Milled Dental Surface Integrity: Comparison
Please note this is a comparison between Version 2 by Bruce Ren and Version 1 by Nicolas LEBON.

Surface integrity is a multiphysics (biological, mechanical, optical, chemical, esthetic, etc.) and multiscale (from nm to mm) concept. It is defined as the residual signature left on the surface by the manufacturing or post-treatment process and permits correlating the process with the expected surface functionalities. Thanks to the advances made in mechanical engineering, the concept of surface integrity has been transposed to dentistry and oral science. The surface integrity concept transposed to fixed dental prostheses is presented in this article. The main components of surface integrity and their correlations within the triptych of surface integrity–process–clinical functionalities are presented.

  • surface integrity
  • dental prosthesis
  • manufacturing
  • functionalities
Please wait, diff process is still running!

References

  1. Barrau, O. Étude du frottement et de l’usure d’acier à outils de travail à chaud, Ph.D. Thesis, Institut National Polytechnique, Toulouse, France, 14 December 2004.Barrau, O. Étude du frottement et de l’usure d’acier à outils de travail à chaud. Ph.D. Thesis, Institut National Polytechnique, Toulouse, France, 14 December 2004.
  2. Benatmane, A. Développement de la microscopie interférométrique pour une meilleure analyse morphologique des couches minces et épaisses des matériaux semiconducteurs et optiques. Ph.D. Thesis, Louis Pasteur-Strasbourg I University, Strasbourg, France, 18 February 2003.
  3. Astakhoav, V.P. Surface integrity—Definition and importance in functional performance. In Surface Integrity in Machining; Springer, London, UK, 2010; pp. 1–35.Astakhoav, V.P. Surface integrity—Definition and importance in functional performance. In Surface Integrity in Machining; Springer: London, UK, 2010; pp. 1–35.
  4. Kriz, A. The surface: What is the way to better understanding. Proceedings of Metal, Roznov pod Radhostem, Czech Republic, 20/05/2010.Kriz, A. The surface: What is the way to better understanding. In Proceedings of the Metal, Roznov pod Radhostem, Czech Republic, 20 May 2010.
  5. Field, M.; Kahles, F. The surface integrity of machined and ground high-strength steels. 1964 1964, 54–77.Field, M.; Kahles, F. The Surface Integrity of Machined and Ground High-Strength Steels; Defense Metals Information Center Report No. 210; Battelle Memorial Institute: Columbus, Ohio, 1964; pp. 54–77.
  6. Davim, J.P. Surface Integrity in Machining; Springer: London, UK, 2010; Volume 1848828742.
  7. ISO. ISO 4287: Geometrical Product Specification (GPS)—Surface Texture: Profile method—Terms, Definitions and Surface Texture Parameters; ISO: Geneva, Switzerland, 1998.ISO. ISO 4287: Geometrical Product Specification (GPS)—Surface Texture: Profile Method—Terms, Definitions and Surface Texture Parameters; ISO: Geneva, Switzerland, 1998.
  8. ISO. ISO 4288: Geometrical Product Specifications (GPS)—Surface Texture: Profile Method—Rules and Procedures for the Assessment of Surface Texture; ISO: Geneva, Switzerland, 1998.
  9. ISO. ISO 12085: Geometrical Product Specifications (GPS)—Surface Texture: Profile Method—Motif Parameters; ISO: Geneva, Switzerland, 1998.
  10. De Chiffre, L.; Christiansen, S.; Skade, S. Advantages and industrial applications of three-dimensional surface roughness analysis. CIRP Ann. Manuf. Technol. 1994, 43, 473–478.
  11. ISO. ISO 25178-2: Geometrical Product Specifications (GPS)—Surface Texture: Areal—Part 2: Terms, Definitions and Surface Texture Parameters; ISO: Geneva, Switzerland, 2012.
  12. ISO. ISO 25178-3: Geometrical Product Specifications (GPS)—Surface Texture: Areal—Part 3: Specification Operators; ISO: Geneva, Switzerland, 2012.
  13. ISO. EN-623-4 (B41-205): Advanced Technical Ceramics—Monolithic Ceramics—General and Textural Properties—Determination of Surface Roughness; ISO: Geneva, Switzerland, 2005.
