Starter Cultures in Foods: Comparison
Please note this is a comparison between Version 2 by Camila Xu and Version 1 by Juan García-Díez.

Starter cultures can be defined as preparations with a large number of cells that include a single type or a mixture of two or more microorganisms that are added to foods in order to take advantage of the compounds or products derived from their metabolism or enzymatic activity.

  • starter cultures
  • foodborne pathogens
  • fermented meats
Please wait, diff process is still running!

References

  1. Fox, P.F.; Guinee, T.P.; Cogan, T.M.; McSweeney, P.L.H. Pathogens in Cheese and Foodborne Illnesses. In Fundamental of Cheese Science; Fox, P.F., Guinee, T.P., Cogan, T.M., McSweeney, P.L.H., Eds.; Springer: New York, NY, USA, 2017; pp. 681–713.
  2. Hammami, R.; Fliss, I.; Corsetti, A. Editorial: Application of protective cultures and bacteriocins for food biopreservation. Frontiers Microbiol. 2019, 10, 1561.
  3. Aryana, K.J.; Olson, D.W.A. 100-Year Review: Yogurt and other cultured dairy products. J. Dairy Sci. 2017, 100, 9987–10013.
  4. Laranjo, M.; Elias, M.; Fraqueza, M.J. The use of starter cultures in traditional meat products. J. Food Qual. 2017, 2017, 9546026.
  5. Romano, P.; Capece, A. Wine microbiology. In Starter Cultures in Food Production; Chapter 13; Speranza, B., Bevilacqua, A., Corbo, M.R., Sinigaglia, M., Eds.; John Wiley & Sons, Ltd: West Sussex, UK, 2017; pp. 255–282.
  6. Vaughan, A.; O’Sullivan, T.; Van Sinderen, D. Enhancing the microbiological stability of malt and beer—A review. J. Inst. Brew. 2005, 111, 355–371.
  7. Mas, A.; Torija, M.J.; García-Parrilla, M.D.C.; Troncoso, A.M. Acetic acid bacteria and the production and quality of wine vinegar. Sci. World J. 2014, 2014, 394671.
  8. Gao, L.; Yang, H.; Wang, X.; Huang, Z.; Ishii, M.; Igarashi, Y.; Cui, Z. Rice straw fermentation using lactic acid bacteria. Biores. Technol. 2008, 99, 2742–2748.
  9. Ashaolu, T.J.; Reale, A.A. Holistic review on Euro-Asian lactic acid bacteria fermented cereals and vegetables. Microorganisms 2020, 8, 1176.
  10. Arroyo-López, F.N.; Garrido-Fernández, A.; Jiménez-Díaz, R. Starter cultures in vegetables with special emphasis on table olives. In Starter Cultures in Food Production; Speranza, B., Bevilacqua, A., Corbo, R.M., Sinigaglia, M., Eds.; John Wiley and Sons: West Sussex, UK, 2017; pp. 283–298.
  11. Brandt, M.J. Starter cultures for cereal based foods. Food Microbiol. 2014, 37, 41–43.
  12. Szutowska, J. Functional properties of lactic acid bacteria in fermented fruit and vegetable juices: A systematic literature review. Eur. Food Res. Technol. 2020, 246, 357–372.
  13. Franciosa, I.; Alessandria, V.; Dolci, P.; Rantsiou, K.; Cocolin, L. Sausage fermentation and starter cultures in the era of molecular biology methods. Int. J. Food Microbiol. 2018, 279, 26–32.
  14. Pereira, G.V.M.; De Carvalho Neto, D.P.; Junqueira, A.C.D.O.; Karp, S.G.; Letti, L.A.; Magalhães Júnior, A.I.; Soccol, C.R. A review of selection criteria for starter culture development in the food fermentation industry. Food Rev. Int. 2020, 36, 135–167.
  15. Laranjo, M.; Potes, M.E.; Elias, M. Role of Starter Cultures on the Safety of Fermented Meat Products. Front. Microbiol. 2019, 26, 583.
  16. Díez, J.G.; Patarata, L. Behavior of Salmonella spp., Listeria monocytogenes, and Staphylococcus aureus in Chouriço de Vinho, a dry fermented sausage made from wine-marinated meat. J. Food Protect. 2013, 76, 588–594.
  17. Taskila, S. Industrial production of starter cultures. In Starter Cultures in Food Production; Chapter 5; Speranza, B., Bevilacqua, A., Corbo, M.R., Sinigaglia, M., Eds.; John Wiley & Sons, Ltd: West Sussex, UK, 2017; pp. 79–100.
  18. Altieri, C.; Ciuffreda, E.; Maggio, B.; Sinigaglia, M. Lactic acid bacteéria as starter cultures. In Starter Cultures in Food Production; Speranza, B., Bevilacqua, A., Corbo, M.R., Sinigaglia, M., Eds.; John Wiley & Sons, Ltd: West Sussex, UK, 2017; pp. 1–15.
  19. Santos, S.C.; Fraqueza, M.J.; Elias, M.; Barreto, A.S.; Semedo-Lemsaddek, T. Traditional dry smoked fermented meat sausages: Characterization of autochthonous enterococci. LWT 2017, 79, 410–415.
  20. Semedo-Lemsaddek, T.; Carvalho, L.; Tempera, C.; Fernandes, M.H.; Fernandes, M.J.; Elias, M.; Barreto, A.S.; Fraqueza, M.J. Characterization and technological features of autochthonous coagulase-negative staphylococci as potential starters for Portuguese dry fermented sausages. J. Food Sci. 2016, 81, M1197–M1202.
  21. Buzzini, P.; Mauro, S.; Turchetti, B. Yeast as starter cultures. In Starter Cultures in Food Production; Speranza, B., Bevilacqua, A., Corbo, M.R., Sinigaglia, M., Eds.; John Wiley & Sons, Ltd: West Sussex, UK, 2017; pp. 16–49.
  22. Dantigny, P.; Bevilacqua, A. Fungal starters: An insight into the factors affecting the germination of conidia. In Starter Cultures in Food Production; Speranza, B., Bevilacqua, A., Corbo, R.M., Sinigaglia, M., Eds.; John Wiley and Sons: West Sussex, UK, 2017; pp. 50–63.
