Zinc and Dog Food: Comparison
Please note this is a comparison between Version 1 by Ana Margarida Pereira and Version 2 by Lily Guo.

Zinc is an essential trace element, required for enzymatic, structural, and regulatory functions. As body reserves are scarce, an adequate zinc status relies on proper dietary supply and efficient homeostasis. Several biomarkers have been proposed that enable the detection of poor zinc status, but more sensitive and specific ones are needed to detect marginal deficiencies. The zinc content of commercial dry dog foods has great variability, with a more frequent non-compliance with the maximum authorized limit than with the nutritional requirement. The bioavailability of dietary zinc also plays a crucial role in ensuring an adequate zinc status. 

  • zinc
  • dog
  • nutrition
Please wait, diff process is still running!

References

  1. Raulin, Jules. Études chimiques sur la végétation; Masson & cie: the University of California, 1905; pp. -.
  2. W. R. Todd; C. A. Elvehjem; E. B. Hart; ZINC IN THE NUTRITION OF THE RAT. American Journal of Physiology-Legacy Content 1933, 107, 146-156, 10.1152/ajplegacy.1933.107.1.146.
  3. Ananda S. Prasad; James A. Halsted; Manucher Nadimi; Syndrome of iron deficiency anemia, hepatosplenomegaly, hypogonadism, dwarfism and geophagia. The American Journal of Medicine 1961, 31, 532-546, 10.1016/0002-9343(61)90137-1.
  4. NRC. Nutrient Requirements of Dogs; The National Academies Press: Washington DC, WA, USA, 1962; pp. -.
  5. H. Ozpinar; I. Abas; T. Bilal; G. Demirel; Investigation of excretion and absorption of different zinc salts in puppies. Laboratory Animals 2001, 35, 282-287, 10.1258/0023677011911615.
  6. Gail Kuhlman; Ronald E. Rompala; The Influence of Dietary Sources of Zinc, Copper and Manganese on Canine Reproductive Performance and Hair Mineral Content. The Journal of Nutrition 1998, 128, 2603S-2605S, 10.1093/jn/128.12.2603s.
  7. John A Lowe; Julian Wiseman; A comparison of the bioavailability of three dietary zinc sources using four different physiologic parameters in dogs.. The Journal of Nutrition 1998, 128, 2809S-2811S, 10.1093/jn/128.12.2809s.
  8. Karen J. Wedekind; Stephen R. Lowry; Are organic zinc sources efficacious in puppies?. The Journal of Nutrition 1998, 128, 2593S-2595S, 10.1093/jn/128.12.2593s.
  9. John A. Lowe; Julian Wiseman; D. J. A. Cole; Zinc Source Influences Zinc Retention in Hair and Hair Growth in the Dog. The Journal of Nutrition 1994, 124, 2575S-2576S, 10.1093/jn/124.suppl_12.2575s.
  10. John A. Lowe; Julian Wiseman; D. J. A. Cole; Absorption and Retention of Zinc when Administered as an Amino-Acid Chelate in the Dog. The Journal of Nutrition 1994, 124, 2572S-2574S, 10.1093/jn/124.suppl_12.2572s.
  11. Trevizan, L.; Fischer, M.M.; Rodenbusch, C.R.; Labres, R.V.; Kessler, A. de Mello; Effects of diets containing organic and inorganic zinc sources on hair characteristics, zinc concentration in blood and hair, and the immune response of dogs. Acta Scientiae Veterinariae 2013, 41, 1-7.
  12. B.M. Vester; L.K. Karr-Lilienthal; D.J. Tomlinson; K.S. Swanson; G.C. Fahey; Indicators of Zinc Status of Weanling Puppies Are Affected by Zinc Dietary Concentration. The Professional Animal Scientist 2007, 23, 448-453, 10.15232/s1080-7446(15)31000-7.
  13. Ana Margarida Pereira; Margarida Guedes; Elisabete Matos; Edgar Pinto; Agostinho A. Almeida; Marcela A. Segundo; Alexandra Correia; Manuel Vilanova; António J. M. Fonseca; Ana Rita J. Cabrita; et al. Effect of Zinc Source and Exogenous Enzymes Supplementation on Zinc Status in Dogs Fed High Phytate Diets. Animals 2020, 10, 400, 10.3390/ani10030400.
  14. S.D. White; P. Bourdeau; R.A.W. Rosychuk; B. Cohen; T. Bonenberger; K.V. Fieseler; P. Ihrke; P.L. Chapman; P. Schultheiss; G. Zur; et al.A. CannonC. Outerbridge Zinc-responsive dermatosis in dogs: 41 cases and literature review. Veterinary Dermatology 2001, 12, 101-109, 10.1046/j.1365-3164.2001.00233.x.
  15. K.A. Marsh; F.L. Ruedisueli; S.L. Coe; T.G.D. Watson; Effects of zinc and linoleic acid supplementation on the skin and coat quality of dogs receiving a complete and balanced diet. Veterinary Dermatology 2000, 11, 277-284, 10.1046/j.1365-3164.2000.00202.x.
