Acetylcholinesterase Inhibitors in Alzheimer’s Disease: Comparison
Please note this is a comparison between Version 2 by Rita Xu and Version 1 by Don Moss.

Acetylcholinesterase (AChE) inhibitors are the only drugs that have demonstrated success in slowing shrinkage (atrophy) of the cortex, hippocampus, and basal forebrain, major areas of Alzheimer's disease (AD)-associated brain damage and dementia. The main barrier to taking advantage of this new success in treating, or even preventing, AD is that the old available AChE inhibitors are weak 

reversible

inhibitors that cause intolerable nausea, vomiting, and diarrhea if given in the higher doses needed. A promising new strategy for producing high-level AChE inhibition in the brain as needed for effective treatment of AD is the use of AChE inhibitors that are of a different type, the 

irreversible

inhibitors. 

  • Acetylcholinesterase inhibitor
  • Alzheimer's
  • irreversible inhibitor
  • prophylaxis
Please wait, diff process is still running!

References

  1. P. Davies; SELECTIVE LOSS OF CENTRAL CHOLINERGIC NEURONS IN ALZHEIMER'S DISEASE. The Lancet 1976, 2, 1403, 10.1016/s0140-6736(76)91936-x.
  2. A. Claudio Cuello; Rowan Pentz; Hélène Hall; The Brain NGF Metabolic Pathway in Health and in Alzheimer's Pathology. Frontiers in Neuroscience 2019, 13, 62, 10.3389/fnins.2019.00062.
  3. Giancarlo Pepeu; Maria Grazia Giovannini; The fate of the brain cholinergic neurons in neurodegenerative diseases. Brain Research 2017, 1670, 173-184, 10.1016/j.brainres.2017.06.023.
  4. Nicolaas I Bohnen; Michel J. Grothe; Nicola J. Ray; Martijn Muller; Stefan J. Teipel; Recent Advances in Cholinergic Imaging and Cognitive Decline—Revisiting the Cholinergic Hypothesis of Dementia. Current Geriatrics Reports 2018, 7, 1-11, 10.1007/s13670-018-0234-4.
  5. Harald Hampel; M.-Marsel Mesulam; A Claudio Cuello; Martin R. Farlow; Ezio Giacobini; George T Grossberg; Ara S. Khachaturian; Andrea Vergallo; Enrica Cavedo; Peter J. Snyder; Zaven S. Khachaturian; The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain 2018, 141, 1917-1933, 10.1093/brain/awy132.
  6. Peter J. Whitehouse; Nald L. Price; Arthur W. Clark; Joseph T. Coyle; Mahlon R. Delong; Alzheimer disease: Evidence for selective loss of cholinergic neurons in the nucleus basalis. Annals of Neurology 1981, 10, 122-126, 10.1002/ana.410100203.
  7. Hanna Al-Shaikh, F.S.; Duara, R.; Crook, J.E.; Lesser, E.R.; Schaeverbeke, J.; Hinkle, K.M.; Ross, O.A.; Ertekin-Taner, N.; Pedraza, O.; Dickson, D.W.; et al.et al Selective vulnerability of the nucleus basalis of Meynert among neuropathologic subtypes of Alzheimer disease. JAMA Neurol. 2019, 32224, 1–9.
  8. Taylor W Schmitz; R. Nathan Spreng; Michael W. Weiner; Basal forebrain degeneration precedes and predicts the cortical spread of Alzheimer's pathology. Nature Communications 2016, 7, 13249, 10.1038/ncomms13249.
  9. Sara Fernández-Cabello; Martin Kronbichler; Koene R A Van Dijk; James A Goodman; R Nathan Spreng; Taylor W Schmitz; On Behalf Of The Alzheimer’S Disease Neuroimaging Initiative; Basal forebrain volume reliably predicts the cortical spread of Alzheimer’s degeneration. Brain 2020, 143, 993-1009, 10.1093/brain/awaa012.
  10. Stefan J. Teipel; Helmut Heinsen; Edson Amaro; Lea T. Grinberg; Bernd Krause; Michel J. Grothe; Alzheimer's Disease Neuroimaging Initiative; Cholinergic basal forebrain atrophy predicts amyloid burden in Alzheimer's disease. Neurobiology of Aging 2014, 35, 482-491, 10.1016/j.neurobiolaging.2013.09.029.
  11. Taylor W Schmitz; Hermona Soreq; Judes Poirier; R. Nathan Spreng; For The Alzheimer's Disease Neuroimaging Initiative; Longitudinal Basal Forebrain Degeneration Interacts with TREM2/C3 Biomarkers of Inflammation in Presymptomatic Alzheimer's Disease. The Journal of Neuroscience 2020, 40, 1931-1942, 10.1523/jneurosci.1184-19.2019.
  12. M.-M Mesulam; Pamela Shaw; Deborah Mash; Sandra Weintraub; Cholinergic nucleus basalis tauopathy emerges early in the aging-MCI-AD continuum. Annals of Neurology 2004, 55, 815-828, 10.1002/ana.20100.