  23. Vignolo, G.; Fontana, C.; Fadda, S. Semidry and dry fermented sausages. In Handbook of Meat Processing; Toldrá, F., Ed.; Blackwell Publishing: Ames, IA, USA, 2010; pp. 379–398.
  24. Ockerman, H.W.; Basu, L. Production and consumption of fermented meat products. In Handbook of Fermented Meat and Poultry; Toldrá, F., Hui, Y.H., Astiarán, I., Sebranek, J.G., Talon, R., Eds.; Willey Blackwell: West Sussex, UK, 2014; pp. 7–11.
  25. Parente, E.; Cogan, T.M.; Powell, I.B. Starter cultures: General aspects. In Cheese, Chemistry, Physics and Microbiology; McSweeney, L.H., Fox, P.F., Cotter, P.D., Evertett, D.W., Eds.; Academic Press: London, UK, 2017; pp. 201–226.
  26. Almasoud, A.; Hettiarachchy, N.; Rayaprolu, S.; Babu, D.; Kwon, Y.M.; Mauromoustakos, A. Inhibitory effects of lactic and malic organic acids on autoinducer type 2 (AI-2) quorum sensing of Escherichia coli O157: H7 and Salmonella typhimurium. LWT-Food Sci. Technol. 2016, 66, 560–564.
  27. Theron, M.M.; Lues, J.F. Organic acids and meat preservation: A review. Food Rev. Int. 2007, 23, 141–158.
  28. Wang, C.; Chang, T.; Yang, H.; Cui, M. Antibacterial mechanism of lactic acid on physiological and morphological properties of Salmonella enteritidis, Escherichia coli and Listeria monocytogenes. Food Control 2015, 47, 231–236.
  29. Reis, J.A.; Paula, A.T.; Casarotti, S.N.; Penna, A.L.B. Lactic acid bacteria antimicrobial compounds: Characteristics and applications. Food Eng. Rev. 2012, 4, 124–140.
  30. Garmiene, G.; Salomskiene, J.; Jasutiene, I.; Miliauskiene, I.; Macioniene, I. Production of benzoic acid by lactic acid bacteria from Lactobacillus, Lactococcus and Streptococcus genera in milk. Milchwissenschaft 2010, 65, 295.
  31. Sullivan, D.J.; Azlin-Hasim, S.; Cruz-Romero, M.; Cummins, E.; Kerry, J.P.; Morris, M.A. Antimicrobial effect of benzoic and sorbic acid salts and nano-solubilisates against Staphylococcus aureus, Pseudomonas fluorescens and chicken microbiota biofilms. Food Control 2020, 107, 106786.
  32. Lanciotti, R.; Patrignani, F.; Bagnolini, F.; Guerzoni, M.E.; Gardini, F. Evaluation of diacetyl antimicrobial activity against Escherichia coli, Listeria monocytogenes and Staphylococcus aureus. Food Microbiol. 2003, 20, 537–543.
  33. Menconi, A.; Shivaramaiah, S.; Huff, G.R.; Prado, O.; Morales, J.E.; Pumford, N.R.; Morgan, M.; Wolfenden, A.; Bielke, L.R.; Hargis, B.M.; et al. Effect of different concentrations of acetic, citric, and propionic acid dipping solutions on bacterial contamination of raw chicken skin. Poultry Sci. 2013, 92, 2216–2220.
  34. Valerio, F.; Lavermicocca, P.; Pascale, M.; Visconti, A. Production of phenyllactic acid by lactic acid bacteria: An approach to the selection of strains contributing to food quality and preservation. FEMS Microbiol. Lett. 2004, 233, 289–295.
  35. Ning, Y.; Yan, A.; Yang, K.; Wang, Z.; Li, X.; Jia, Y. Antibacterial activity of phenyllactic acid against Listeria monocytogenes and Escherichia coli by dual mechanisms. Food Chem. 2017, 228, 533–540.
  36. Hladíková, Z.; Smetanková, J.; Greif, G.; Greifová, M. Antimicrobial activity of selected lactic acid cocci and production of organic acids. Acta Chim. Slov. 2012, 5, 80–85.
  37. Arena, M.P.; Silvain, A.; Normanno, G.; Grieco, F.; Drider, D.; Spano, G.; Fiocco, D. Use of Lactobacillus plantarum strains as a bio-control strategy against food-borne pathogenic microorganisms. Frontiers Microbiol. 2016, 7, 464.
  38. Puolanne, E.; Petaja-Kanninen, E. Principles of meat fermentation. In Handbook of Fermented Meat and Poultry, 2nd ed.; Toldrá, F., Hui, Y.H., Astiarán, I., Sebranek, J.G., Talon, R., Eds.; Willey Blackwell: West Sussex, UK, 2014; pp. 13–17.
  39. Moore, J.E. Gastrointestinal outbreaks associated with fermented meats. Meat Sci. 2004, 67, 565–568.
  40. Flores, M.; Toldrá, F. Chemistry, safety, and regulatory considerations in the use of nitrite and nitrate from natural origin in meat products. Meat Sci. 2020, 171, 108272.
  41. Fraqueza, M.J.; Laranjo, M.; Elias, M.; Patarata, L. Microbiological hazards associated with salt and nitrite reduction in cured meat products: Control strategies based on antimicrobial effect of natural ingredients and protective microbiota. Curr. Opin. Food Sci. 2020, 38, 32–39.
  42. Lücke, F.K. Quality improvement and fermentation control in meat products. In Advances in Fermented Foods and Beverages. Improving Quality, Technologies and Health Benefit; Holzapfel, W., Ed.; Woodhead Publishing: Sawston, Cambridge, UK, 2015; pp. 357–376.
  43. Taormina, P.J. Implications of salt and sodium reduction on microbial food safety. Crit. Rev. Food Sci. Nut. 2010, 50, 209–227.
  44. Patarata, L.; Novais, M.; Fraqueza, M.J.; Silva, J.A. Influence of meat spoilage microbiota initial load on the growth and survival of three pathogens on a naturally fermented sausage. Foods 2020, 9, 676.
