problem of antifungal resistance: Prevalence, mechanisms, and management. Lancet Infect. Dis. 2017, 17, e383–e392.
  14. Krcmery, V., Jr.; Spanik, S.; Kunova, A.; Trupl, J. Breakthrough fungemia appearing during empiric therapy with amphotericin B. Chemotherapy 1997, 43, 367–370.
  15. Hull, C.M.; Bader, O.; Parker, J.E.; Weig, M.; Gross, U.; Warrilow, A.G.; Kelly, D.E.; Kelly, S.L. Two clinical isolates of Candida glabrata exhibiting reduced sensitivity to amphotericin B both harbor mutations in ERG2. Antimicrob. Agents Chemother. 2012, 56, 6417–6421.
  16. Woods, R.A.; Bard, M.; Jackson, I.E.; Drutz, D.J. Resistance to polyene antibiotics and correlated sterol changes in two isolates of Candida tropicalis from a patient with an amphotericin B-resistant funguria. J. Infect. Dis. 1974, 129, 53–58.
  17. Satoh, K.; Makimura, K.; Hasumi, Y.; Nishiyama, Y.; Uchida, K.; Yamaguchi, H. Candida auris sp. nov, a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital. Microbiol. Immunol. 2009, 53, 41–44.
  18. Tracking Candida Auris. Case Count Updated as of July 31; 2019; CDC. Available online: https://www.cdc.gov/fungal/candida-auris/tracking-c-auris.html (accessed on 9 September 2019).
  19. Lockhart, S.R.; Etienne, K.A.; Vallabhaneni, S.; Farooqi, J.; Chowdhary, A.; Govender, N.P.; Colombo, A.L.; Calvo, B.; Cuomo, C.A.; Desjardins, C.A.; et al. Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin. Infect. Dis. 2017, 64, 134–140.
  20. Friedman, D.Z.P.; Schwartz, I.S. Emerging fungal infections: New patients, new patterns, and new pathogens. J. Fungi 2019, 5, 67.
  21. Hata, D.J.; Humphries, R.; Lockhart, S.R.; College of American Pathologists Microbiology Committee. Candida auris: An emerging yeast pathogen posing distinct challenges for laboratory diagnostics, treatment, and infection prevention. Arch. Pathol. Lab. Med. 2019.
  22. Ramasubramania Raja, R. Medicinally potential plants of Labiatae (Lamiaceae) family: An overview. Res. J. Med. Plant. 2012, 6, 203–213.
  23. Carović-Stanko, K.; Petek, M.; Grdiša, M.; Pintar, J.; Bedeković, D.; Herak Ćustić, M.; Satovic, Z. Medicinal plants of the family Lamiaceae as functional foods—A review. Czech J. Food Sci. 2016, 34, 377–390.
  24. Radulović, N.S.; Blagojević, P.D.; Stojanović-Radić, Z.Z.; Stojanowić, N.M. Antimicrobial plant metabolites: Structural diversity and mechanism of action. Curr. Med. Chem. 2013, 20, 932–952.
  25. Vainstein, A.; Lewinsohn, E.; Pichersky, E.; Weiss, D. Floral fragrance. New inroads into an old commodity. Plant Physiol. 2001, 127, 1383–1389.
  26. De Groot, A.C.; Schmidt, E. Essential oils, Part III: Chemical composition. Dermatitis 2016, 27, 161–619.
  27. Piątkowska, E.; Rusiecka-Ziółkowska, J. Influence of essential oils on infectious agents. Adv. Clin. Exp. Med. 2016, 25, 989–995.
  28. Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential oils’ chemical characterization and investigation of some biological activities: A critical review. Medicines 2016, 3, 25.
  29. Yang, D.; Michel, L.; Chaumont, J.P.; Millet-Clerc, J. Use of caryophyllene oxide as an antifungal agent in an in vitro experimental model of onychomycosis. Mycopathologia 1999, 148, 79–82.
  30. Dahham, S.S.; Tabana, Y.M.; Iqbal, M.A.; Ahamed, M.B.; Ezzat, M.O.; Majid, A.S.; Majid, A.M. The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of Aquilaria crassna. Molecules 2015, 20, 11808–11829.
  31. Selestino Neta, M.C.; Vittorazzi, C.; Guimarães, A.C.; Martins, J.D.; Fronza, M.; Endringer, D.C.; Scherer, R. Effects of β-caryophyllene and Murraya paniculata essential oil in the murine hepatoma cells and in the bacteria and fungi 24-h time-kill curve studies. Pharm. Biol. 2017, 55, 190–197.
  32. Bona, E.; Cantamessa, S.; Pavan, M.; Novello, G.; Massa, N.; Rocchetti, A.; Berta, G.; Gamalero, E. Sensitivity of Candida albicans to essential oils: Are they an alternative to antifungal agents? J. Appl. Microbiol. 2016, 121, 1530–1545.