  16. Sarah Colombini; Canine zinc-responsive dermatosis.. Veterinary Clinics of North America: Small Animal Practice 1999, 29, 1373-1383, 10.1016/s0195-5616(99)50133-2.
  17. European Council. European Union Register of Feed Additives pursuant to Regulation (EC) No 1831/2003 - Appendix 4(II). - released 05.08.2020.
  18. European Council. Regulation (EC) No 767/2009 of 13 July 2009 on the placing on the market and use of feed. 2009.
  19. EFSA. Scientific Opinion on the safety and efficacy of zinc compounds (E6) as feed additives for all animal species (zinc acetate, dihydrate; zinc chloride, anhydrous; zinc oxide; zinc sulphate, heptahydrate; zinc sulphate, monohydrate; zinc chelate of amino acids, hydrate; zinc chelate of glycine, hydrate), based on a dossier submitted by FEFANA asbl. EFSA Journal 2015, 13, 46.
  20. European Council. Regulation (EC) 2016/1095 of 6 July 2016 concerning the authorisation of Zinc acetate dihydrate, Zinc chloride anhydrous, Zinc oxide, Zinc sulphate heptahydrate, Zinc sulphate monohydrate, Zinc chelate of amino acids hydrate, Zinc chelate of protein hydrolysates, Zinc chelate of glycine hydrate (solid) and Zinc chelate of glycine hydrate (liquid) as feed additives for all animal species. 2016.
  21. European Council. Regulation (EC) 2016/973 of 17 June 2016 concerning the authorisation of zinc bislysinate as a feed additive for all animal species. 2016.
  22. European Council. Regulation (EC) No 335/2010 of 22 April 2010 concerning the authorisation of zinc chelate of hydroxy analogue of methionine as a feed additive for all animal species. 2010.
  23. European Council. Regulation (EC) 2019/1125 of 5 June 2019 concerning the authorisation of zinc chelate of methionine sulfate as a feed additive for all animal species 2019.
  24. FEDIAF. Nutritional Guidelines For Complete and Complementary Pet Food for Cats and Dogs; Bruxelles, Belgium, September 2020.
  25. D. AlOmar; S. Hodgkinson; D. Abarzua; R. Fuchslocher; C. Alvarado; E. Rosales; Nutritional evaluation of commercial dry dog foods by near infrared reflectance spectroscopy. Journal of Animal Physiology and Animal Nutrition 2006, 90, 223-229, 10.1111/j.1439-0396.2005.00585.x.
  26. C.A. Alvarado; S.M. Hodgkinson; D. AlOmar; D. Boroschek; Evaluation of the chemical composition of dry dogfoods commercialized in Chile used for growing dogs. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 2008, 60, 218-226, 10.1590/s0102-09352008000100030.
  27. Camila Elias; Elisabete A. De Nadai Fernandes; Márcio Arruda Bacchi; Neutron activation analysis for assessing chemical composition of dry dog foods. Journal of Radioanalytical and Nuclear Chemistry 2011, 291, 245-250, 10.1007/s10967-011-1285-6.
  28. David G. Kelly; Steven D. White; Ron D. Weir; Elemental composition of dog foods using nitric acid and simulated gastric digestions. Food and Chemical Toxicology 2013, 55, 568-577, 10.1016/j.fct.2013.01.057.
  29. M. Davies; R. Alborough; L. Jones; C. Davis; C. Williams; D. S. Gardner; Mineral analysis of complete dog and cat foods in the UK and compliance with European guidelines. Scientific Reports 2017, 7, 1-9, 10.1038/s41598-017-17159-7.
  30. Silvânio Costa; Ana Pereira; Elisangela Passos; José Alves; Carlos Garcia; Rennan Araujo; Evaluation of the Chemical Composition of Dry Feeds for Dogs and Cats. Journal of the Brazilian Chemical Society 2018, 29, 2616-2625, 10.21577/0103-5053.20180142.
  31. Ana Margarida Pereira; Edgar Pinto; Elisabete Matos; Francisco Castanheira; Agostinho Almiro Almeida; Cláudia S. Baptista; Marcela A. Segundo; António Mira Da Fonseca; Ana R. J. Cabrita; Mineral Composition of Dry Dog Foods: Impact on Nutrition and Potential Toxicity. Journal of Agricultural and Food Chemistry 2018, 66, 7822-7830, 10.1021/acs.jafc.8b02552.
  32. Arianna Goi; Carmen L. Manuelian; Sarah Currò; Massimo De Marchi; Prediction of Mineral Composition in Commercial Extruded Dry Dog Food by Near-Infrared Reflectance Spectroscopy. Animals 2019, 9, 640, 10.3390/ani9090640.
  33. Sarah A. S. Dodd; Nick J. Cave; Jennifer L. Adolphe; Anna K. Shoveller; Adronie Verbrugghe; Plant-based (vegan) diets for pets: A survey of pet owner attitudes and feeding practices. PLOS ONE 2019, 14, e0210806, 10.1371/journal.pone.0210806.
  34. Giada Morelli; Sofia Bastianello; Paolo Catellani; Rebecca Ricci; Raw meat-based diets for dogs: survey of owners’ motivations, attitudes and practices. BMC Veterinary Research 2019, 15, 74, 10.1186/s12917-019-1824-x.