  45. Oliveira, M.; Ferreira, V.; Magalhães, R.; Teixeira, P. Biocontrol strategies for Mediterranean-style fermented sausages. Food Res. Int. 2018, 103, 438–449.
  46. Castellano, P.; Pérez Ibarreche, M.; Blanco Massani, M.; Fontana, C.; Vignolo, G.M. Strategies for pathogen biocontrol using lactic acid bacteria and their metabolites: A focus on meat ecosystems and industrial environments. Microorganisms 2017, 5, 38.
  47. García-Díez, J.; Alheiro, J.; Pinto, A.L.; Soares, L.; Falco, V.; Fraqueza, M.J.; Patarata, L. Influence of food characteristics and food additives on the antimicrobial effect of garlic and oregano essential oils. Foods 2017, 6, 44.
  48. Chikindas, M.L.; Weeks, R.; Drider, D.; Chistyakov, V.A.; Dicks, L.M. Functions and emerging applications of bacteriocins. Curr. Opin. Biotechnol. 2018, 49, 23–28.
  49. Dos Santos Cruxen, C.E.; Funck, G.D.; Haubert, L.; da Silva Dannenberg, G.; de Lima Marques, J.; Chaves, F.C.; Silva, W.P.; Fiorentini, Â.M. Selection of native bacterial starter culture in the production of fermented meat sausages: Application potential, safety aspects, and emerging technologies. Food Res. Int. 2019, 122, 371–382.
  50. Nieto-Lozano, J.C.; Reguera-Useros, J.I.; Peláez-Martínez, M.D.C.; Sacristán-Pérez-Minayo, G.; Gutiérrez-Fernández, A.J.; de la Torre, A.H. The effect of the pediocin PA-1 produced by Pediococcus acidilactici against Listeria monocytogenes and Clostridium perfringens in Spanish dry-fermented sausages and frankfurters. Food Control 2010, 21, 679–685.
  51. Pragalaki, T.; Bloukas, J.G.; Kotzekidou, P. Inhibition of Listeria monocytogenes and Escherichia coli O157: H7 in liquid broth medium and during processing of fermented sausage using autochthonous starter cultures. Meat Sci. 2013, 95, 458–464.
  52. Orihuel, A.; Bonacina, J.; Vildoza, M.J.; Bru, E.; Vignolo, G.; Saavedra, L.; Fadda, S. Biocontrol of Listeria monocytogenes in a meat model using a combination of a bacteriocinogenic strain with curing additives. Food Res. Int. 2018, 107, 289–296.
  53. Ravyts, F.; Barbuti, S.; Frustoli, M.A.; Parolari, G.; Saccani, G.; De Vuyst, L.; Leroy, F. Competitiveness and antibacterial potential of bacteriocin-producing starter cultures in different types of fermented sausages. J. Food Protect. 2008, 71, 1817–1827.
  54. Sameshima, T.; Magome, C.; Takeshita, K.; Arihara, K.; Itoh, M.; Kondo, Y. Effect of intestinal Lactobacillus starter cultures on the behaviour of Staphylococcus aureus in fermented sausage. Int. J. Food Microbiol. 1998, 41, 1–7.
  55. Talon, R.; Leory, S. 2018 Functionalities of meat bacterial startes. In Advanced Technologies for Meat Processing, 2nd ed.; Toldrá, F., Nollet, L.M.L., Eds.; CRC Press: Boca Raton, FL, USA, 2018; pp. 597–614.
  56. Albano, H.; Pinho, C.; Leite, D.; Barbosa, J.; Silva, J.; Carneiro, L.; Magalhães, R.; Hogg, T.; Teixeira, P. Evaluation of a bacteriocin-producing strain of Pediococcus acidilactici as a biopreservative for “Alheira”, a fermented meat sausage. Food Control 2009, 20, 764–770.
  57. Campaniello, D.; Speranza, B.; Bevilacqua, A.; Altieri, C.; Rosaria Corbo, M.; Sinigaglia, M. Industrial validation of a promising functional strain of Lactobacillus plantarum to improve the quality of Italian sausages. Microorganisms 2020, 8, 116.
  58. Diaz-Ruiz, G.; Omar, N.B.; Abriouel, H.; Cantilde, M.M.; Galvez, A. Inhibition of Listeria monocytogenes and Escherichia coli by bacteriocin-producing Lactobacillus plantarum EC52 in a meat sausage model system. Afri. J. Microbiol. Res. 2012, 6, 1103–1108.
  59. Giello, M.; La Storia, A.; De Filippis, F.; Ercolini, D.; Villani, F. Impact of Lactobacillus curvatus 54M16 on microbiota composition and growth of Listeria monocytogenes in fermented sausages. Food Microbiol. 2018, 72, 1–15.
  60. Kingcha, Y.; Tosukhowong, A.; Zendo, T.; Roytrakul, S.; Luxananil, P.; Chareonpornsook, K.; Valyasevi, R.; Sonomoto, K.; Visessanguan, W. Anti-listeria activity of Pediococcus pentosaceus BCC 3772 and application as starter culture for Nham, a traditional fermented pork sausage. Food Control 2012, 25, 190–196.
  61. Lahti, E.; Johansson, T.; Honkanen-Buzalski, T.; Hill, P.; Nurmi, E. Survival and detection of Escherichia coli O157:H7 and Listeria monocytogenes during the manufacture of dry sausage using two different starter cultures. Food Microbiol. 2001, 18, 75–85.
  62. Työppönen, S.; Markkula, A.; Petäjä, E.; Suihko, M.L.; Mattila-Sandholm, T. Survival of Listeria monocytogenes in North European type dry sausages fermented by bioprotective meat starter cultures. Food Control 2003, 14, 181–185.
  63. Di Gioia, D.; Mazzola, G.; Nikodinoska, I.; Aloisio, I.; Langerholc, T.; Rossi, M.; Raimondi, S.; Melero, B.; Rovira, J. Lactic acid bacteria as protective cultures in fermented pork meat to prevent Clostridium spp. growth. Int. J. Food Microbiol. 2016, 235, 53–59.
  64. Ananou, S.; Garriga, M.; Hugas, M.; Maqueda, M.; Martínez-Bueno, M.; Gálvez, A.; Valdivia, E. Control of Listeria monocytogenes in model sausages by enterocin AS-48. Int. J. Food Microbiol. 2005, 103, 179–190.