  14. Schueler, G.M.; Engmann, J.; Marx, T.; Haberland, R.; Aurich, J.C. In Burr formation and surface characteristics in micro-end milling of titanium alloys. In Burrs-Analysis, Control and Removal; Springer: Berlin/Heidelberg, Germany, 2010; pp. 129–138.
  15. Tsitrou, E.A.; Northeast, S.E.; van Noort, R. Brittleness index of machinable dental materials and its relation to the marginal chipping factor. J. Dent. 2007, 35, 897–902.
  16. Giannetopoulos, S.; van Noort, R.; Tsitrou, E. Evaluation of the marginal integrity of ceramic copings with different marginal angles using two different CAD/ CAM systems. J. Dent. 2010, 38, 980–986.
  17. Jawahir, I.S.; Brinksmeier, E.; M’saoubi R.; Aspinwall, D.K.; Outeiro, J.C.; Meyer, D.; Umbrello, D.; Jayal, A.D. A surface integrity in material removal processes: Recent advances. CIRP Ann. 2011, 60, 603–626.Jawahir, I.S.; Brinksmeier, E.; M’saoubi, R.; Aspinwall, D.K.; Outeiro, J.C.; Meyer, D.; Umbrello, D.; Jayal, A.D. A surface integrity in material removal processes: Recent advances. CIRP Ann. 2011, 60, 603–626.
  18. Brosse, A.; Hamdi, H.; Bergheau, J.M. Residual stresses prediction with a new thermo mechanical simulation of grinding. Int. J. Mater. Form. 2008, 1, 1319–1322.
  19. Liu, C.R.; Barash, M.M. Variables governing patterns of mechanical residual stress in a machined surface. J. Ind. Eng. Int. 1982, 104, 257–264.
  20. Mahdi, M.; Zhang, L. Applied mechanics in grinding. Part 7: Residual stresses induced by the full coupling of mechanical deformation, thermal deformation and phase transformation. Int. J. Mach. Tools Manuf. 1999, 39, 1285–1298.
  21. Rech, J.; Kermouche, G.; Grzesik, W.; Garcia-Rosales, C.; Khellouki, A.; Garcia-Navas, V. Characterization and modelling of the residual stresses induced by belt finishing on a AISI52100 hardened steel. J. Mater. Process. Technol. 2008, 208, 187–195.
  22. Macherauch, E.; Kloss, K.H. Proceedings of the International Conference on Residual Stresses; FRG: Garmisch-Partenkichen, Ger-many, 1986; pp. 167–174.Macherauch, E.; Kloss, K.H. Proceedings of the International Conference on Residual Stresses; FRG: Garmisch-Partenkichen, Germany, 1986; pp. 167–174.
  23. ISO. ISO 9385 (S10-015): Glass and Glass Ceramics—Knoop Hardness Test D; ISO: Geneva, Switzerland, 1991.
  24. ISO. NF EN ISO 4545: Metallic Materials—Knoop Hardness Test; ISO: Geneva, Switzerland, 2018.
  25. ISO. NF-EN-843-4 (B41-209): Advanced Technical Ceramics—Mechanical Properties of Monolithic Ceramics at Room Temperature—Part 4: Vickers, Knoop and Rockwell Superficial Hardness; ISO: Geneva, Switzerland, 2005.
  26. ISO. NF-EN-1389 (B43-211): Advanced Technical Ceramics—Ceramic Composites—Physical Properties—Determination of Density and Apparent Porosity; ISO: Geneva, Switzerland, 2004.
  27. American National Standard Institute. Society of Manufacturing Engineers. In Surface Integrity; American National Standards Institute: New York, NY, USA, 1986; Volume B211, pp. 1–17.
  28. Argon, A.S. Internal stresses arising from the interaction of mobile dislocations. Scr. Mater. 1970, 4, 1001–1004.
  29. Bayley, C.J.; Brekelmans, W.A.M.; Geers, M.G.D. A comparison of dislocation induced back stress formulations in strain gradient crystal plasticity. Int. J. Solids. Struct. 2006, 43, 7268–7286.