  33. Kordali, S.; Cakir, A.; Ozer, H.; Cakmakci, R.; Kesdek, M.; Mete, E. Antifungal, phytotoxic and insecticidal properties of essential oil isolated from Turkish Origanum acutidens and its three components, carvacrol, thymol and p-cymene. Bioresour. Technol. 2008, 99, 8788–8795.
  34. Marei, G.I.K.; Abdel Rasoul, M.A.; Abdelgaleil, S.A.M. Comparative antifungal activities and biochemical effects of monoterpenes on plant pathogenic fungi. Pesticide Biochem. Physiol. 2012, 103, 56–61.
  35. Abbaszadeh, S.; Sharifzadeh, A.; Shokri, H.; Khosravi, A.R.; Abbaszadeh, A. Antifungal efficacy of thymol, carvacrol, eugenol and menthol as alternative agents to control the growth of food-relevant fungi. J. Mycol. Med. 2014, 24, e51–e56.
  36. Rivera-Yañez, C.R.; Terrazas, L.I.; Jimenez-Estrada, M.; Campos, J.E.; Flores-Ortiz, C.M.; Hernandez, L.B.; Cruz-Sanchez, T.; Garrido-Fariña, G.I.; Rodriguez-Monroy, M.A.; Canales-Martinez, M.M. Anti-Candida activity of Bursera morelensis Ramirez essential oil and two compounds, α-pinene and γ-terpinene—an in vitro study. Molecules 2017, 22, 95.
  37. de Oliveira Lima, M.I.; Araújo de Medeiros, A.C.; Souza Silva, K.V.; Cardoso, G.N.; de Oliveira Lima, E.; de Oliveira Pereira, F. Investigation of the antifungal potential of linalool against clinical isolates of fluconazole resistant Trichophyton rubrum. J. Mycol. Med. 2017, 27, 195–202.
  38. de Macêdo Andrade, A.C.; Rosalen, P.L.; Freires, I.A.; Scotti, L.; Scotti, M.T.; Aquino, S.G.; de Castro, R.D. Antifungal activity, mode of action, docking prediction and anti-biofilm effects of (+)-β-pinene enantiomers against Candida spp. Curr. Top. Med. Chem. 2018, 18, 2481–2490.
  39. Wang, K.; Jiang, S.; Pu, T.; Fan, L.; Su, F.; Ye, M. Antifungal activity of phenolic monoterpenes and structure-related compounds against plant pathogenic fungi. Nat. Prod. Res. 2019, 33, 1423–1430.
  40. Shi, Y.; Si, H.; Wang, P.; Chen, S.; Shang, S.; Song, Z.; Wang, Z.; Liao, S. Derivatization of natural compound β-pinene enhances its in vitro antifungal activity against plant pathogens. Molecules 2019, 24, 3144.
  41. Wojtunik-Kulesza, K.A.; Kasprzak, K.; Oniszczuk, T.; Oniszczuk, A. Natural monoterpenes: Much more than only a scent. Chem. Biodiv. 2019, 16, e19004.
  42. Monforte, M.T.; Tzakou, O.; Nostro, A.; Zimbalatti, V.; Galati, E.M. Chemical composition and biological activities of Calamintha officinalis Moench essential oil. J. Med. Food 2011, 14, 297–303.
  43. Ćavar, S.; Vidic, D.; Maksimović, M. Volatile constituents, phenolic compounds, and antioxidant activity of Calamintha glandulosa (Req.) Bentham. J. Sci. Food Agric. 2013, 93, 1758–1764.
  44. Gonçalves, M.J.; Vicente, A.M.; Cavaleiro, C.; Salgueiro, L. Composition and antifungal activity of the essential oil of Mentha cervina from Portugal. Nat. Prod. Res. 2007, 21, 867–871.
  45. Al-Maskri, A.Y.; Hanif, M.A.; Al-Maskari, M.Y.; Abraham, A.S.; Al-sabahi, J.N.; Al-Mantheri, O. Essential oil from Ocimum basilicum (Omani Basil): A desert crop. Nat. Prod. Commun. 2011, 6, 1487–1490.
  46. Ngo Mback, M.N.; Agnaniet, H.; Nguimatsia, F.; Jazet Dongmo, P.M.; Hzounda Fokou, J.B.; Bakarnga-Via, I.; Fekam Boyom, F.; Menut, C. Optimization of antifungal activity of Aeollanthus heliotropioides oliv essential oil and Time Kill Kinetic Assay. J. Mycol. Med. 2016, 26, 233–243.
  47. Shin, S.; Kang, C.A. Antifungal activity of the essential oil of Agastache rugosa Kuntze and its synergism with ketoconazole. Lett. Appl. Microbiol. 2003, 36, 111–115.
