You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Low-Cost 3D Laser Scanning Technology: Comparison
Please note this is a comparison between Version 2 by Vivi Li and Version 1 by Chang Yuan.

By moving a commercial 2D LiDAR, 3D maps of the environment can be built, based on the data of a 2D LiDAR and its movements. Compared to a commercial 3D LiDAR, a moving 2D LiDAR is more economical. A series of problems need to be solved in order for a moving 2D LiDAR to perform better, among them, improving accuracy and real-time performance. In order to solve these problems, estimating the movements of a 2D LiDAR, and identifying and removing moving objects in the environment, are issues that should be studied.

  • 3D laser scanning
  • low-cost
  • 2D LiDAR
  • a moving 2D LiDAR
Please wait, diff process is still running!

References

  1. Yilmaz, V. Automated ground filtering of LiDAR and UAS point clouds with metaheuristics. Opt. Laser Technol. 2021, 138, 106890.
  2. Jarén, R.R.; Arranz, J.J. Automatic segmentation and classification of BIM elements from point clouds. Autom. Constr. 2021, 124, 103576.
  3. Javanmardi, E.; Javanmardi, M.; Gu, Y.; Kamijo, S. Autonomous vehicle self-localization based on multilayer 2D vector map and multi-channel LiDAR. In Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017.
  4. Briechle, S.; Krzystek, P.; Vosselman, G. Silvi-Net—A dual-CNN approach for combined classification of tree species and standing dead trees from remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2021, 98, 102292.
  5. Estornell, J.; Hadas, E.; Martí, J.; López-Cortés, I. Tree extraction and estimation of walnut structure parameters using airborne LiDAR data. Int. J. Appl. Earth Obs. Geoinf. 2021, 96, 102273.
  6. Slamtec Rplidar A1. Available online: (accessed on 20 December 2020).
  7. Velodyne HDL-64E. Available online: (accessed on 13 April 2021).
  8. Kang, X.; Yin, S.; Fen, Y. 3D Reconstruction & Assessment Framework based on affordable 2D Lidar. In Proceedings of the 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Auckland, New Zealand, 9–12 July 2018; pp. 292–297.
  9. Palacín, J.; Martínez, D.; Rubies, E.; Clotet, E. Mobile Robot Self-Localization with 2D Push-Broom LIDAR in a 2D Map. Sensors 2020, 20, 2500.
  10. Morales, J.; Martínez, J.; Mandow, A.; Reina, A.; Pequenoboter, A.; García-Cerezo, A. Boresight Calibration of Construction Misalignments for 3D Scanners Built with a 2D Laser Rangefinder Rotating on Its Optical Center. Sensors 2014, 14, 20025–20040.
  11. Morales, J.; Plazaleiva, V.; Mandow, A.; Gomezruiz, J.; Serón, J.; GarcíaCerezo, A. Analysis of 3D Scan Measurement Distribution with Application to a Multi-Beam Lidar on a Rotating Platform. Sensors 2018, 18, 395.
  12. Neumann, T.; Dülberg, E.; Schiffer, S.; Ferrein, A. A Rotating Platform for Swift Acquisition of Dense 3D Point Clouds. In Proceedings of the International Conference on Intelligent Robotics and Applications, Tokyo, Japan, 22–24 August 2016; pp. 257–268.
  13. Pfrunder, A.; Borges, P.V.K.; Romero, A.R.; Catt, G.; Elfes, A. Real-time autonomous ground vehicle navigation in heterogeneous environments using a 3D LiDAR. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017.
  14. Neumann, T.; Ferrein, A.; Kallweit, S.; Scholl, I. Towards a Mobile Mapping Robot for Underground Mines. In Proceedings of the 2014 PRASA, RobMech and AfLaT International Joint Symposium, Cape Town, South Africa, 27–28 November 2014.