  65. Najjari, A.; Boumaiza, M.; Jaballah, S.; Boudabous, A.; Ouzari, H.I. Application of isolated Lactobacillus sakei and Staphylococcus xylosus strains as a probiotic starter culture during the industrial manufacture of Tunisian dry-fermented sausages. Food Sci. Nut. 2020, 8, 4172–4184.
  66. Erkkilä, S.; Venäläinen, M.; Hielm, S.; Petäjä, E.; Puolanne, E.; Mattila-Sandholm, T. Survival of Escherichia coli O157:H7 in dry sausage fermented by probiotic lactic acid bacteria. J. Sci. Food Agricul. 2000, 80, 2101–2104.
  67. Fuka, M.M.; Maksimovic, A.Z.; Hulak, N.; Kos, I.; Radovcic, N.M.; Juric, S.; Tanuwidjaja, I.; Vincekovic, M. The survival rate and efficiency of non-encapsulated and encapsulated native starter cultures to improve the quality of artisanal game meat sausages. J. Food Sci. Technol. 2020.
  68. Casquete, R.; Benito, M.J.; Martín, A.; Ruiz-Moyano, S.; Aranda, E.; Córdoba, M.G. Microbiological quality of salchichón and chorizo, traditional Iberian dry-fermented sausages from two different industries, inoculated with autochthonous starter cultures. Food Control 2012, 24, 191–198.
  69. Ceylan, E.; Fung, D.Y.C. Destruction of Yersinia enterocolitica by Lactobacillus sake and Pediococcus acidilactici during low-temperature fermentation of Turkish dry sausage (sucuk). J. Food Sci. 2000, 65, 876–879.
  70. Nightingale, K.K.; Thippareddi, H.; Phebus, R.K.; Marsden, J.L.; Nutsch, A.L. Validation of a traditional Italian-style salami manufacturing process for control of Salmonella and Listeria monocytogenes. J. Food Protec. 2006, 69, 794–800.
  71. Linares, M.B.; Garrido, M.D.; Martins, C.; Patarata, L. Efficacies of garlic and L. sakei in wine-based marinades for controlling Listeria monocytogenes and Salmonella spp. in chouriço de vinho, a dry sausage made from wine-marinated pork. J. Food Sci. 2013, 78, M719–M724.
  72. Luciano, F.B.; Belland, J.; Holley, R.A. Microbial and chemical origins of the bactericidal activity of thermally treated yellow mustard powder toward Escherichia coli O157:H7 during dry sausage ripening. Int. J. Food Microbiol. 2011, 145, 69–76.
  73. García-Díez, J.; Alheiro, J.; Pinto, A.L.; Soares, L.; Falco, V.; Fraqueza, M.J.; Patarata, L. Behaviour of food-borne pathogens on dry cured sausage manufactured with herbs and spices essential oils and their sensorial acceptability. Food Control 2016, 59, 262–270.
  74. Sun, Q.; Sun, F.; Zheng, D.; Kong, B.; Liu, Q. Complex starter culture combined with vacuum packaging reduces biogenic amine formation and delays the quality deterioration of dry sausage during storage. Food Control 2019, 100, 58–66.
  75. Meira, N.V.; Holley, R.A.; Bordin, K.; de Macedo, R.E.; Luciano, F.B. Combination of essential oil compounds and phenolic acids against Escherichia coli O157: H7 in vitro and in dry-fermented sausage production. Int. J. Food. Microbiol. 2017, 260, 59–64.
  76. Doeun, D.; Davaatseren, M.; Chung, M.S. Biogenic amines in foods. Food Sci. Biotechnol. 2017, 26, 1463–1474.
  77. Barbieri, F.; Montanari, C.; Gardini, F.; Tabanelli, G. Biogenic amine production by lactic acid bacteria: A review. Foods 2019, 8, 17.
  78. Jairath, G.; Singh, P.K.; Dabur, R.S.; Rani, M.; Chaudhari, M. Biogenic amines in meat and meat products and its public health significance: A review. J. Food Sci. Technol. 2015, 52, 6835–6846.
  79. Ruiz-Capillas, C.; Herrero, A.M. Impact of biogenic amines on food quality and safety. Foods 2019, 8, 62.
  80. Bover-Cid, S.; Miguelez-Arrizado, M.J.; Moratalla, L.L.L.; Carou, M.C.V. Freezing of meat raw materials affects tyramine and diamine accumulation in spontaneously fermented sausages. Meat Sci. 2006, 72, 62–68.
  81. González-Fernández, C.; Santos, E.M.; Jaime, I.; Rovira, J. Influence of starter cultures and sugar concentrations on biogenic amine contents in chorizo dry sausage. Food Microbiol. 2003, 20, 275–284.
  82. Komprda, T.; Smělá, D.; Pechová, P.; Kalhotka, L.; Štencl, J.; Klejdus, B. Effect of starter culture, spice mix and storage time and temperature on biogenic amine content of dry fermented sausages. Meat Sci. 2004, 67, 607–616.
  83. Latorre-Moratalla, M.; Bover-Cid, S.; Veciana-Nogués, M.T.; Vidal-Carou, M.C. Control of biogenic amines in fermented sausages: Role of starter cultures. Front. Microbiol. 2012, 3, 169.
  84. Miguélez-Arrizado, M.J.; Bover-Cid, S.; Latorre-Moratalla, M.L.; Vidal-Carou, M.C. Biogenic amines in Spanish fermented sausages as a function of diameter and artisanal or industrial origin. J. Sci. Food Agricul. 2006, 86, 549–557.
  85. Roseiro, C.; Santos, C.; Sol, M.; Silva, L.; Fernandes, I. Prevalence of biogenic amines during ripening of a traditional dry fermented pork sausage and its relation to the amount of sodium chloride added. Meat Sci. 2006, 74, 557–563.
  86. Ruiz-Capillas, C.; Colmenero, F.J.; Carrascosa, A.V.; Muñoz, R. Biogenic amine production in Spanish dry-cured “chorizo” sausage treated with high-pressure and kept in chilled storage. Meat Sci. 2007, 77, 365–371.