  48. Gong, H.; Li, S.; He, L.; Kasimu, R. Microscopic identification and in vitro activity of Agastache rugosa (Fisch. et Mey) from Xinjiang, China. BMC Complement Altern. Med. 2017, 17, 95.
  49. Fraternale, D.; Ricci, D. Essential oil composition and antifungal activity of aerial parts of Ballota nigra ssp foetida collected at flowering and fruiting times. Nat. Prod. Commun. 2014, 9, 1015–1018.
  50. Marinković, B.; Marin, P.D.; Knezević-Vukcević, J.; Soković, M.D.; Brkić, D. Activity of essential oils of three Micromeria species (Lamiaceae) against micromycetes and bacteria. Phytother. Res. 2002, 16, 336–339.
  51. Marongiu, B.; Piras, A.; Porcedda, S.; Falconieri, D.; Maxia, A.; Gonçalves, M.J.; Cavaleiro, C.; Salgueiro, L. Chemical composition and biological assays of essential oils of Calamintha nepeta (L.) Savi subsp. nepeta (Lamiaceae). Nat. Prod. Res. 2010, 24, 1734–1742.
  52. Božović, M.; Garzoli, S.; Sabatino, M.; Pepi, F.; Baldisserotto, A.; Andreotti, E.; Romagnoli, C.; Mai, A.; Manfredini, S.; Ragno, R. Essential oil extraction, chemical analysis and anti-Candida activity of Calamintha nepeta (L.) Savi subsp. landulosa (Req.) Ball—New approaches. Molecules 2017, 22, 203.
  53. Kumar, V.; Mathela, C.S.; Tewari, A.K.; Bisht, K.S. In vitro inhibition activity of essential oils from some Lamiaceae species against phytopathogenic fungi. Pestic. Biochem. Physiol. 2014, 114, 67–71.
  54. Zhang, C.; Li, H.; Yun, T.; Fu, Y.; Liu, C.; Gong, B.; Neng, B. Chemical composition, antimicrobial and antioxidant activities of the essential oil of Tibetan herbal medicine Dracocephalum heterophyllum Benth. Nat. Prod. Res. 2008, 22, 1–11.
  55. Stappen, I.; Wanner, J.; Tabanca, N.; Wedge, D.E.; Ali, A.; Kaul, V.K.; Lal, B.; Jaitak, V.; Gochev, V.K.; Schmidt, E.; et al. Chemical composition and biological activity of essential oils of Dracocephalum heterophyllum and Hyssopus officinalis from Western Himalaya. Nat. Prod. Commun. 2015, 10, 133–138.
  56. Ahmadi, F.; Sadeghi, S.; Modarresi, M.; Abiri, R.; Mikaeli, A. Chemical composition, in vitro anti-microbial, antifungal an d antioxidant activities of the essential oil and methanolic extract of Hymenocrater longiflorus Benth., of Iran. Food Chem. Toxicol. 2010, 48, 1137–1144.
  57. De Oliveira, C.M.A.; Silva, M.R.R.; Kato, L.; da Silva, C.C.; Ferreira, H.D.; Souza, L.K.H. Chemical composition and antifungal activity of the essential oil of Hyptis ovalifolia Benth. (Lamiaceae). J. Braz. Chem. Soc. 2004, 15, 756–759.
  58. Souza, L.K.; de Oliveira, C.M.; Ferri, P.H.; de Oliveira Júnior, J.G.; de Souza Júnior, A.H.; Fernandes Ode, F.; Silva Mdo, R. Antimicrobial activity of Hyptis ovalifolia towards dermatophytes. Memórias do Instituto Oswaldo Cruz 2003, 98, 963–965.
  59. Džamić, A.M.; Soković, M.D.; Novaković, M.; Jadranin, M.; Ristić, M.S.; Tešević, V.; Marin, P.D. Composition, antifungal and antioxidant properties of Hyssopus officinalis L. subsp. pilifer (Pant.) Murb. essential oil and deodorized extracts. Ind. Crops Prod. 2013, 51, 401–407.
  60. Hristova, Y.; Wanner, J.; Jirovetz, L.; Stappen, I.; Iliev, I.; Gochev, V. Chemical composition and antifungal activity of essential oil of Hyssopus officinalis L. from Bulgaria against clinical isolates of Candida species. Biotechnol. Biotechnol. Equip. 2015, 29, 592–601.
  61. D’Auria, F.D.; Tecca, M.; Strippoli, V.; Salvatore, G.; Battinelli, L.; Mazzanti, G. Antifungal activity of Lavandula angustifolia essential oil against Candida albicans yeast and mycelial form. Med. Mycol. 2005, 43, 391–396.