  30. Hunter, A.; Preston, D.L. Analytic model of the remobilization of pinned glide dislocations from quasi-static to high strain rates. Int. J. Plast. 2015, 70, 1–29.
  31. Oliver, E.C.; Withers, P.J.; Daymond, M.R.; Ueta, S.; Mori, T. Neutron-diffraction study of stress-induced martensitic transformation in TRIP steel. Appl. Phys. A 2002, 74, 1143–1145.
  32. Pezzotti, G.; Porporati, A.A. Raman spectroscopic analysis of phase-transformation and stress patterns in zirconia hip joints. J. Biomed. Opt. 2004, 9, 372–385.
  33. Romeiro, F.; De Freitas, M.; Da Fonte, M. Fatigue crack growth with overloads/underloads: Interaction effects and surface roughness. Int. J. Fatigue 2009, 31, 1889–1894.
  34. Le Pecheur, A.; Curtit, F.; Clavel, M.; Stephan, J.M.; Rey, C.; Bompard, P. Polycrystal modelling of fatigue: pre-hardening and surface roughness effects on damage initiation for 304L stainless steel. Int. J. Fatigue 2012, 45, 48–60.Le Pecheur, A.; Curtit, F.; Clavel, M.; Stephan, J.M.; Rey, C.; Bompard, P. Polycrystal modelling of fatigue: Pre-hardening and surface roughness effects on damage initiation for 304L stainless steel. Int. J. Fatigue 2012, 45, 48–60.
  35. Al-Shammery, H.A.; Bubb, N.L.; Youngson, C.C.; Fasbinder, D.J.; Wood, D.J. The use of confocal micros-copy to assess surface roughness of two milled CAD-CAM ceramics following two polishing techniques. Dent. Mater. 2007, 23, 736–741.
  36. Cao, Y.; Zhang, G. Effect of surface finish on strength degradation of glass ceramics. Eng. Fail. Anal. 2000, 7, 11–26.
  37. Evans, A.G. Slow crack growth in brittle materials under dynamic loading conditions. Int. J. Fract. 1974, 10, 251–259.
  38. Griffiths, B. Manufacturing Surface Technology: Surface Integrity and Functional Performance; Elsevier: Amsterdam, The Netherland, 2001.
  39. Brinksmeier, E.; Klocke, F.; Lucca, D.A.; Sölter, J.; Meyer, D. Process Signatures A new approach to solve the inverse surface integrity problem in machining processes. Procedia CIRP 2014, 13, 429–434.
  40. Benardos, P.G.; Vosniakos, G.C. Predicting surface roughness in machining: A review. Int. J. Mach. Tools Manuf. 2003, 43, 833–844.
  41. Daymi A.; Boujelbene M.; Linares J.M.; Bayraktar E.; Amara A.B. Surface integrity analyses in highspeed inclined milling of the titanium alloy Ti-6Al-4V. In Proceedings of the 13th International Research/Expert Conference Trends in the Development of Machinery and Associated Technology TMT, Hammamet, Tunisia, 16-21 October 2009.Daymi, A.; Boujelbene, M.; Linares, J.M.; Bayraktar, E.; Amara, A.B. Surface integrity analyses in highspeed inclined milling of the titanium alloy Ti-6Al-4V. In Proceedings of the 13th International Research/Expert Conference Trends in the Development of Machinery and Associated Technology TMT, Hammamet, Tunisia, 16–21 October 2009.
  42. Aspinwall, D.K.; Dewes, R.C.; Ng, E.G.; Sage, C.; Soo, S.L. The influence of cutter orientation and workpiece angle on machinability when high-speed milling Inconel 718 under finishing conditions. Int. J. Mach. Tools Manuf. 2007, 47, 1839–1846.
  43. Axinte, D.A.; Dewes, R.C. Surface integrity of hot work tool steel after high-speed milling-experimental data and empirical models. J. Mater. Process. Technol. 2002, 127, 325–335.
  44. Quinsat, Y.; Sabourin, L.; Lartigue, C. Surface topography in ball end milling process: description of a 3D surface roughness parameter. J. Mater. Process. Technol. 2008, 195, 135–143.Quinsat, Y.; Sabourin, L.; Lartigue, C. Surface topography in ball end milling process: Description of a 3D surface roughness parameter. J. Mater. Process. Technol. 2008, 195, 135–143.