  13. M.-M Mesulam; Cholinergic Circuitry of the Human Nucleus Basalis and Its Fate in Alzheimer's Disease. The Journal of Comparative Neurology 2013, 521, 4124-4144, 10.1002/cne.23415.
  14. I. Sassin; C Schultz; Dietmar Rudolf Thal; U. Rüb; K. Arai; E. Braak; H. Braak; Evolution of Alzheimer's disease-related cytoskeletal changes in the basal nucleus of Meynert. Acta Neuropathologica 2000, 100, 259-269, 10.1007/s004019900178.
  15. Chelsea T Tiernan; Elliott J Mufson; Nicholas M. Kanaan; Scott E. Counts; Tau Oligomer Pathology in Nucleus Basalis Neurons During the Progression of Alzheimer Disease. Journal of Neuropathology & Experimental Neurology 2018, 77, 246-259, 10.1093/jnen/nlx120.
  16. Andrew M. Hall; Robert Y. Moore; Oscar L. Lopez; Lewis Kuller; James T. Becker; Andrew M. Ho; Basal forebrain atrophy is a presymptomatic marker for Alzheimer's disease. Alzheimer's & Dementia 2008, 4, 271-279, 10.1016/j.jalz.2008.04.005.
  17. Bettina Laursen; Arne Mørk; Niels Plath; Uffe Kristiansen; Jesper Frank Bastlund; Cholinergic degeneration is associated with increased plaque deposition and cognitive impairment in APPswe/PS1dE9 mice. Behavioural Brain Research 2013, 240, 146-152, 10.1016/j.bbr.2012.11.012.
  18. Juan Jose Ramos-Rodriguez; Mar Pacheco-Herrero; Diana Thyssen; Maria Isabel Murillo-Carretero; Esther Berrocoso; Tara L. Spires-Jones; Brian J. Bacskai; Monica Garcia‐Alloza; Rapid β-amyloid deposition and cognitive impairment after cholinergic denervation in APP/PS1 mice.. Journal of Neuropathology & Experimental Neurology 2013, 72, 272-285, 10.1097/NEN.0b013e318288a8dd.
  19. Wallace, W.; Ahlerst, S.T.; Gotlib, J.; Braginu, V.; Sugaro, J.; Gluck, R.; Sheat, P.A.; Davis, K.L.; Haroutunian, V. Amyloid precursor protein in the cerebral cortex is rapidly and persistently induced by loss of subcortical innervation (nucleus basalis of Meynert/rat). Neurobiol. Commun. 1993, 90, 8712–8716.
  20. Ilya D. Ionov; Irina I. Pushinskaya; Amyloid-β production in aged guinea pigs: atropine-induced enhancement is reversed by naloxone. Neuroscience Letters 2010, 480, 83-86, 10.1016/j.neulet.2010.06.010.
  21. T. Beach; D. Walker; L. Sue; S. Scott; K. Layne; A. Newell; P. Potter; R. Durham; M. Emmerling; S. Webster; Immunotoxin Lesion of the Cholinergic Nucleus Basalis Causes Aβ Deposition: Towards a Physiologic Animal Model of Alzheimers Disease. Current Medicinal Chemistry-Immunology, Endocrine & Metabolic Agents 2003, 3, 57-75, 10.2174/1568013033358635.
  22. D L Price; L J Martin; S S Sisodia; M V Wagster; E H Koo; L C Walker; V E Koliatsos; L C Cork; Aged non-human primates: an animal model of age-associated neurodegenerative disease. Brain Pathology 1991, 1, 287–296.
  23. Yasumasa Yoshiyama; Ayako Kojima; Chieko Ishikawa; Kimihito Arai; Anti-Inflammatory Action of Donepezil Ameliorates Tau Pathology, Synaptic Loss, and Neurodegeneration in a Tauopathy Mouse Model. Journal of Alzheimer's Disease 2010, 22, 295-306, 10.3233/jad-2010-100681.
  24. Elaine K. Perry; Linda Kilford; Andrew J. Lees; David Burn; Robert H. Perry; Increased Alzheimer pathology in Parkinson's disease related to antimuscarinic drugs. Annals of Neurology 2003, 54, 235-238, 10.1002/ana.10639.
  25. Shelly L. Gray; Melissa L. Anderson; Sascha Dublin; Joseph T. Hanlon; Rebecca Hubbard; Rod Walker; Onchee Yu; Paul K. Crane; Eric B. Larson; Cumulative use of strong anticholinergics and incident dementia: a prospective cohort study. JAMA Internal Medicine 2015, 75, 401-407, 10.1001/jamainternmed.2014.7663.
  26. Isabelle Carriere; Annie Fourrier-Réglat; Jean-François Dartigues; Olivier Rouaud; Florence Pasquier; Karen Ritchie; Marie-Laure Ancelin; Drugs With Anticholinergic Properties, Cognitive Decline, and Dementia in an Elderly General Population. Archives of Internal Medicine 2009, 169, 1317-24, 10.1001/archinternmed.2009.229.