  62. Khoury, M.; Stien, D.; Eparvier, V.; Ouaini, N.; El Beyrouthy, M. Report on the medicinal use of eleven Lamiaceae species in Lebanon and rationalization of their antimicrobial potential by examination of the chemical composition and antimicrobial activity of their essential oils. Evid. Based Compl. Altern. Med. 2016, 2016.
  63. Dolatabadi, S.; Salari, Z.; Mahboubi, M. Antifungal effects of Ziziphora tenuior, Lavandula angustifolia, Cuminum cyminum essential oils against clinical isolates of Candida albicans from women suffering from vulvovaginal candidiasis. Infect 2019, 23, 222–226.
  64. Adam, K.; Sivropoulou, A.; Kokkini, S.; Lanaras, T.; Arsenakis, M. Antifungal activities of Origanum vulgare subsp. hirtum, Mentha spicata, Lavandula angustifolia, and Salvia fruticosa essential oils against human pathogenic fungi. J. Agric. Food Chem. 1998, 46, 1739–1745.
  65. Zuzarte, M.; Vale-Silva, L.; Gonçalves, M.J.; Cavaleiro, C.; Vaz, S.; Canhoto, J.; Pinto, E.; Salgueiro, L. Antifungal activity of phenolic-rich Lavandula multifida L. essential oil. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 1359–1366.
  66. Zuzarte, M.; Gonçalves, M.J.; Cavaleiro, C.; Dinis, A.M.; Canhoto, J.M.; Salgueiro, L.R. Chemical composition and antifungal activity of the essential oils of Lavandula pedunculata (Miller) Cav. Chem. Biodivers. 2009, 6, 1283–1292.
  67. Zuzarte, M.; Gonçalves, M.J.; Cruz, M.T.; Cavaleiro, C.; Canhoto, J.; Vaz, S.; Pinto, E.; Salgueiro, L. Lavandula luisieri essential oil as a source of antifungal drugs. Food Chem. 2012, 135, 1505–1510.
  68. Zuzarte, M.; Gonçalves, M.J.; Cavaleiro, C.; Canhoto, J.; Vale-Silva, L.; Silva, M.J.; Pinto, E.; Salgueiro, L. Chemical composition and antifungal activity of the essential oils of Lavandula viridis L’Her. J. Med. Microbiol. 2011, 60, 612–618.
  69. Ramírez, J.; Gilardoni, G.; Jácome, M.; Montesinos, J.; Rodolfi, M.; Guglielminetti, M.L.; Cagliero, C.; Bicchi, C.; Vidari, G. Chemical composition, enantiomeric analysis, AEDA sensorial evaluation and antifungal activity of the essential oil from the Ecuadorian plant Lepechinia mutica Benth (Lamiaceae). Chem. Biodivers. 2017, 14, e1700292.
  70. Zarai, Z.; Kadri, A.; Ben Chobba, I.; Ben Mansour, R.; Bekir, A.; Mejdoub, H.; Gharsallah, N. The in-vitro evaluation of antibacterial, antifungal and cytotoxic properties of Marrubium vulgare L. essential oil grown in Tunisia. Lipids Health Dis. 2011, 10, 161.
  71. Powers, C.N.; Osier, J.L.; McFeeters, R.L.; Brazell, C.B.; Olsen, E.L.; Moriarity, D.M.; Satyal, P.; Setzer, W.N. Antifungal and cytotoxic activities of sixty commercially-available essential oils. Molecules 2018, 23, 1549.
  72. Mimica-Dukic, N.; Bozin, B.; Sokovic, M.; Simin, N. Antimicrobial and antioxidant activities of Melissa officinalis L. (Lamiaceae) essential oil. J. Agric. Food Chem. 2004, 52, 2485–2489.
  73. Ozcakmak, S.; Dervisoglu, M.; Yilmaz, A. Antifungal activity of lemon balm and sage essential oils on the growth of ochratoxigenic Penicillium verrucosum. Afr. J. Microbiol. Res. 2012, 6, 3079–3084.
  74. Camiletti, B.X.; Asensio, C.M.; Pecci Mde, L.; Lucini, E.I. Natural control of corn postharvest fungi Aspergillus flavus and Penicillium sp. using essential oils from plants grown in Argentina. J. Food Sci. 2014, 79, M2499–M2506.
  75. Hossain, F.; Follett, P.; Dang Vu, K.; Harich, M.; Salmieri, S.; Lacroix, M. Evidence for synergistic activity of plant-derived essential oils against fungal pathogens of food. Food Microbiol. 2016, 53, 24–30.
  76. Samber, N.; Khan, A.; Varma, A.; Manzoor, N. Synergistic anti-candidal activity and mode of action of Mentha piperita essential oil and its major components. Pharm. Biol. 2015, 53, 1496–1504.
  77. Tyagi, A.K.; Malik, A. Liquid and vapour-phase antifungal activities of selected essential oils against Candida albicans: Microscopic observations and chemical characterization of Cymbopogon citratus. BMC Complement Altern. Med. 2010, 10, 65.