  45. Ginting, A.; Nouari, M. Surface integrity of dry machined titanium alloys. Int. J. Mach. Tools Manuf. 2009, 49, 325–332.
  46. Reddy, N.S.K.; Kwang-Sup, S.; Yang, M. Experimental study of surface integrity during end milling of Al/SiC particulate metal–matrix composites. J. Mater. Process. Technol. 2008, 201, 574–579.
  47. Gopal, A.V.; Rao, P.V. Selection of optimum conditions for maximum material removal rate with surface finish and damage as constraints in SiC grinding. Int. J. Mach. Tools Manuf. 2003, 43, 1327–1336.
  48. Aurich, J.C.; Sudermann, H.; Bil, H. Characterization of burr formation in grinding and prospects for modelling. CIRP Ann. Manuf. Technol. 2005, 54, 313–316.
  49. Huang, H.; Liu, Y.C. Experimental investigations of machining characteristics and removal mechanisms of advanced ceramics in high-speed deep grinding. Int. J. Mach. Tools Manuf. 2003, 43, 811–823.
  50. Wu, H.; Roberts, S.G.; Derby, B. Residual stress and subsurface damage in machined alumina and alumina/silicon carbide nanocomposite ceramics. Acta Mater. 2001, 49, 507–517.
  51. Zhang, B.; Zheng, X.L.; Tokur, H.; Yoshikawa, M. Grinding induced damage in ceramics. J. Mater. Process. Technol. 2003, 132, 353–364.
  52. Ulutan, D.; Ozel, T. Machining induced surface integrity in titanium and nickel alloys: A review. Int. J. Mach. Tools Manuf. 2011, 51, 250–280.
  53. Lebon, N. Impact de L’usinage Par CFAO Sur L’intégrité De Surface Des Prothèses Dentaires Coronaires. Ph.D. Thesis, URB2i, Université Paris 5, Institut Galilée, Université Paris 13, Paris, France, 27 June 2017.
  54. Bruzzone, A.A.G.; Costa, H.L.; Lonardo, P.M.; Lucca, D.A. Advances in engineered surfaces for functional performance. CIRP Ann. Manuf. Technol. 2008, 57, 750–769.
  55. Costin, A.C. Analyse Et Optimisation Des Surfaces Des Chemises De Moteurs Thermiques. Ph.D. Thesis, École Nationale Supérieure des Mines de Paris, Paris, France, 2006.
  56. Ghinea, R.; Ugarte-Alvan, L.; Yebra, A.; Pecho, O.E.; Paravina, R.D.; Del Mar Perez, M. Influence of surface roughness on the color of dental-resin composites. J. Zhejiang Univ. Sci. B 2011, 12, 552–562.
  57. Ramsden, J.J.; Allen, D.M.; Stephenson, D.J.; Alcock, J.R.; Peggs, G.N.; Fuller, G.; Goch, G. The design and manufacture of biomedical surfaces. CIRP Ann. Manuf. Technol. 2007, 56, 687–711.
  58. Juntavee, N.; Millstein, P.L. Effect of surface roughness and cement space on crown retention. J. Prosthet. Dent. 1992, 68, 482–486.
  59. Oilo, G.; Jorgensen, K.D. The influence of surface roughness on the retentive ability of two dental luting cements. J. Oral. Rehabil. 1978, 5, 377–389.
  60. Witwer, D.J.; Storey, R.J.; von Fraunhofer, J.A. The effects of surface texture and grooving on the retention of cast crowns. J. Prosthet. Dent. 1986, 56, 421–424.
  61. Quirynen, M.; Bollen, C.M.L. The influence of surface roughness and surface-free energy on supra- and subgingival plaque formation in man. J. Clin. Periodontol. 1995, 22, 1–14.
  62. Sorensen, J.A. A rationale for comparison of plaque-retaining properties of crown systems. J. Prosthet. Dent. 1989, 62, 264–269.
  63. Kawai, K.; Urano, M.; Ebisu, S. Effect of surface roughness of porcelain on adhesion of bacteria and their synthesizing glucans. J. Prosthet. Dent. 2000, 83, 664–667.