  27. Risacher, S.L.; McDonald, B.; Tallman, E.; West, J.; Farlow, M.R.; Unverzagt, F.W.; Gao, S.; Boustani, M; Association Between Anticholinergic Medication Use and Cognition, Brain Metabolism, and Brain Atrophy in Cognitively Normal Older Adults. JAMA Neurology 2016, 73, 721-732, 10.1001/jamaneurol.2016.0580.
  28. Yi-Fang Chuang; Palchamy Elango; Christopher E. Gonzalez; Madhav Thambisetty; Midlife anticholinergic drug use, risk of Alzheimer's disease, and brain atrophy in community-dwelling older adults. Alzheimer's & Dementia: Translational Research & Clinical Interventions 2017, 3, 471-479, 10.1016/j.trci.2017.06.004.
  29. Alireza Atri; Lynn W. Shaughnessy; Joseph J. Locascio; John H. Growdon; Long-term Course and Effectiveness of Combination Therapy in Alzheimer Disease. Alzheimer Disease & Associated Disorders 2008, 22, 209-221, 10.1097/wad.0b013e31816653bc.
  30. Susan Rountree; Alireza Atri; Oscar L. Lopez; Rachelle S. Doody; Effectiveness of antidementia drugs in delaying Alzheimer's disease progression. Alzheimer's & Dementia 2013, 9, 338-345, 10.1016/j.jalz.2012.01.002.
  31. Oscar L. Lopez; J T Becker; Abdus Wahed; J Saxton; R A Sweet; D A Wolk; William Klunk; Steven T. DeKosky; Long-term effects of the concomitant use of memantine with cholinesterase inhibition in Alzheimer disease. Journal of Neurology, Neurosurgery & Psychiatry 2009, 80, 600-607, 10.1136/jnnp.2008.158964.
  32. Carolyn W. Zhu; Elayne E. Livote; Nikolaos Scarmeas; Marilyn Albert; J. Brandt; Deborah Blacker; Mary Sano; Yaakov Stern; Long-term associations between cholinesterase inhibitors and memantine use and health outcomes among patients with Alzheimer's disease. Alzheimer's & Dementia 2013, 9, 733-740, 10.1016/j.jalz.2012.09.015.
  33. Elio Scarpini; Giuseppe Bruno; Giuseppe Zappalà; Marina Adami; Ute Richarz; Maren Gaudig; Adam Jacobs; Barbara Schäuble; Cessation versus Continuation of Galantamine Treatment after 12 Months of Therapy in Patients with Alzheimer's Disease: A Randomized, Double Blind, Placebo Controlled Withdrawal Trial. Journal of Alzheimer's Disease 2011, 26, 211-220, 10.3233/jad-2011-110134.
  34. Sean Lilienfeld; Wim Parys; Galantamine: additional benefits to patients with Alzheimer's disease. Dementia and Geriatric Cognitive Disorders 2000, 11, 19-27, 10.1159/000051228.
  35. R Blesa; Galantamine: therapeutic effects beyond cognition. Dementia and Geriatric Cognitive Disorders 2000, 11, 28-34, 10.1159/000051229.
  36. Agneta Nordberg; Taher Darreh-Shori; Elaine Peskind; Hilkka Soininen; Malahat Mousavi; Gina Eagle; Roger Lane; Different cholinesterase inhibitor effects on CSF cholinesterases in Alzheimer patients.. Current Alzheimer Research 2009, 6, 4-14, 10.2174/156720509787313961.
  37. Ferris, S.; Nordberg, A.; Soininen, H.; Darreh-Shori, T.; Lane, R. Progression from mild cognitive impairment to Alzheimer’s disease: Effects of gender, butyrylcholinesterase genotype and rivastigmine treatment. Pharmacogenet Genomics. 2009, 19, 635–646.
  38. Annalena Venneri; Roger Lane; Effects of cholinesterase inhibition on brain white matter volume in Alzheimerʼs disease. NeuroReport 2009, 2, 285-288, 10.1097/wnr.0b013e3283207d21.
  39. Bo-Lin Ho; Yi-Hui Kao; Mei-Chuan Chou; Yuan-Han Yang; Cerebral White Matter Changes on Therapeutic Response to Rivastigmine in Alzheimer’s Disease. Journal of Alzheimer's Disease 2016, 54, 351-357, 10.3233/jad-160364.
  40. R. Douglas Fields; Dipankar Dutta; Jillian Belgrad; Maya Robnett; Cholinergic signaling in myelination. Glia 2017, 65, 687-698, 10.1002/glia.23101.
  41. Sultan Darvesh; Butyrylcholinesterase as a Diagnostic and Therapeutic Target for Alzheimer's Disease. Current Alzheimer Research 2016, 13, 1173–1177.
  42. Dubois, B.; Chupin, M.; Hampel, H.; Lista, S.; Cavedo, E.; Croisile, B.; Tisserand, G.L.; Touchon, J.; Bonafe, A.; Ousset, P.J.; et al.et al Donepezil decreases annual rate of hippocampal atrophy in suspected prodromal Alzheimer's disease. Alzheimer's & Dementia 2015, 11, 1041-1049, 10.1016/j.jalz.2014.10.003.