  78. Sharma, A.; Rajendran, S.; Srivastava, A.; Sharma, S.; Kundu, B. Antifungal activities of selected essential oils against Fusarium oxysporum f. sp. lycopersici 1322, with emphasis on Syzygium aromaticum essential oil. J. Biosci. Bioeng. 2017, 123, 308–313.
  79. Jeršek, B.; Poklar Ulrih, N.; Skrt, M.; Gavarić, N.; Božin, B.; Smole Možina, S. Effects of selected essential oils on the growth and production of ochratoxin A by Penicillium verrucosum. Arhiv Higijenu i Toksikologiju 2014, 65, 199–208.
  80. Mahboubi, M.; Haghi, G. Antimicrobial activity and chemical composition of Mentha pulegium L. essential oil. J. Ethnopharmacol. 2008, 119, 325–327.
  81. Piras, A.; Porcedda, S.; Falconieri, D.; Maxia, A.; Gonçalves, M.; Cavaleiro, C.; Salgueiro, L. Antifungal activity of essential oil from Mentha spicata L. and Mentha pulegium L. growing wild in Sardinia island (Italy). Nat. Prod. Res. 2019.
  82. Abdelli, M.; Moghrani, H.; Aboun, A.; Maachi, R. Algerian Mentha pulegium L. leaves essential oil: Chemical composition, antimicrobial, insecticidal and antioxidant activities. Ind. Crops Prod. 2016, 94, 197–205.
  83. Fancello, F.; Zara, S.; Petretto, G.L.; Chessa, M.; Addis, R.; Rourke, J.P.; Pintore, G. Essential oils from three species of Mentha harvested in Sardinia: Chemical characterization and evaluation of their biological activity. Int. J. Food Prop. 2017, 20, 1751–1761.
  84. Chessa, M.; Sias, A.; Piana, A.; Mangano, G.S.; Petretto, G.L.; Masia, M.D.; Tirillini, B.; Pintore, G. Chemical composition and antibacterial activity of the essential oil from Mentha requienii Bentham. Nat. Prod. Res. 2013, 27, 93–99.
  85. Houicher, A.; Hechachna, H.; Teldji, H.; Ozogul, F. In vitro study of the antifungal activity of essential oils obtained from Mentha spicata, Thymus vulgaris, and Laurus nobilis. Recent Pat. Food Nutr. Agric. 2016, 8, 99–106.
  86. Nardoni, S.; Giovanelli, S.; Pistelli, L.; Mugnaini, L.; Profili, G.; Pisseri, F.; Mancianti, F. In vitro activity of twenty commercially available, plant-derived essential oils against selected dermatophyte species. Nat. Prod. Commun. 2015, 10, 1473–1478.
  87. Ji, H.; Kim, H.; Beuchat, L.R.; Ryu, J.H. Synergistic antimicrobial activities of essential oil vapours against Penicillium corylophilum on a laboratory medium and beef jerky. Int. J. Food Microbiol. 2019, 291, 104–110.
  88. Oumzil, H.; Ghoulami, S.; Rhajaoui, M.; Ilidrissi, A.; Fkih-Tetouani, S.; Faid, M.; Benjouad, A. Antibacterial and antifungal activity of essential oils of Mentha suaveolens. Phytother. Res. 2002, 16, 727–731.
  89. Garzoli, S.; Pirolli, A.; Vavala, E.; Di Sotto, A.; Sartorelli, G.; Božović, M.; Angiolella, L.; Mazzanti, G.; Pepi, F.; Ragno, R. Multidisciplinary approach to determine the optimal time and period for extracting the essential oil from Mentha suaveolens Ehrh. Molecules 2015, 20, 9640–9655.
  90. Pietrella, D.; Angiolella, L.; Vavala, E.; Rachini, A.; Mondello, F.; Ragno, R.; Bistoni, F.; Vecchiarelli, A. Beneficial effect of Mentha suaveolens essential oil in the treatment of vaginal candidiasis assessed by real-time monitoring of infection. BMC Complement Altern. Med. 2011, 11, 18.
  91. Angiolella, L.; Vavala, E.; Sivric, S.; D’Auria, F.D.; Ragno, R. In vitro activity of Mentha suaveolens essential oil against Cryptococcus neoformans and dermatophytes. Int. J. Essent. Oil Ther. 2010, 4, 35–36.
  92. Casiglia, S.; Jemia, M.B.; Riccobono, L.; Bruno, M.; Scandolera, E.; Senatore, F. Chemical composition of the essential oil of Moluccella spinosa L. (Lamiaceae) collected wild in Sicily and its activity on microorganisms affecting historical textiles. Nat. Prod. Res. 2015, 29, 1201–1206.