  15. Mandow, A.; Morales, J.; Gomez-Ruiz, J.A.; Garcia-Cerezo, A.J. Optimizing Scan Homogeneity for Building Full-3D Lidars Based on Rotating a Multi-Beam Velodyne Range-Finder. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018.
  16. Wen, C.; Sun, X.; Hou, S.; Tan, J.; Dai, Y.; Wang, C.; Li, J. Line Structure-Based Indoor and Outdoor Integration Using Backpacked and TLS Point Cloud Data. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1790–1794.
  17. Gong, Z.; Wen, C.; Wang, C.; Li, J. A Target-Free Automatic Self-Calibration Approach for Multibeam Laser Scanners. IEEE Trans. Instrum. Meas. 2017, 67, 238–240.
  18. Wang, C.; Hou, S.; Wen, C.; Gong, Z.; Li, Q.; Sun, X.; Li, J. Semantic line framework-based indoor building modeling using backpacked laser scanning point cloud. ISPRS J. Photogramm. Remote Sens. 2018, 143, 150–166.
  19. Vlaminck, M.; Luong, H.; Goeman, W.; Philips, W. 3D Scene Reconstruction Using Omnidirectional Vision and LiDAR: A Hybrid Approach. Sensors 2016, 16, 1923.
  20. Alismail, H.; Browning, B. Automatic Calibration of Spinning Actuated Lidar Internal Parameters. J. Field Robot. 2015, 32, 723–747.
  21. Bosse, M.; Zlot, R. Continuous 3D scan-matching with a spinning 2D laser. In Proceedings of the IEEE International Conference on Robotics & Automation, Kobe, Japan, 12–17 May 2019.
  22. Weingarten, J.W.; Siegwart, R. 3D SLAM using planar segments. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots & Systems, Beijing, China, 9–15 October 2006.
  23. Morales, J.; Martinez, J.L.; Mandow, A.; Pequenoboter, A.; Garciacerezo, A. Design and development of a fast and precise low-cost 3D laser rangefinder. In Proceedings of the International Conference on Mechatronics, Beijing, China, 7–10 August 2011; pp. 621–626.
  24. Oliver Wulf, B.W. Fast 3D scanning methods for laser measurement systems. In Proceedings of the International Conference on Control Systems and Computer Science, CSCS14, Bucharest, Romania, 2–5 July 2003.
  25. Baldwin, I.; Newman, P. Laser-only road-vehicle localization with dual 2D push-broom LIDARS and 3D priors. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots & Systems, Algarve, Portugal, 7–12 October 2012.
  26. Newman, P.M.; Baldwin, I. Generation of 3D Models of an Environment. U.S. Patent WO2014128498A2, 28 August 2014. Available online: (accessed on 26 April 2021).
  27. Baldwin, I.; Newman, P. Road vehicle localization with 2D push-broom LIDAR and 3D priors. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012.
  28. Napier, A.; Corke, P.; Newman, P. Cross-calibration of push-broom 2D LIDARs and cameras in natural scenes. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013.
  29. Wen, C.; Pan, S.; Wang, C.; Li, J. An Indoor Backpack System for 2-D and 3-D Mapping of Building Interiors. IEEE Geosci. Remote Sens. Lett. 2016, 13, 992–996.
  30. Liu, T.; Carlberg, M.; Chen, G.; Chen, J.; Zakhor, A. Indoor localization and visualization using a human-operated backpack system. In Proceedings of the 2010 International Conference on Indoor Positioning and Indoor Navigation, Zurich, Switzerland, 15–17 September 2010.
  31. Bok, Y.; Choi, D.; Jeong, Y.; Kweon, I.S. Capturing village-level heritages with a hand-held camera-laser fusion sensor. In Proceedings of the IEEE International Conference on Computer Vision Workshops, Barcelona, Spain, 6–13 November 2011.
  32. Dong-Geol, C.; Yunsu, B.; Jun-Sik, K.; Inwook, S.; In, K. Structure-From-Motion in 3D Space Using 2D Lidars. Sensors 2017, 17, 242.