  43. Cavedo, E.; Dubois, B.; Colliot, O.; Lista, S.; Croisile, B.; Tisserand, G.L.; Touchon, J.; Bonafe, A.; Ousset, P.J.; Rouaud, O.; et al.et al Reduced Regional Cortical Thickness Rate of Change in Donepezil-Treated Subjects With Suspected Prodromal Alzheimer’s Disease. The Journal of Clinical Psychiatry 2016, 77, e1631-e1638, 10.4088/JCP.15m10413.
  44. Enrica Cavedo; Hippocampus Study Group; Michel J. Grothe; Olivier Colliot; Simone Lista; Marie Chupin; Didier Dormont; Marion Houot; Stephane Lehéricy; Stefan Teipel; Bruno Dubois; Harald Hampel; Bernard Croisile; Reduced basal forebrain atrophy progression in a randomized Donepezil trial in prodromal Alzheimer’s disease. Scientific Reports 2017, 7, 11706, 10.1038/s41598-017-09780-3.
  45. K. R. R. Krishnan; H. Cecil Charles; P. Murali Doraiswamy; Jacobo Mintzer; Richard Weisler; Xin Yu; Carlos Perdomo; John R. Ieni; Sharon Rogers; Randomized, Placebo-Controlled Trial of the Effects of Donepezil on Neuronal Markers and Hippocampal Volumes in Alzheimer’s Disease. American Journal of Psychiatry 2003, 160, 2003-2011, 10.1176/appi.ajp.160.11.2003.
  46. Martin A. Bruno; A. Claudio Cuello; Activity-dependent release of precursor nerve growth factor, conversion to mature nerve growth factor, and its degradation by a protease cascade. Proceedings of the National Academy of Sciences 2006, 103, 6735-6740, 10.1073/pnas.0510645103.
  47. A. Claudio Cuello; Martin A. Bruno; Simon Allard; Wanda Leon; M. Florencia Iulita; Cholinergic Involvement in Alzheimer’s Disease. A Link with NGF Maturation and Degradation. Journal of Molecular Neuroscience 2010, 40, 230-235, 10.1007/s12031-009-9238-z.
  48. Xu-Qiao Chen; William C. Mobley; Exploring the Pathogenesis of Alzheimer Disease in Basal Forebrain Cholinergic Neurons: Converging Insights From Alternative Hypotheses. Frontiers in Neuroscience 2019, 13, 446, 10.3389/fnins.2019.00446.
  49. Margaret Fahnestock; Arman Shekari; ProNGF and Neurodegeneration in Alzheimer's Disease. Frontiers in Neuroscience 2019, 13, 129, 10.3389/fnins.2019.00129.
  50. Valentina Latina; Silvia Caioli; Cristina Zona; Maria T. Ciotti; Giuseppina Amadoro; Pietro Calissano; Impaired NGF/TrkA Signaling Causes Early AD-Linked Presynaptic Dysfunction in Cholinergic Primary Neurons. Frontiers in Cellular Neuroscience 2017, 11, 1-23, 10.3389/fncel.2017.00068.
  51. Scott E. Counts; Elliott J. Mufson; The Role of Nerve Growth Factor Receptors in Cholinergic Basal Forebrain Degeneration in Prodromal Alzheimer Disease. Journal of Neuropathology & Experimental Neurology 2005, 64, 263-272, 10.1093/jnen/64.4.263.
  52. Donald E. Moss; Ruth G. Perez; Haruo Kobayashi; Cholinesterase Inhibitor Therapy in Alzheimer’s Disease: The Limits and Tolerability of Irreversible CNS-Selective Acetylcholinesterase Inhibition in Primates. Journal of Alzheimer's Disease 2017, 55, 1285-1294, 10.3233/jad-160733.
  53. J. A. Deutsch; The Cholinergic Synapse and the Site of Memory. Science 1971, 174, 788-794, 10.1126/science.174.4011.788.
  54. Monica Janeczek; Tamar Gefen; Mehrnoosh Samimi; Garam Kim; Sandra Weintraub; Eileen Bigio; Emily Rogalski; M -Marsel Mesulam; Changiz Geula; Variations in Acetylcholinesterase Activity within Human Cortical Pyramidal Neurons Across Age and Cognitive Trajectories. Cerebral Cortex 2018, 28, 1329-1337, 10.1093/cercor/bhx047.
  55. Bartus, R.T.; Dean, R.L.; Pontecorvo, M.J.; Flicker, C. The cholinergic hypothesis: A historical overview, current perspective, and future irections. Ann. N. Y. Acad. Sci. 1985, 444, 332–358.
  56. D A Drachman; J Leavitt; Human memory and the cholinergic system. A relationship to aging?. Archives of Neurology 1974, 30, 113–127.
  57. Bond, M.; Rogers, G.; Peters, J.; Anderson, R.; Hoyle, M.; Miners, A.; Moxham, T.; Davis, S.; Thokala, P.; Wailoo, A.; et al.et al The effectiveness and cost-effectiveness of donepezil, galantamine, rivastigmine and memantine for the treatment of Alzheimer’s disease (review of Technology Appraisal No. 111): a systematic review and economic model. Health Technology Assessment 2012, 16, 1-470, 10.3310/hta16210.