  87. Sun, Q.; Zhao, X.; Chen, H.; Zhang, C.; Kong, B. Impact of spice extracts on the formation of biogenic amines and the physicochemical, microbiological and sensory quality of dry sausage. Food Control 2018, 92, 190–200.
  88. Sun, Q.; Chen, Q.; Li, F.; Zheng, D.; Kong, B. Biogenic amine inhibition and quality protection of Harbin dry sausages by inoculation with Staphylococcus xylosus and Lactobacillus plantarum. Food Control 2016, 68, 358–366.
  89. Xie, C.; Wang, H.H.; Nie, X.K.; Chen, L.; Deng, S.L.; Xu, X.L. Reduction of biogenic amine concentration in fermented sausage by selected starter cultures. CyTA J. Food 2015, 13, 491–497.
  90. Kim, H.S.; Lee, S.Y.; Hur, S.J. Effects of different starter cultures on the biogenic amine concentrations, mutagenicity, oxidative stress, and neuroprotective activity of fermented sausages and their relationships. J. Funct. Foods 2019, 52, 424–429.
  91. Parente, E.; Martuscelli, M.; Gardini, F.; Grieco, S.; Crudele, M.A.; Suzzi, G. Evolution of microbial populations and biogenic amine production in dry sausages produced in Southern Italy. J. Appl. Microbiol. 2001, 90, 882–891.
  92. Bover-Cid, S.; Hugas, M.; Izquierdo-Pulido, M.; Vidal-Carou, M.C. Amino acid-decarboxylase activity of bacteria isolated from fermented pork sausages. Int. J. Food Microbiol. 2001, 66, 185–189.
  93. Martuscelli, M.; Crudele, M.A.; Gardini, F.; Suzzi, G. Biogenic amine formation and oxidation by Staphylococcus xylosus strains from artisanal fermented sausages. Lett. App. Microbiol. 2000, 31, 228–232.
  94. Domínguez, R.; Agregán, R.; Lorenzo, J.M. Role of commercial starter cultures on microbiological, physicochemical characteristics, volatile compounds and sensory properties of dry-cured foal sausage. Asian Pac. J. Trop. Dis. 2016, 6, 396–403.
  95. Dias, I.; Laranjo, M.; Potes, M.E.; Agulheiro-Santos, A.C.; Ricardo-Rodrigues, S.; Fialho, A.R.; Véstia, J.; Fraqueza, M.J.; Oliveira, M.; Elias, M. Autochthonous starter cultures are able to reduce biogenic amines in a traditional portuguese smoked fermented sausage. Microorganisms 2020, 8, 686.
  96. Latorre-Moratalla, M.L.; Bover-Cid, S.; Talon, R.; Aymerich, T.; Garriga, M.; Zanardi, E.; Ianieri, A.; Fraqueza, M.J.; Elias, M.; Drosinos, E.H.; et al. Distribution of aminogenic activity among potential autochthonous starter cultures for dry fermented sausages. J. Food Protec. 2010, 73, 524–528.
  97. Komprda, T.; Sládková, P.; Petirová, E.; Dohnal, V.; Burdychová, R. Tyrosine-and histidine-decarboxylase positive lactic acid bacteria and enterococci in dry fermented sausages. Meat Sci. 2010, 86, 870–877.
  98. Landeta, G.; Curiel, J.A.; Carrascosa, A.V.; Muñoz, R.; De Las Rivas, B. Technological and safety properties of lactic acid bacteria isolated from Spanish dry-cured sausages. Meat Sci. 2013, 95, 272–280.
  99. Pasini, F.; Soglia, F.; Petracci, M.; Caboni, M.F.; Marziali, S.; Montanari, C.; Gardini, F.; Grazia, L.; Tabanelli, G. Effect of fermentation with different lactic acid bacteria starter cultures on biogenic amine content and ripening patterns in dry fermented sausages. Nutrients 2018, 10, 1497.
  100. Alfaia, C.M.; Gouveia, I.M.; Fernandes, M.H.; Fernandes, M.J.; Semedo-Lemsaddek, T.; Barreto, A.S.; Fraqueza, M.J. Assessment of coagulase-negative staphylococci and lactic acid bacteria isolated from Portuguese dry fermented sausages as potential starters based on their biogenic amine profile. J. Food Sci. 2018, 83, 2544–2549.
  101. Pegg, R.B.; Honikel, K.O. Principles of curing. In Handbook of Fermented Meat and Poultry, 2nd ed.; Toldrá, F., Hui, Y.H., Astiararan, I., Sebranek, J.G., Talon, R., Eds.; Wiley Blackwell: West Sussex, UK, 2015; pp. 19–30.
  102. De Mey, E.; De Maere, H.; Paelinck, H.; Fraeye, I. Volatile N-nitrosamines in meat products: Potential precursors, influence of processing, and mitigation strategies. Cri. Rev. Food Sci. Nut. 2017, 57, 2909–2923.
  103. Cantwell, M.; Elliott, C. Nitrates, nitrites and nitrosamines from processed meat intake and colorectal cancer risk. J. Clin. Nutr. Diet. 2017, 3, 27.
  104. Sun, F.; Kong, B.; Chen, Q.; Han, Q.; Diao, X. N-nitrosoamine inhibition and quality preservation of Harbin dry sausages by inoculated with Lactobacillus pentosus, Lactobacillus curvatus and Lactobacillus sake. Food Control 2017, 73, 1514–1521.
  105. Xiao, Y.; Li, P.; Zhou, Y.; Ma, F.; Chen, C. Effect of inoculating Lactobacillus pentosus R3 on N-nitrosamines and bacterial communities in dry fermented sausages. Food Control 2018, 87, 126–134.
  106. Chen, X.; Li, J.; Zhou, T.; Li, J.; Yang, J.; Chen, W.; Xiong, Y.L. Two efficient nitrite-reducing Lactobacillus strains isolated from traditional fermented pork (Nanx Wudl) as competitive starter cultures for Chinese fermented dry sausage. Meat Sci. 2016, 121, 302–309.
  107. Molognoni, L.; Motta, G.E.; Daguer, H.; Lindner, J.D.D. Microbial biotransformation of N-nitro-, C-nitro-, and C-nitrous-type mutagens by Lactobacillus delbrueckii subsp. bulgaricus in meat products. Food Chem. Toxicol. 2020, 136, 110964.