  93. Bisht, D.S.; Padalia, R.C.; Singh, L.; Pande, V.; Lal, P.; Mathela, C.S. Constituents and antimicrobial activity of the essential oils of six Himalayan Nepeta species. J. Serb. Chem. Soc. 2010, 75, 739–747.
  94. Sacchetti, G.; Medici, A.; Maietti, S.; Radice, M.; Muzzoli, M.; Manfredini, S.; Braccioli, E.; Bruni, R. Composition and functional properties of the essential oil of amazonian basil, Ocimum micranthum Willd., Labiatae in comparison with commercial essential oils. J. Agric. Food Chem. 2004, 52, 3486–3491.
  95. Mohr, F.B.; Lermen, C.; Gazim, Z.C.; Gonçalves, J.E.; Alberton, O. Antifungal activity, yield, and composition of Ocimum gratissimum essential oil. Genet. Mol. Res. 2017, 16.
  96. Santamarina, M.P.; Roselló, J.; Sempere, F.; Giménez, S.; Blázquez, M.A. Commercial Origanum compactum Benth. and Cinnamomum zeylanicum Blume essential oils against natural mycoflora in Valencia rice. Nat. Prod. Res. 2015, 29, 2215–2258.
  97. Pitarokili, D.; Tzakou, O.; Loukis, A.; Harvala, C. Volatile metabolites from Salvia fruticosa as antifungal agents in soilborne pathogens. J. Agric. Food Chem. 2003, 51, 3294–3301.
  98. Zomorodian, K.; Moein, M.; Pakshir, K.; Karami, F.; Sabahi, Z. Chemical composition and antimicrobial activities of the essential oil from Salvia mirzayanii leaves. J. Evid. Based Complementary Altern. Med. 2017, 22, 770–776.
  99. Alizadeh, A.; Zamani, E.; Sharaifi, R.; Javan-Nikkhah, M.; Nazari, S. Antifungal activity of some essential oils against toxigenic Aspergillus species. Commun. Agric. Appl. Biol. Sci. 2010, 75, 761–767.
  100. Güllüce, M.; Sökmen, M.; Daferera, D.; Ağar, G.; Ozkan, H.; Kartal, N.; Polissiou, M.; Sökmen, A.; Sahin, F. In vitro antibacterial, antifungal, and antioxidant activities of the essential oil and methanol extracts of herbal parts and callus cultures of Satureja hortensis L. J. Agric. Food Chem. 2003, 51, 3958–3965.
  101. Mohammadi, A.; Nazari, H.; Imani, S.; Amrollahi, H. Antifungal activities and chemical composition of some medicinal plants. J. Mycol. Med. 2014, 24, e1–e8.
  102. Salah, K.B.; Mahjoub, M.A.; Chaumont, J.P.; Michel, L.; Millet-Clerc, J.; Chraeif, I.; Ammar, S.; Mighri, Z.; Aouni, M. Chemical composition and in vitro antifungal and antioxidant activity of the essential oil and methanolic extract of Teucrium sauvagei Le Houerou. Nat. Prod. Res. 2006, 20, 1089–1097.
  103. Ali, N.A.A.; Chhetri, B.K.; Dosoky, N.S.; Shari, K.; Al-Fahad, A.J.A.; Wessjohann, L.; Setzer, W.N. Antimicrobial, antioxidant, and cytotoxic activities of Ocimum forskolei and Teucrium yemense (Lamiaceae) essential oils. Medicines 2017, 4, 17.
  104. Salgueiro, L.R.; Pinto, E.; Gonçalves, M.J.; Pina-Vaz, C.; Cavaleiro, C.; Rodrigues, A.G.; Palmeira, A.; Tavares, C.; Costa-de-Oliveira, S.; Martinez-de-Oliveira, J. Chemical composition and antifungal activity of the essential oil of Thymbra capitata. Planta Med. 2004, 70, 572–575.
  105. Tabti, L.; Dib Mel, A.; Gaouar, N.; Samira, B.; Tabti, B. Antioxidant and antifungal activity of extracts of the aerial parts of Thymus capitatus (L.) Hoffmanns against four phytopathogenic fungi of Citrus sinensis. Jundishapur J. Nat. Pharm. Prod. 2014, 9, 49–54.
  106. Goren, A.C.; Bilsel, G.; Bilsel, M.; Demir, H.; Kocabaş, E.E. Analysis of essential oil of Coridothymus capitatus (L.) and its antibacterial and antifungal activity. Zeitschrift für Naturforschung C 2003, 58, 687–690.
  107. Palmeira-de-Oliveira, A.; Gaspar, C.; Palmeira-de-Oliveira, R.; Silva-Dias, A.; Salgueiro, L.; Cavaleiro, C.; Pina-Vaz, C.; Martinez-de-Oliveira, J.; Queiroz, J.A.; Rodrigues, A.G. The anti-Candida activity of Thymbra capitata essential oil: Effect upon pre-formed biofilm. J. Ethnopharmacol. 2012, 140, 379–383.