  58. Howard H. Feldman; Tuula Pirttilä; Jean François Dartigues; Barry John Everitt; Bart Van Baelen; Susanne Schwalen; Shane Kavanagh; Treatment with galantamine and time to nursing home placement in Alzheimer's disease patients with and without cerebrovascular disease. International Journal of Geriatric Psychiatry 2009, 24, 479-488, 10.1002/gps.2141.
  59. Hommet, C.; Novella, J.; Auriacombe, S.; Vercelletto, M.; Berrut, G.; Belliard, S.; Desmidt, T.; Ceccaldi, M.; Centre, C.; Tours, C. Les traitements symptomatiques à partir des Centres mémoire ressources. Geriatr. Psychol. Neuropsychiatr. du Vieil. 2016, 14, 274–286.
  60. Pierre Krolak-Salmon; Bruno Dubois; François Sellal; Jean-Philippe Delabrousse-Mayoux; Pierre Vandel; Hélène Amieva; Claude Jeandel; Sandrine Andrieu; Armand Perret-Liaudet; France Will No More Reimburse Available Symptomatic Drugs Against Alzheimer’s Disease. Journal of Alzheimer's Disease 2018, 66, 425-427, 10.3233/jad-180843.
  61. Emma Loveman; C Green; J Kirby; A Takeda; Joanna Picot; E Payne; A Clegg; Liz Payne; The clinical and cost-effectiveness of donepezil, rivastigmine, galantamine and memantine for Alzheimer's disease. Health Technology Assessment 2006, 10, 1–160, 10.3310/hta10010.
  62. Filip Zemek; Lucie Drtinova; Eugenie Nepovimova; Vendula Hepnarova; Jan Korábečný; Jiri Klimes; Kamil Kuca; Outcomes of Alzheimer's disease therapy with acetylcholinesterase inhibitors and memantine. Expert Opinion on Drug Safety 2014, 13, 759–774, 10.1517/14740338.2014.914168.
  63. Js Birks; R Harvey; Donepezil for dementia due to Alzheimer’s disease. Cochrane Database of Systematic Reviews 2018, 6, CD001190, 10.1002/14651858.cd001190.
  64. Daniela Galimberti; Elio Scarpini; Old and new acetylcholinesterase inhibitors for Alzheimer’s disease. Expert Opinion on Investigational Drugs 2016, 25, 1181-1187, 10.1080/13543784.2016.1216972.
  65. Bohnen, N.I.; Kaufer, D.I.; Hendrickson, R.; Ivanco, L.S.; Lopresti, B.J.; Koeppe, R.A.; Meltzer, C.C.; Constantine, G.; Davis, J.G.; Mathis, C.A.; et al. Degree of inhibition of cortical acetylcholinesterase activity and cognitive effects by donepezil treatment in Alzeimer’s disease. J. Neurol. Neurosurg. Psychiatry 2005, 76, 315–319.
  66. David E. Kuhl; Satoshi Minoshima; Kirk A. Frey; Norman L. Foster; Michael R. Kilbourn; Robert A. Koeppe; Limited donepezil inhibition of acetylcholinesterase measured with positron emission tomography in living Alzheimer cerebral cortex. Annals of Neurology 2000, 48, 391-395, 10.1002/1531-8249(200009)48:3<391::aid-ana17>3.0.co;2-h.
  67. Tsuneyoshi Ota; Hitoshi Shinotoh; Kiyoshi Fukushi; Tatsuya Kikuchi; Koichi Sato; Noriko Tanaka; Hitoshi Shimada; Shigeki Hirano; Michie Miyoshi; Heii Arai; Tetsuya Suhara; Toshiaki Irie; Estimation of Plasma IC50 of Donepezil for Cerebral Acetylcholinesterase Inhibition in Patients With Alzheimer Disease Using Positron Emission Tomography. Clinical Neuropharmacology 2010, 33, 74-78, 10.1097/wnf.0b013e3181c71be9.
  68. Valtteri Kaasinen Md; Kjell Någren; Tarja Järvenpää; Anne Roivainen; Meixiang Yu; Vesa Oikonen; Timo Kurki; Juha O. Rinne; Regional Effects of Donepezil and Rivastigmine on Cortical Acetylcholinesterase Activity in Alzheimer’s Disease. Journal of Clinical Psychopharmacology 2002, 22, 615-620, 10.1097/00004714-200212000-00012.
  69. A. Kadir; Taher Darreh-Shori; Ove Almkvist; A. Wall; M. Grut; B. Strandberg; Anna Ringheim; B. Eriksson; G. Blomquist; B. Långström; Agneta Nordberg; PET imaging of the in vivo brain acetylcholinesterase activity and nicotine binding in galantamine-treated patients with AD. Neurobiology of Aging 2008, 29, 1204-1217, 10.1016/j.neurobiolaging.2007.02.020.