  108. Waga, M.; Takeda, S.; Sakata, R. Effect of nitrate on residual nitrite decomposition rate in cooked cured pork. Meat Sci. 2017, 129, 135–139.
  109. Sallan, S.; Kaban, G.; Oğraş, Ş.Ş.; Çelik, M.; Kaya, M. Nitrosamine formation in a semi-dry fermented sausage: Effects of nitrite, ascorbate and starter culture and role of cooking. Meat Sci. 2020, 159, 107917.
  110. Ledesma, E.; Rendueles, M.; Díaz, M. Contamination of meat products during smoking by polycyclic aromatic hydrocarbons: Processes and prevention. Food Control 2016, 60, 64–87.
  111. Commission Regulation (EC) No 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs. Available online: (accessed on 3 March 2021).
  112. Bartkiene, E.; Bartkevics, V.; Mozuriene, E.; Krungleviciute, V.; Novoslavskij, A.; Santini, A.; Rozentale, I.; Juodeikiene, G.; Cizeikiene, D. The impact of lactic acid bacteria with antimicrobial properties on biodegradation of polycyclic aromatic hydrocarbons and biogenic amines in cold smoked pork sausages. Food Control 2017, 71, 285–292.
  113. Fuchs, S.; Sontag, G.; Stidl, R.; Ehrlich, V.; Kundi, M.; Knasmüller, S. Detoxification of patulin and ochratoxin A, two abundant mycotoxins, by lactic acid bacteria. Food Chem. Toxicol. 2008, 46, 1398–1407.
  114. Haskard, C.; Binnion, C.; Ahokas, J. Factors affecting the sequestration of aflatoxin by Lactobacillus rhamnosus strain GG. Chem. Biol. Interar. 2000, 128, 39–49.
  115. Tsuda, H.; Hara, K.; Miyamoto, T. Binding of mutagens to exopolysaccharide produced by Lactobacillus plantarum mutant strain 301102S. J. Dairy Sci. 2008, 91, 2960–2966.
  116. Elias, M.; Potes, M.E.; Roseiro, L.C.; Santos, C.; Gomes, A.; Agulheiro-Santos, A.C. The Effect of starter Cultures on the Portuguese Traditional Sausage Paio do Alentejo in Terms of its Sensory and Textural Characteristics and Polycyclic Aromatic Hydrocarbons Profile. J. Food Res. 2014, 3, 45–56.
  117. Rodrıguez, E.; Calzada, J.; Arqués, J.L.; Rodrıguez, J.M.; Nunez, M.; Medina, M. Antimicrobial activity of pediocin-producing Lactococcus lactis on Listeria monocytogenes, Staphylococcus aureus and Escherichia coli O157:H7 in cheese. Int. Dairy J. 2005, 15, 51–57.
  118. Lourenço, A.; Kamnetz, M.B.; Gadotti, C.; Diez-Gonzalez, F. Antimicrobial treatments to control Listeria monocytogenes in queso fresco. Food Microbiol. 2017, 64, 47–55.
  119. Morandi, S.; Silvetti, T.; Battelli, G.; Brasca, M. Can lactic acid bacteria be an efficient tool for controlling Listeria monocytogenes contamination on cheese surface? The case of Gorgonzola cheese. Food Control 2019, 96, 499–507.
  120. Izquierdo, E.; Marchioni, E.; Aoude-Werner, D.; Hasselmann, C.; Ennahar, S. Smearing of soft cheese with Enterococcus faecium WHE 81, a multi-bacteriocin producer, against Listeria monocytogenes. Food Microbiol. 2009, 26, 16–20.
  121. Sip, A.; Więckowicz, M.; Olejnik-Schmidt, A.; Grajek, W. Anti-listeria activity of lactic acid bacteria isolated from golka, a regional cheese produced in Poland. Food Control 2012, 26, 117–124.
  122. EFSA. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSA J. 2018, 16, 5500.
  123. Martinez-Rios, V.; Dalgaard, P. Prevalence of Listeria monocytogenes in European cheeses: A systematic review and meta-analysis. Food Control 2018, 84, 205–214.
  124. Morandi, S.; Silvetti, T.; Vezzini, V.; Morozzo, E.; Brasca, M. How we can improve the antimicrobial performances of lactic acid bacteria? A new strategy to control Listeria monocytogenes in Gorgonzola cheese. Food Microbiol. 2020, 90, 103488.
  125. Tavşanlı, H.; İrkin, R.; Kısadere, İ. The effects of different organic acid treatments on some microflora and pathogen Listeria monocytogenes of white brine cheese. Kafkas Univ. Vet. Fak. Derg. 2019, 25, 201–207.
  126. Aspri, M.; O’Connor, P.M.; Field, D.; Cotter, P.D.; Ross, P.; Hill, C.; Papademas, P. Application of bacteriocin-producing Enterococcus faecium isolated from donkey milk, in the bio-control of Listeria monocytogenes in fresh whey cheese. Int. Dairy J. 2017, 73, 1–9.
  127. Bello, B.D.; Zeppa, G.; Bianchi, D.M.; Decastelli, L.; Traversa, A.; Gallina, S.; Coisson, J.D.; Locatelli, M.; Travaglia, F.; Cocolin, L. Effect of nisin-producing Lactococcus lactis starter cultures on the inhibition of two pathogens in ripened cheeses. Int. J. Dairy Technol. 2013, 66, 468–477.
  128. Coelho, M.C.; Silva, C.C.G.; Ribeiro, S.C.; Dapkevicius, M.L.N.E.; Rosa, H.J.D. Control of Listeria monocytogenes in fresh cheese using protective lactic acid bacteria. Int. J. Food Microbiol. 2014, 191, 53–59.
  129. Costa, W.K.A.; de Souza, G.T.; Brandão, L.R.; de Lima, R.C.; Garcia, E.F.; dos Santos Lima, M.; Leite de Souza, E.; Saarela, M.; Magnani, M. Exploiting antagonistic activity of fruit-derived Lactobacillus to control pathogenic bacteria in fresh cheese and chicken meat. Food Res. Int. 2018, 108, 172–182.