  108. Marković, T.; Chatzopoulou, P.; Šiljegović, J.; Nikolić, M.; Glamočlija, J.; Ćirić, A.; Soković, M. Chemical analysis and antimicrobial activities of the essential oils of Satureja thymbra L. and Thymbra spicata L. and their main components. Arch. Biol. Sci. Belgrade 2011, 63, 457–464.
  109. Kiliç, T. Analysis of essential oil composition of Thymbra spicata var. spicata: Antifungal, antibacterial and antimycobacterial activities. Z. Naturforsch. C 2006, 61, 324–328.
  110. Unlü, M.; Vardar-Unlü, G.; Vural, N.; Dönmez, E.; Ozbaş, Z.Y. Chemical composition, antibacterial and antifungal activity of the essential oil of Thymbra spicata L. from Turkey. Nat. Prod. Res. 2009, 23, 572–579.
  111. Jaradat, N.; Adwan, L.; Kaibni, S.; Shraim, N.; Zaid, A.N. Chemical composition, anthelmintic, antibacterial and antioxidant effects of Thymus bovei essential oil. BMC Complement Altern. Med. 2016, 16, 418.
  112. Pina-Vaz, C.; Gonçalves Rodrigues, A.; Pinto, E.; Costa-de-Oliveira, S.; Tavares, C.; Salgueiro, L.; Cavaleiro, C.; Gonçalves, M.J.; Martinez-de-Oliveira, J. Antifungal activity of Thymus oils and their major compounds. J. Eur. Acad Dermatol. Venereol. 2004, 18, 73–78.
  113. Pinto, E.; Pina-Vaz, C.; Salgueiro, L.; Gonçalves, M.J.; Costa-de-Oliveira, S.; Cavaleiro, C.; Palmeira, A.; Rodrigues, A.; Martinez-de-Oliveira, J. Antifungal activity of the essential oil of Thymus pulegioides on Candida, Aspergillus and dermatophyte species. J. Med. Microbiol. 2006, 55, 1367–1373.
  114. Pagiotti, R.; Angelini, P.; Rubini, A.; Tirillini, B.; Granetti, B.; Venanzoni, R. Identification and characterisation of human pathogenic filamentous fungi and susceptibility to Thymus schimperi essential oil. Mycoses 2011, 54, e364–e376.
  115. Nasir, M.; Tafess, K.; Abate, D. Antimicrobial potential of the Ethiopian Thymus schimperi essential oil in comparison with others against certain fungal and bacterial species. BMC Complement Altern. Med. 2015, 15, 260.
  116. Sokolić-Mihalak, D.; Frece, J.; Slavica, A.; Delaš, F.; Pavlović, H.; Markov, K. The effects of wild thyme (Thymus serpyllum L.) essential oil components against ochratoxin-producing Aspergilli. Arhiv za Higijenu i Toksikologiju 2012, 63, 457–462.
  117. Couladis, M.; Tzakou, O.; Kujundzic, S.; Sokovic, M.; Mimica-Dukic, N. Chemical analysis and antifungal activity of Thymus striatus. Phytother. Res. 2004, 18, 40–42.
  118. Segvić Klarić, M.; Kosalec, I.; Mastelić, J.; Piecková, E.; Pepeljnak, S. Antifungal activity of thyme (Thymus vulgaris L.) essential oil and thymol against moulds from damp dwellings. Lett. Appl. Microbiol. 2007, 44, 36–42.
  119. Perina, F.J.; Amaral, D.C.; Fernandes, R.S.; Labory, C.R.; Teixeira, G.A.; Alves, E. Thymus vulgaris essential oil and thymol against Alternaria alternata (Fr.) Keissler: Effects on growth, viability, early infection and cellular mode of action. Pest Manag. Sci. 2015, 71, 1371–1378.
  120. Sharifzadeh, A.; Javan, A.J.; Shokri, H.; Abbaszadeh, S.; Keykhosravy, K. Evaluation of antioxidant and antifungal properties of the traditional plants against foodborne fungal pathogens. J. Mycol. Med. 2016, 26, e11–e17.
  121. Bozin, B.; Mimica-Dukic, N.; Simin, N.; Anackov, G. Characterization of the volatile composition of essential oils of some Lamiaceae spices and the antimicrobial and antioxidant activities of the entire oils. J. Agric. Food Chem. 2006, 54, 1822–1828.
  122. Liu, J.; Sui, G.; He, Y.; Liu, D.; Yan, J.; Liu, S.; Qin, W. Prolonging storage time of baby ginger by using a sand-based storage medium and essential oil treatment. J. Food Sci. 2014, 79, M593–M599.