  70. Bruno Pietro Imbimbo; Pharmacodynamic-Tolerability Relationships of Cholinesterase Inhibitors for Alzheimer??s Disease. CNS Drugs 2001, 15, 375-390, 10.2165/00023210-200115050-00004.
  71. Jann, M.W.; Shirley, K.L.; Small, G.W; Clinical pharmacokinetics and pharmacodynamics of cholinesterase inhibitors. Clin. Pharmacokinet. 2002, 41, 719–739.
  72. Muriel Noetzli; Chin B. Eap; Pharmacodynamic, Pharmacokinetic and Pharmacogenetic Aspects of Drugs Used in the Treatment of Alzheimer’s Disease. Clinical Pharmacokinetics 2013, 52, 225-241, 10.1007/s40262-013-0038-9.
  73. Kryger, G.; Silman, I.; Sussman, J.L. Structure of acetylcholinesterase complexed with E2020 (Aricept®): Implications for the design of new anti-Alzheimer drugs. Structure 1999, 7, 297–307.
  74. Hachiro Sugimoto; Youichi Iimura; Yoshiharu Yamanishi; Kiyomi Yamatsu; Synthesis and Structure-Activity Relationships of Acetylcholinesterase Inhibitors: 1-Benzyl-4-[(5,6-dimethoxy-1-oxoindan-2-yl)methyl]piperidine Hydrochloride and Related Compounds. Journal of Medicinal Chemistry 1995, 38, 4821-4829, 10.1021/jm00024a009.
  75. T. Thomsen; H. Kewitz; Selective inhibition of human acetylcholinesterase by galanthamine in vitro and in vivo. Life Sciences 1990, 46, 1553-1558, 10.1016/0024-3205(90)90429-u.
  76. G. S. J. Mannens; C. A. W. Snel; J. Hendrickx; T. Verhaeghe; L. Le Jeune; W. Bode; L. Van Beijsterveldt; K. Lavrijsen; J. Leempoels; N. Van Osselaer; et al.A. Van PeerW. Meuldermans The metabolism and excretion of galantamine in rats, dogs, and humans. Drug Metabolism and Disposition 2002, 30, 553-563, 10.1124/dmd.30.5.553.
  77. A Plaitakis; R C Duvoisin; Homer's moly identified as Galanthus nivalis L.: physiologic antidote to stramonium poisoning. Clin. Neuropharmacol. 1983, 6, 1-5.
  78. M Samochocki; M Zerlin; R Jostock; P J Groot Kormelink; W H Luyten; E X Albuquerque; Alfred Maelicke; Galantamine is an allosterically potentiating ligand of the human alpha4/beta2 nAChR. Acta neurologica Scandinavica. Supplementum 2000, 176, 68–73.
  79. A Schrattenholz; E F Pereira; U Roth; K H Weber; E X Albuquerque; Alfred Maelicke; Agonist responses of neuronal nicotinic acetylcholine receptors are potentiated by a novel class of allosterically acting ligands. Molecular Pharmacology 1996, 49, 1-6.
  80. Sean Lilienfeld; Galantamine--a novel cholinergic drug with a unique dual mode of action for the treatment of patients with Alzheimer's disease. CNS Drug Reviews 2002, 8, 159–176.
  81. P. Bar-On; C. B. Millard; M. Harel; H. Dvir; A. Enz; Joel L. Sussman; I. Silman; Kinetic and Structural Studies on the Interaction of Cholinesterases with the Anti-Alzheimer Drug Rivastigmine†,‡. Biochemistry 2002, 41, 3555-3564, 10.1021/bi020016x.
  82. Enz, A.; Floersheim, P. Cholinesterase inhibitors: An overview of their mechanisms of action. In Alzheimer’s Disease. Therapeutic Strategies; Giacobini, E., Becker, R., Eds.; Birkhauser: Boston, MA, USA, 1994; pp. 211–215.
  83. Roger M. Lane; Taher Darreh-Shori; Understanding the Beneficial and Detrimental Effects of Donepezil and Rivastigmine to Improve their Therapeutic Value. Journal of Alzheimer's Disease 2015, 44, 1039-1062, 10.3233/jad-142268.
  84. Roger M. Lane; Albert Enz; Steven Potkin; Targeting acetylcholinesterase and butyrylcholinesterase in dementia. The International Journal of Neuropsychopharmacology 2005, 9, 101–124, 10.1017/S1461145705005833.
  85. Agneta Nordberg; Clive Ballard; Roger Bullock; Taher Darreh-Shori; Monique Somogyi; A Review of Butyrylcholinesterase as a Therapeutic Target in the Treatment of Alzheimer’s Disease. The Primary Care Companion For CNS Disorders 2013, 15, PCC.12r01412, 10.4088/PCC.12r01412.
  86. Dane R. Liston; Jann A. Nielsen; Anabella Villalobos; Douglas Chapin; Shawn B. Jones; Sean T. Hubbard; Ismail A. Shalaby; Andres Ramirez; Deane Nason; W Frost White; Pharmacology of selective acetylcholinesterase inhibitors: implications for use in Alzheimer's disease.. European Journal of Pharmacology 2004, 486, 9-17, 10.1016/j.ejphar.2003.11.080.