  64. Bollennl, C.M.; Lambrechts, P.; Quirynen, M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: A review of the literature. Dental Mater. 1997, 13, 258–269.
  65. Bennett, H.E.J.; Porteus, J.O. Relation between surface roughness and specular reflectance at normal incidence. JOSA 1961, 51, 123–129.
  66. Northeast, S.E.; van Noort, R. Surface characteristics of finished posterior composite resins. Dent. Mater. 1988, 4, 278–288.
  67. O’brien W.J.; Johnston, W.M.; Fanian, F.; Lambert, S. The surface roughness and gloss of composites. J. Dent. Res. 1984, 63, 685–688.O’brien, W.J.; Johnston, W.M.; Fanian, F.; Lambert, S. The surface roughness and gloss of composites. J. Dent. Res. 1984, 63, 685–688.
  68. Heintze, S.D.; Forjanic, M.; Rousson, V. Surface roughness and gloss of dental materials as a function of force and polishing time in vitro. Dent. Mater. 2006, 22, 146–165.
  69. Kakaboura, A.; Fragouli, M.; Rahiotis, C.; Silikas, N. Evaluation of surface characteristics of dental composites using profilometry, scanning electron, atomic force microscopy and gloss-meter. J. Mater. Sci.: Mater. Med. 2007, 18, 155–163.Kakaboura, A.; Fragouli, M.; Rahiotis, C.; Silikas, N. Evaluation of surface characteristics of dental composites using profilometry, scanning electron, atomic force microscopy and gloss-meter. J. Mater. Sci. Mater. Med. 2007, 18, 155–163.
  70. Lee, Y.K.; Lim, B.S.; Kim, C.W. Effect of surface conditions on the color of dental resin composites. J. Biomed. Mater. Res. 2002, 63, 657–663.
  71. Fleming, G.J.; El-Lakwah, S.F.; Harris, J.J.; Marquis, P.M. The influence of interfacial surface roughness on bilayered ceramic specimen performance. Dent. Mater. 2004, 20, 142–149.
  72. Fleming, G.J.; Nolan, L.; Harris, J.J. The in-vitro clinical failure of all-ceramic crowns and the connector area of fixed partial dentures: The influence of interfacial surface roughness. J. Dent. 2005, 33, 405–412.
  73. Gui, C.; Elwenspoek, M.; Tas, N.; Gardeniers, J.G.E. The effect of surface roughness on direct wafer bonding. J. Appl. Phys. 1999, 85, 7448–7454.
  74. Persson, B.N.J.; Tosatti, E. The effect of surface roughness on the adhesion of elastic solids. J. Chem. Phys. 2001, 115, 5597–5610.
  75. Persson, B.N.J.; Gorb, S. The effect of surface roughness on the adhesion of elastic plates with application to biological systems. J. Chem. Phys. 2003, 119, 11437–11444.
  76. Mitov, G.; Heintze, S.D.; Walz, S.; Woll, K.; Muecklich, F.; Pospiech, P. Wear behavior of dental Y-TZP ceramic against natural enamel after different finishing procedures. Dent. Mater. 2012, 28, 909–918.
  77. Oh, W.S.; Delong, R.; Anusavice, K.J. Factors affecting enamel and ceramic wear: A literature review. J. Prosthet. Dent. 2002, 87, 451–459.
  78. Deville, S.; Chevalier, J.; Gremillard, L. Influence of surface finish and residual stresses on the ageing sensitivity of biomedical grade zirconia. Biomaterials 2006, 27, 2186–2192.
  79. Rech, J.; Hamdi, H.; Valette, S. Workpiece Surface Integrity. In Machining; Springer: London, UK, 2008; pp. 59–96.
  80. Denry, I.; Robert, J.; Kelly, R. State of the art of zirconia for dental applications. Dent. Mater. 2008, 24, 299–307.
  81. Denry, I. How and when does fabrication damage adversely affect the clinical performance of ceramic restorations? Dent. Mater. 2013, 29, 85–96.
  82. Lebon, N.; Tapie, L.; Vennat, E.; Mawussi, B. Influence of CAD/CAM tool and material on tool wear and roughness of dental prostheses after milling. J. Prosthet. Dent. 2015, 114, 236–247.