  33. Winkvist, S.; Rushforth, E.; Young, K. Towards an autonomous indoor aerial inspection vehicle. Ind. Robot. 2013, 40, 196–207.
  34. Wang, A.; Li, C.; Liu, Y.; Zhuang, Y.; Bu, C.; Xiao, J. Laser-based Online Sliding-window Approach for UAV Loop-closure Detection in Urban Environments. Int. J. Adv. Robot. Syst. 2017, 13, 1–11.
  35. Mcgarey, P.; Yoon, D.; Tang, T.; Pomerleau, F.; Barfoot, T.D. Developing and deploying a tethered robot to map extremely steep terrain: MCGAREY et al. J. Field Robot. 2018, 35, 1327–1341.
  36. Kaul, L.; Zlot, R.; Bosse, M. Continuous-Time Three-Dimensional Mapping for Micro Aerial Vehicles with a Passively Actuated Rotating Laser Scanner. J. Field Robot. 2015, 33, 103–132.
  37. Ohno, K.; Kawahara, T.; Tadokoro, S. Development of 3D laser scanner for measuring uniform and dense 3D shapes of static objects in dynamic environment. In Proceedings of the IEEE International Conference on Robotics & Biomimetics, Guilin, China, 19–23 December 2009.
  38. Yoshida, T.; Irie, K.; Koyanagi, E.; Tomono, M. A sensor platform for outdoor navigation using gyro-assisted odometry and roundly-swinging 3D laser scanner. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010.
  39. Matsumoto, M. 3D laser range sensor module with roundly swinging mechanism for fast and wide view range image. In Proceedings of the IEEE Conference on Multisensor Fusion and Integration, Salt Lake City, UT, USA, 5–7 September 2010.
  40. Schubert, S.; Neubert, P.; Protzel, P. How to Build and Customize a High-Resolution 3D Laserscanner Using Off-the-shelf Components. In Proceedings of the Conference towards Autonomous Robotic Systems, Sheffield, UK, 26 June–1 July 2016.
  41. Bosse, M.; Zlot, R.; Flick, P. Zebedee: Design of a Spring-Mounted 3-D Range Sensor with Application to Mobile Mapping. IEEE Trans. Robot. 2012, 28, 1104–1119.
  42. Bosse, M.; Zlot, R. Place recognition using keypoint voting in large 3D lidar datasets. In Proceedings of the IEEE International Conference on Robotics & Automation, Karlsruhe, Germany, 6–10 May 2013.
  43. Leica. Available online: (accessed on 12 April 2021).
  44. Faro. Available online: (accessed on 26 April 2021).
  45. Velodyne. Available online: (accessed on 12 April 2021).
  46. Desai, A.; Huber, D. Objective Evaluation of Scanning Ladar Configurations for Mobile Robots. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots & Systems, St. Louis, MO, USA, 11–15 October 2009.
  47. Son, Y.; Yoon, S.; Oh, S.Y.; Han, S. A Lightweight and Cost-Effective 3D Omnidirectional Depth Sensor Based on Laser Triangulation. IEEE Access 2019, 7, 58740–58750.
  48. Kimoto, K.; Asada, N.; Mori, T.; Hara, Y.; Yuta, S.I. Development of small size 3D LIDAR. In Proceedings of the IEEE International Conference on Robotics & Automation, Hong Kong, China, 31 May–5 June 2014.
  49. Hu, C.; Huang, Z.; Qin, S. A New 3D Imaging Lidar Based on the High-Speed 2D Laser Scanner; SPIE—The International Society for Optical Engineering: Bellingham, WA, USA, 2012.
  50. Ryde, J.; Hu, H. Mobile Robot 3D Perception and Mapping without Odometry Using Multi-Resolution Occupancy Lists. In Proceedings of the 2007 International Conference on Mechatronics and Automation, Harbin, China, 5–9 August 2007; pp. 331–336.
More
Academic Video Service