  123. Homa, M.; Fekete, I.P.; Böszörményi, A.; Singh, Y.R.; Selvam, K.P.; Shobana, C.S.; Manikandan, P.; Kredics, L.; Vágvölgyi, C.; Galgóczy, L. Antifungal effect of essential oils against Fusarium keratitis isolates. Planta Med. 2015, 81, 1277–1284.
  124. Divband, K.; Shokri, H.; Khosravi, A.R. Down-regulatory effect of Thymus vulgaris L. on growth and Tri4 gene expression in Fusarium oxysporum strains. Microb. Pathog. 2017, 104, 1–5
  125. Vinciguerra, V.; Rojas, F.; Tedesco, V.; Giusiano, G.; Angiolella, L. Chemical characterization and antifungal activity of Origanum vulgare, Thymus vulgaris essential oils and carvacrol against Malassezia furfur. Nat. Prod. Res. 2018, 33, 3273–3277.
  126. Nikkhah, M.; Hashemi, M.; Habibi Najafi, M.B.; Farhoosh, R. Synergistic effects of some essential oils against fungal spoilage on pear fruit. Int. J. Food Microbiol. 2017, 257, 285–294.
  127. De Lira Mota, K.S.; de Oliveira Pereira, F.; de Oliveira, W.A.; Lima, I.O.; de Oliveira Lima, E. Antifungal activity of Thymus vulgaris L. essential oil and its constituent phytochemicals against Rhizopus oryzae: Interaction with ergosterol. Molecules 2012, 17, 14418–14433.
  128. Khan, M.S.; Ahmad, I.; Cameotra, S.S. Carum copticum and Thymus vulgaris oils inhibit virulence in Trichophyton rubrum and Aspergillus spp. Braz. J. Microbiol. 2014, 45, 523–531.
  129. Asdadi, A.; Hamdouch, A.; Oukacha, A.; Moutaj, R.; Gharby, S.; Harhar, H.; El Hadek, M.; Chebli, B.; Idrissi Hassani, L.M. Study on chemical analysis, antioxidant and in vitro antifungal activities of essential oil from wild Vitex agnus-castus L. seeds growing in area of Argan Tree of Morocco against clinical strains of Candida responsible for nosocomial infections. J. Mycol. Med. 2015, 25, e118–e127.
  130. Marongiu, B.; Piras, A.; Porcedda, S.; Falconieri, D.; Goncalves, M.J.; Salgueiro, L.; Maxia, A.; Lai, R. Extraction, separation and isolation of volatiles from Vitex agnus-castus L. (Verbenaceae) wild species of Sardinia, Italy, by supercritical CO2. Nat. Prod. Res. 2010, 24, 569–579.
  131. Mahboubi, M.; Heidary Tabar, R.; Mahdizadeh, E. The anti-dermatophyte activity of Zataria multiflora essential oils. J. Mycol. Med. 2017, 27, 232–237.
  132. Moghadam, H.D.; Sani, A.M.; Sangatash, M.M. Antifungal activity of essential oil of Ziziphora clinopodioides and the inhibition of aflatoxin B1 production in maize grain. Toxicol. Ind. Health 2016, 32, 493–499.
  133. Abu-Darwish, M.S.; Cabral, C.; Gonçalves, M.J.; Cavaleiro, C.; Cruz, M.T.; Paoli, M.; Tomi, F.; Efferth, T.; Salgueiro, L. Ziziphora tenuior L. essential oil from Dana Biosphere Reserve (Southern Jordan); Chemical characterization and assessment of biological activities. J. Ethnopharmacol. 2016, 194, 963–970.
  134. Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253.
  135. Helal, G.A.; Sarhan, M.M.; Abu Shahla, A.N.K.; Abou El-Khair, E.K. Effects of Cymbopogon citratus L. essential oil on the growth, lipid content and morphogenesis of Aspergillus niger ML2-strain. J. Basic Microbiol. 2006, 46, 456–469.
  136. Rammanee, K.; Hongpattarakere, T. Effects of tropical citrus essential oils on growth, aflatoxin production, and ultrastructure alterations of Aspergillus flavus and Aspergillus parasiticus. Food Bioprocess Technol. 2011, 4, 1050–1059.
  137. Hyldgaard, M.; Mygind, T.; Meyer, R.L. Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Front. Microbiol. 2012, 3, 1–24.
  138. Basak, S.; Guha, P. A review on antifungal activity and mode of action of essential oils and their delivery as nano-sized oil droplets in food system. J. Food Sci. Technol. 2018, 55, 4701–4710.
  139. Tariq, S.; Wani, S.; Rasool, W.; Shafi, K.; Bhat, M.A.; Prabhakar, A.; Shalla, A.H.; Rather, M.A. A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microb. Pathog. 2019, 134.
More
ScholarVision Creations