  83. Dong, X., YIN L.; Jahanmir, S.; Ives, L.K.; Rekow, E.D. Abrasive machining of glass-ceramics with a dental handpiece. Mach. Sci. Technol. 2000, 4, 209–233.Dong, X.; YIN, L.; Jahanmir, S.; Ives, L.K.; Rekow, E.D. Abrasive machining of glass-ceramics with a dental handpiece. Mach. Sci. Technol. 2000, 4, 209–233.
  84. Wulfman, C.; Sadoun, M.; De La Chapelle, M.L. Interest of Raman spectroscopy for the study of dental material: The zirconia material example. IRBM 2010, 31, 257–262.
  85. Wulfman, C.; Djaker, N.; Dupont, N.; Ruse, D.; Sadoun, M.; De La Chapelle, M.L. Raman spectroscopy evaluation of subsurface hydrothermal degradation of zirconia. J. Eur. Ceram. 2012, 95, 2347–2351.
  86. Muñoz-Tabares, J.A.; Jimenez-Pique, E.; Reyes-Gasga, J.; Anglada, M. Microstructural changes in 3Y-TZP induced by scratching and indentation. J. Eur. Ceram. 2012, 32, 3919–3927.
  87. Yin, L.; Jahanmir, S.; Ives, L.K. Abrasive machining of porcelain and zirconia with a dental handpiece. Wear 2003, 255, 975–989.
  88. Luthardt, R.G.; Holzhüter, M.S.; Rudolph, H.; Herold, V.; Walter, M.H. CAD/CAM-machining effects on Y-TZP zirconia. Dent. Mater. 2004, 20, 655–662.
  89. Yin, L.; Song, X.F.; Song, Y.L.; Huang, T.; Li, J. An overview of in vitro abrasive finishing and CAD/CAM of bioceramics in restorative dentistry. Int. J. Mach. Tools Manuf. 2006, 46, 1013–1026.
  90. Yin, L.; Song, X.F.; Qu, S.F.; Han, Y.G.; Wang, H. Surface integrity and removal mechanism in simulated dental finishing of a feldspathic porcelain. J. Biomed. Mater. Res. Part B Appl. Biomater. 2006, 79, 365–378.
  91. Song, X.F.; Yin, L.; Han, Y.G.; Wang, H. Micro-fine finishing of a feldspar porcelain for dental prostheses. Med. Eng. Phys. 2008, 30, 856–864.
  92. Song, X.F.; Yin, L. Subsurface damage induced in dental resurfacing of a feldspar porcelain with coarse diamond burs. J. Biomech. 2009, 42, 355–360.
  93. Song, X.F.; Yin, L. Induced damage zone in micro-fine dental finishing of a feldspathic porcelain. Med. Eng. Phys. 2010, 32, 417–422.
  94. Chang, C.W.; Waddell, J.N.; Lyons, K.M.; Swain, M.V. Cracking of porcelain surfaces arising from abrasive grinding with a dental air turbine. J. Prosthodont. 2011, 20, 613–620.
  95. Chintapalli, R.K.; Marro, F.G.; Jimenez-Pique, E.; Anglada, M. Phase transformation and subsurface damage in 3Y-TZP after sandblasting. Dent. Mater. 2013, 29, 566–572.
  96. Chintapalli, R.K.; Rodriguez, A.M.; Marro, F.G.; Anglada, M. Effect of sandblasting and residual stress on strength of zirconia for restorative dentistry applications. J. Mech. Behav. Biomed. Mater. 2014, 29, 126–137.
  97. Mainjot, A.K.; Schajer, G.S.; Vanheusden, A.J.; Sadoun, M.J. Influence of cooling rate on residual stress profile in veneering ceramic: Measurement by hole-drilling. Dent. Mater. 2011, 27, 906–914.
  98. Mainjot, A.K.; Schajer, G.S.; Vanheusden, A.J.; Sadoun, M.J. Influence of zirconia framework thickness on residual stress profile in veneering ceramic: Measurement by hole-drilling. Dent. Mater. 2012, 28, 378–384.
More