  130. Kondrotiene, K.; Kasnauskyte, N.; Serniene, L.; Gölz, G.; Alter, T.; Kaskoniene, V.; Maruska, A.S.; Malakauskas, M. Characterization and application of newly isolated nisin producing Lactococcus lactis strains for control of Listeria monocytogenes growth in fresh cheese. LWT 2018, 87, 507–514.
  131. Mills, S.; Serrano, L.; Griffin, C.; O’Connor, P.M.; Schaad, G.; Bruining, C.; Hill, C.; Ross, R.P.; Meijer, W.C. Inhibitory activity of Lactobacillus plantarum LMG P-26358 against Listeria innocua when used as an adjunct starter in the manufacture of cheese. Microb. Cell Factories 2011, 1, S7.
  132. Pingitore, E.V.; Todorov, S.D.; Sesma, F.; de Melo Franco, B.D.G. Application of bacteriocinogenic Enterococcus mundtii CRL35 and Enterococcus faecium ST88Ch in the control of Listeria monocytogenes in fresh Minas cheese. Food Microbiol. 2012, 32, 38–47.
  133. Scatassa, M.L.; Gaglio, R.; Cardamone, C.; Macaluso, G.; Arcuri, L.; Todaro, M.; Mancuso, I. Anti-Listeria activity of lactic acid bacteria in two traditional Sicilian cheeses. Ital. J. Food Saf. 2017, 6, 6191.
  134. Masoud, W.; Vogensen, F.K.; Lillevang, S.; Al-Soud, W.A.; Sørensen, S.J.; Jakobsen, M. The fate of indigenous microbiota, starter cultures, Escherichia coli, Listeria innocua and Staphylococcus aureus in Danish raw milk and cheeses determined by pyrosequencing and quantitative real time (qRT)-PCR. Int. J. Food Microbiol. 2012, 153, 192–202.
  135. Stecchini, M.L.; Sarais, I.; de Bertoldi, M. The influence of Lactobacillus plantarum culture inoculation on the fate of Staphylococcus aureus and Salmonella typhimurium in Montasio cheese. Int. J. Food Microbiol. 1991, 14, 99–109.
  136. Sahraoui, Y.; Fayolle, K.; Leriche, F.; Le Flèche-Matéos, A.; Sadoun, D. Antibacterial and technological properties of Lactococcus lactis ssp. lactis KJ660075 strain selected for its inhibitory power against Staphylococcus aureus for cheese quality improving. J. Food Sci. Technol. 2015, 52, 7133–7142.
  137. Hamama, A.; El Hankouri, N.; El Ayadi, M. Fate of enterotoxigenic Staphylococcus aureus in the presence of nisin-producing Lactococcus lactis strain during manufacture of Jben, a Moroccan traditional fresh cheese. Int. Dairy J. 2002, 12, 933–938.
  138. Silva Ferrari, I.; de Souza, J.V.; Ramos, C.L.; da Costa, M.M.; Schwan, R.F.; Dias, F.S. Selection of autochthonous lactic acid bacteria from goat dairies and their addition to evaluate the inhibition of Salmonella typhi in artisanal cheese. Food Microbiol. 2016, 60, 29–38.
  139. Terpou, A.; Bosnea, L.; Kanellaki, M.; Plessas, S.; Bekatorou, A.; Bezirtzoglou, E.; Koutinas, A.A. Growth capacity of a novel potential probiotic Lactobacillus paracasei K5 strain incorporated in industrial white brined cheese as an adjunct culture. J. Food Sci. 2018, 83, 723–731.
  140. Jakobsen, R.A.; Heggebø, R.; Sunde, E.B.; Skjervheim, M. Staphylococcus aureus and Listeria monocytogenes in Norwegian raw milk cheese production. Food Microbiol. 2011, 28, 492–496.
  141. Regulation (EC) No 2073/2005 of 15 November 2005 on Microbiological Criteria for Foodstuffs. Available online: (accessed on 3 March 2021).
  142. Kalkan, S. Predicting the antimicrobial effect of probiotic lactic acid bacteria against Staphylococcus aureus in white cheeses, using Fourier series modeling method. J. Food Saf. 2020, 40, e12724.
  143. Prezzi, L.E.; Lee, S.H.; Nunes, V.M.; Corassin, C.H.; Pimentel, T.C.; Rocha, R.S.; Ramos, G.L.P.A.; Guimarães, J.T.; Balthazar, C.F.; Duarte, M.C.; et al. Effect of Lactobacillus rhamnosus on growth of Listeria monocytogenes and Staphylococcus aureus in a probiotic Minas Frescal cheese. Food Microbiol. 2020, 92, 103557.
  144. De Souza, G.T.; De Carvalho, R.J.; De Sousa, J.P.; Tavares, J.F.; Schaffner, D.; De Souza, E.L.; Magnani, M. Effects of the essential oil from Origanum vulgare L. on survival of pathogenic bacteria and starter lactic acid bacteria in semi hard cheese broth and slurry. J. Food Protec. 2016, 79, 246–252.
  145. Carvalho, R.J.; de Souza, G.T.; Honório, V.G.; de Sousa, J.P.; da Conceição, M.L.; Maganani, M.; de Souza, E.L. Comparative inhibitory effects of Thymus vulgaris L. essential oil against Staphylococcus aureus, Listeria monocytogenes and mesophilic starter co-culture in cheese-mimicking models. Food Microbiol. 2015, 52, 59–65.
  146. Ehsani, A.L.I.; Mahmoudi, R. Effects of Mentha longifolia L. essential oil and Lactobacillus casei on the organoleptic properties and on the growth of Staphylococcus aureus and Listeria monocytogenes during manufacturing, ripening and storage of Iranian white-brined cheese. Int. J. Dairy Technol. 2013, 66, 70–76.
  147. Arqués, J.L.; Rodríguez, E.; Gaya, P.; Medina, M.; Guamis, B.; Nunez, M. Inactivation of Staphylococcus aureus in raw milk cheese by combinations of high-pressure treatments and bacteriocin-producing lactic acid bacteria. J. App. Microbiol. 2005, 98, 254–260.