  87. Nagaendran Kandiah; Ming-Chyi Pai; Vorapun Senanarong; Irene Looi; Encarnita Ampil; Kyung Won Park; Ananda Krishna Karanam; Stephen Christopher; Rivastigmine: the advantages of dual inhibition of acetylcholinesterase and butyrylcholinesterase and its role in subcortical vascular dementia and Parkinson’s disease dementia. Clinical Interventions in Aging 2017, 12, 697-707, 10.2147/CIA.S129145.
  88. Carey Pope; Stephen Brimijoin; Cholinesterases and the fine line between poison and remedy. Biochemical Pharmacology 2018, 153, 205-216, 10.1016/j.bcp.2018.01.044.
  89. Sultan Darvesh; David A. Hopkins; Changiz Geula; Neurobiology of butyrylcholinesterase. Nature Reviews Neuroscience 2003, 4, 131-138, 10.1038/nrn1035.
  90. Robert E. Becker; Jerry A Colliver; Stephen J. Markwell; Pamela L. Moriearty; Latha K. Unni; Sandra Vicari; Double-Blind, Placebo-Controlled Study of Metrifonate, an Acetylcholinesterase Inhibitor, for Alzheimer Disease. Alzheimer Disease & Associated Disorders 1996, 10, 124-131, 10.1097/00002093-199601030-00003.
  91. López-Arrieta, J.M.; Schneider, L. Metrifonate for Alzheimer’s disease. Cochrane Database Syst. Rev. 2006, CD003155.
  92. J. M. Jewsbury; M.J. Cooke; M.C. Weber; Field trial of metrifonate in the treatment and prevention of Schistosomiasis infection in man. Annals of Tropical Medicine & Parasitology 1977, 71, 67-83, 10.1080/00034983.1977.11687163.
  93. Ingrid Nordgren; Bo Holmstedt; Marianne Sandoz; Transformation and action of metrifonate. Archives of Toxicology 1978, 41, 31-41, 10.1007/bf00351767.
  94. Holmstedt, B.; Nordgren, I.; Sandoz, M.; Sundwall, A; Metrifonate. Arch. Toxicol. 1978, 41, 3–29, 10.1016/b978-008055232-3.62176-2.
  95. R. L. Metcalf; T. R. Fukuto; R. B. March; Toxic Action of Dipterex and DDVP to the House Fly. Journal of Economic Entomology 1959, 52, 44-49, 10.1093/jee/52.1.44.
  96. G Pacheco; R Palacios-Esquivel; D E Moss; Cholinesterase inhibitors proposed for treating dementia in Alzheimer’s disease: Selectivity toward human brain acetylcholinesterase compared with butyrylcholinesterase. Journal of Pharmacology and Experimental Therapeutics 1995, 74, 767–770.
  97. Haruo Kobayashi; Takuma Nakano; E.Moss Donald; Tadahiko Suzuki; Effects of a Central Anticholinesterase, Methanesulfonyl Fluoride on The Cerebral Cholinergic System and Behavior in Mice : Comparison with an Organophosphate DDVP. JOURNAL OF HEALTH SCIENCE 1999, 45, 191-202, 10.1248/jhs.45.191.
  98. L K Unni; C Womack; M E Hannant; R E Becker; Pharmacokinetics and pharmacodynamics of metrifonate in humans. Methods and Findings in Experimental and Clinical Pharmacology 1994, 16, 285–289.
  99. M Hallak; E Giacobini; A comparison of the effects of two inhibitors on brain cholinesterase. Neuropharmacology 1987, 26, 521–530.
  100. Zalewska, Z.; Rakowska, I.; Matraszek, G.; Sitkiewicz, D. Effect of dichlorvos on some enzymes activites of the rat brain during postnatal development. Neuropatol. Pol. 1977, 15, 255–262.
  101. Caroldi, S.; Lotti, M. Delayed neurotoxicity caused by a single masssive dose of dichlorvos to adult hens. Toxicol. Lett. 1981, 9, 157–159.
  102. C Vasilescu; A Florescu; Clinical and electrophysiological study of neuropathy after organophosphorus compounds poisoning. Archives of Toxicology 1980, 43, 305–315.
  103. Desi, I.; Nagymajtenyi, L. Neurotoxicologic investigations of the pesticide dichlorvos (DDVP): Effects on the central and peripheral nervous system. Toxicology 1988, 49, 141–148.
  104. Sitkiewicz, D.; Zalewska, Z. Aktywność oksydazy cytochromowej i dehydrogenazy bursztynianowej mózgu szczura po zatruciu fosforoorganicznymi insektycydami dichlorfosem i trichlorfonem [The activity of cytochrome oxidase and succinate dehydrogenase in rat brain mitochondria following trichlorphon and dichlorvos intoxication]. Neuropathol. Pol. 1975, 13, 279–280.
  105. Marcello Lotti; Promotion of organophosphate induced delayed polyneuropathy by certain esterase inhibitors. Toxicology 2002, 181–182, 245-248, 10.1016/s0300-483x(02)00291-3.
  106. Kai-Xin Dou; Meng-Shan Tan; Chen-Chen Tan; Xi-Peng Cao; Xiao-He Hou; Qi-Hao Guo; Lan Tan; Vincent Chung-Tong Mok; Jin-Tai Yu; Comparative safety and effectiveness of cholinesterase inhibitors and memantine for Alzheimer’s disease: a network meta-analysis of 41 randomized controlled trials. Alzheimer's Research & Therapy 2018, 10, 126, 10.1186/s13195-018-0457-9.
  107. Thomas Chase; Martin R. Farlow; Kathleen Clarence-Smith; Donepezil Plus Solifenacin (CPC-201) Treatment for Alzheimer's Disease.. Neurotherapeutics 2017, 14, 405-416, 10.1007/s13311-016-0511-x.
  108. Azadeh Karami; Maria Eriksdotter; Ahmadul Kadir; Ove Almkvist; Agneta Nordberg; Taher Darreh-Shori; CSF Cholinergic Index, a New Biomeasure of Treatment Effect in Patients With Alzheimer's Disease. Frontiers in Neuroscience 2019, 12, 239, 10.3389/fnmol.2019.00239.
  109. Moss, D.E.; Berlanga, P.; Hagan, M.M.; Sandoval, H.; Ishida, C. Methanesulfonyl fluoride (MSF): A double-blind, placebo-controlled study of safety and efficacy in the treatment of senile dementia of the Alzheimer type. Alzheimer Dis. Assoc. Disord. 1999, 13, 20–25.
  110. Moss, D.E.; Rodriguez, L.; Selim, S.; Ellett, S.; Devine, J.; Steger, R. The sulfonyl fluorides: CNS selective cholinesterase inhibitors with potential value in Alzheimer’s disease? In Neurology and Neurobiology 18: Senile Dementia of the Alzheimer Type; Hutton, J.T., Kenny, A.D., Eds.; Alan, R. Liss: New York, NY, USA, 1985; pp. 337–350.
  111. Donald E. Moss; Ruggero G. Fariello; Jörg Sahlmann; Isabel Sumaya; Federica Pericle; Enrico Braglia; A randomized phase I study of methanesulfonyl fluoride, an irreversible cholinesterase inhibitor, for the treatment of Alzheimer's disease. British Journal of Clinical Pharmacology 2013, 75, 1231-1239, 10.1111/bcp.12018.
  112. David H. Malin; Robert E. Plotner; Sarah J. Radulescu; Robert N. Ferebee; J.Ronald Lake; Pilar G. Negrete; Peggy J. Schaefer; Marie K. Crothers; Donald E. Moss; Chronic methanesulfonyl fluoride enhances one-trial per day reward learning in aged rats. Neurobiology of Aging 1993, 14, 393-395, 10.1016/0197-4580(93)90127-w.
  113. Myers, D.; Kemp, A; Inhibition of esterases by the fluorides of organic acids. Nature 1954, 173, 33–34.
  114. R Kitz; I B Wilson; Esters of methanesulfonic acid as irreversible inhibitors of acetylcholinesterase. Journal of Biological Chemistry 1962, 237, 3245–3249.
  115. Fahrney, D.; Gold, A; Sulfonyl fluorides as inhibitors of esterases. J. Am. Chem. Soc. 1963, 85, 997–1000.
  116. Arthur W. Snow; William R. Barger; A chemical comparison of methanesulfonyl fluoride with organofluorophosphorus ester anticholinesterase compounds. Chemical Research in Toxicology 1988, 1, 379-384, 10.1021/tx00006a009.
  117. Sulfonyl Fluorides and the Promotion of Diisopropyl Fluorophosphate Neuropathy. Toxicological Sciences 1996, 33, 294-297, 10.1093/toxsci/33.2.294.
  118. Moss, D.; Keathley, S. Pilot Study to Test Sulfnates’ Ability to Provide Prophylaxis Against Nerve Agents; Technical Report; (Contract No. DAMD 17-87-C-7064); The U.S. Army Medical Research and Development Command: Frederick, MD, USA, 1 July 1988.
  119. Moss, D.; Rodriguez, L.; Herndon, W.; Vincenti, S.; Camarena, M. Sulfonyl fluorides as possible therapeutic agents in Alzheimer’s disease: Structure/activity relationships as CNS selective cholinesterase inhibitors. In Alzheimer’s and Parkinson’s Disease: Strategies in Research and Development; Fisher, A., Lachman, C., Hanin, I., Eds.; Plenum Press: New York, NY, USA, 1986; pp. 551–556
  120. R L Palacios-Esquivel; G Pacheco; D E Moss; Methanesulfonyl fluoride (MSF) blocks scopolamine-induced amnesia in rats.. Neurobiology of Aging 1993, 14, , null.
  121. Cesar V. Borlongan; Isabel C. Sumaya; Donald E. Moss; Methanesulfonyl fluoride, an acetylcholinesterase inhibitor, attenuates simple learning and memory deficits in ischemic rats. Brain Research 2005, 1038, 50-58, 10.1016/j.brainres.2005.01.028.
More
ScholarVision Creations