  148. Serraino, A.; Finazzi, G.; Marchetti, G.; Daminelli, P.; Riu, R.; Giacometti, F.; Rosmini, R. Behaviour of Salmonella typhimurium during production and storage of artisan water buffalo mozzarella cheese. Ital. J. An. Sci. 2012, 11, e53.
  149. Tamagnini, L.M.; De Sousa, G.B.; González, R.D.; Revelli, J.; Budde, C.E. Behavior of Yersinia enterocolitica and Salmonella typhimurium in Crottin goat’s cheese. Int. J. Food Microbiol. 2005, 99, 129–134.
  150. Alemdar, S.; Agaoglu, S. Survival of Salmonella typhimurium during the ripening of herby cheese (Otlu Peynir). J. Food Saf. 2010, 30, 526–536.
  151. Leuschner, R.G.; Boughtflower, M.P. Laboratory-scale preparation of soft cheese artificially contaminated with low levels of Escherichia coli O157, Listeria monocytogenes, and Salmonella enterica serovars Typhimurium, Enteritidis, and Dublin. J. Food Protect. 2002, 65, 508–514.
  152. Erkmen, O.; Bozo, T.F. Behaviour of Salmonella typhimurium in feta cheese during its manufacture and ripening. LWT 1995, 28, 259–263.
  153. Callon, C.; Arliguie, C.; Montel, M.C. Control of Shigatoxin-producing Escherichia coli in cheese by dairy bacterial strains. Food Microbiol. 2016, 53, 63–70.
  154. Ramsaran, H.; Chen, J.; Brunke, B.; Hill, A.; Griffiths, M.W. Survival of bioluminescent Listeria monocytogenes and Escherichia coli 0157:H7 in soft cheeses. J. Dairy Sci. 1998, 81, 1810–1817.
  155. Fretin, M.; Chassard, C.; Delbès, C.; Lavigne, R.; Rifa, E.; Theil, S.; Fernandez, B.; Laforce, P.; Callon, C. Robustness and efficacy of an inhibitory consortium against E. coli O26:H11 in raw milk cheeses. Food Control 2020, 115, 107282.
  156. Ioanna, F.; Quaglia, N.C.; Storelli, M.M.; Castiglia, D.; Goffredo, E.L.I.S.A.; Storelli, A.; de Rosa, M.; Normanno, G.; Jambrenghi, C.; Dambrosio, A. Survival of Escherichia coli O157:H7 during the manufacture and ripening of Cacioricotta goat cheese. Food Microbiol. 2018, 70, 200–205.
  157. Mehdizadeh, T.; Narimani, R.; Mojaddar Langroodi, A.; Moghaddas Kia, E.; Neyriz-Naghadehi, M. Antimicrobial effects of Zataria multiflora essential oil and Lactobacillus acidophilus on Escherichia coli O157 stability in the Iranian probiotic white-brined cheese. J. Food Saf. 2018, 38, e12476.
  158. Diniz-Silva, H.T.; Brandão, L.R.; de Sousa Galvão, M.; Madruga, M.S.; Maciel, J.F.; de Souza, E.L.; Magnani, M. Survival of Lactobacillus acidophilus LA-5 and Escherichia coli O157:H7 in Minas Frescal cheese made with oregano and rosemary essential oils. Food Microbiol. 2020, 86, 103348.
  159. Langa, S.; Martín-Cabrejas, I.; Montiel, R.; Peirotén, Á.; Arqués, J.L.; Medina, M. Protective effect of reuterin-producing Lactobacillus reuteri against Listeria monocytogenes and Escherichia coli O157:H7 in semi-hard cheese. Food Control 2018, 84, 284–289.
  160. Das, K.; Choudhary, R.; Thompson-Witrick, K.A. Effects of new technology on the current manufacturing process of yogurt-to increase the overall marketability of yogurt. LWT 2019, 108, 69–80.
  161. Gulmez, M.; Guven, A. Survival of Escherichia coli O157:H7, Listeria monocytogenes 4b and Yersinia enterocolitica O3 in different yogurt and kefir combinations as prefermentation contaminant. J. Appl. Microbiol. 2003, 95, 631–636.
  162. Massa, S.; Trovatelli, L.D.; Canganella, F. Survival of Listeria monocytogenes in yogurt during storage at 4 °C. Letters Appl. Microbiol. 1991, 13, 112–114.
  163. Benkerroum, N.; Oubel, H.; Ben Mimoun, L.A.M.I.A.E. Behavior of Listeria monocytogenes and Staphylococcus aureus in yogurt fermented with a bacteriocin-producing thermophilic starter. J. Food Protec. 2002, 65, 799–805.
  164. Al-Nabulsi, A.A.; Olaimat, A.N.; Osaili, T.M.; Ayyash, M.M.; Abushelaibi, A.; Jaradat, Z.W.; Shaker, R.; Al-Taani, M.; Holley, R.A. Behaviour of Escherichia coli O157: H7 and Listeria monocytogenes during fermentation and storage of camel yogurt. J. Dairy Sci. 2016, 99, 1802–1811.
  165. Bachrouri, M.; Quinto, E.J.; Mora, M.T. Survival of Escherichia coli O157:H7 during storage of yogurt at different temperatures. J. Food Sci. 2002, 67, 1899–1903.
  166. Savran, D.; Pérez-Rodríguez, F.; Halkman, A.K. Modelling survival of Salmonella enteritidis during storage of yoghurt at different temperatures. Int. J. Food Microbiol. 2018, 271, 67–76.
  167. Hervert, C.J.; Martin, N.H.; Boor, K.J.; Wiedmann, M. Survival and detection of coliforms, Enterobacteriaceae, and gram-negative bacteria in Greek yogurt. J. Dairy Sci. 2017, 100, 950–960.
  168. Bearson, S.; Bearson, B.; Foster, J.W. Acid stress responses in enterobacteria. FEMS Microbiol. Let. 1997, 147, 173–180.
  169. Martin, N.H.; Trmčić, A.; Hsieh, T.H.; Boor, K.J.; Wiedmann, M. The evolving role of coliforms as indicators of unhygienic processing conditions in dairy foods. Frontiers Microbiol. 2016, 7, 1549.
More
Video Production Service