  35. Rafael Vessecchi Amorim Zafalon; Larissa Wünsche Risolia; Thiago Henrique Annibale Vendramini; Roberta Bueno Ayres Rodrigues; Vivian Pedrinelli; Fabio Alves Teixeira; Mariana Fragoso Rentas; Mariana Pamplona Perini; Isabella Corsato Alvarenga; Marcio Antonio Brunetto; et al. Nutritional inadequacies in commercial vegan foods for dogs and cats.. PLOS ONE 2020, 15, e0227046, 10.1371/journal.pone.0227046.
  36. Vivian Pedrinelli; Rafael Vessecchi Amorim Zafalon; Roberta Bueno Ayres Rodrigues; Mariana Pamplona Perini; Renata Maria Consentino Conti; Thiago Henrique Annibale Vendramini; Júlio César De Carvalho Balieiro; Márcio Antonio Brunetto; Concentrations of macronutrients, minerals and heavy metals in home-prepared diets for adult dogs and cats. Scientific Reports 2019, 9, 1-12, 10.1038/s41598-019-49087-z.
  37. Natalie Dillitzer; Nicola Becker; Ellen Kienzle; Intake of minerals, trace elements and vitamins in bone and raw food rations in adult dogs. British Journal of Nutrition 2011, 106, S53-S56, 10.1017/s0007114511002765.
  38. Dayara Virgínia L Ávila; Sidnei O Souza; Silvânio Silvério L Costa; Rennan Geovanny O Araujo; Carlos Alexandre B Garcia; José Do Patrocínio H Alves; Elisangela A Passos; Determination of Zn in Dry Feeds for Cats and Dogs by Energy-Dispersive X-Ray Fluorescence Spectrometry. Journal of AOAC INTERNATIONAL 2016, 99, 1572-1575, 10.5740/jaoacint.16-0105.
  39. Neha Gupta; Hari Ram; Balwinder Kumar; Mechanism of Zinc absorption in plants: uptake, transport, translocation and accumulation. Reviews in Environmental Science and Bio/Technology 2016, 15, 89-109, 10.1007/s11157-016-9390-1.
  40. Michela Schiavon; Elizabeth A. H. Pilon‐Smits; The fascinating facets of plant selenium accumulation – biochemistry, physiology, evolution and ecology. New Phytologist 2016, 213, 1582-1596, 10.1111/nph.14378.
  41. Marschner, H.. Zinc Uptake from Soils; Robson, A. D., Eds.; Springer: Dordrecht, Netherlands, 1993; pp. 59-77.
  42. Longnecker, N.E.; Robson, A.D.. Distribution and transport of zinc in plants.; Robson, A.D., Eds.; Springer: Dordrecht, Netherlands, 1993; pp. 79-91.
  43. P.R. Henry; R.C. Littell; C.B. Ammerman; Effect of high dietary zinc concentration and length of zinc feeding on feed intake and tissue zinc concentration in sheep. Animal Feed Science and Technology 1997, 66, 237-245, 10.1016/s0377-8401(96)01104-2.
  44. G. Bellof; E. Most; J. Pallauf; Concentration of copper, iron, manganese and zinc in muscle, fat and bone tissue of lambs of the breed German Merino Landsheep in the course of the growing period and different feeding intensities. Journal of Animal Physiology and Animal Nutrition 2007, 91, 100-108, 10.1111/j.1439-0396.2006.00648.x.
  45. Yi Zhang; Terry Lynn Ward; Fei Ji; Chucai Peng; Lin Zhu; Limin Gong; Bing Dong; Effects of zinc sources and levels of zinc amino acid complex on growth performance, hematological and biochemical parameters in weanling pigs. Asian-Australasian Journal of Animal Sciences 2018, 31, 1267-1274, 10.5713/ajas.17.0739.
  46. Susan J. Fairweather-Tait; Bioavailability of trace elements. Food Chemistry 1992, 43, 213-217, 10.1016/0308-8146(92)90176-3.
  47. NRC. Nutrient Requirements of Dogs and Cats; National Academies Press: Washington DC, WA, USA,, 2006; pp. -.
  48. J. Cao; P. R. Henry; R. Guo; R. A. Holwerda; J. P. Toth; R. C. Littell; R. D. Miles; C. B. Ammerman; Chemical characteristics and relative bioavailability of supplemental organic zinc sources for poultry and ruminants.. Journal of Animal Science 2000, 78, 2039-2054, 10.2527/2000.7882039x.
  49. Ashmead, H.. Amino Acid Chelation in Human and Animal Nutrition; CRC Press: Boca Raton, FL, USA, 2012; pp. -.
  50. Jesse P. Goff; Invited review: Mineral absorption mechanisms, mineral interactions that affect acid–base and antioxidant status, and diet considerations to improve mineral status. Journal of Dairy Science 2018, 101, 2763-2813, 10.3168/jds.2017-13112.
  51. Jianpeng Li; Chen Gong; Zaiyang Wang; Ruichang Gao; Jiaoyan Ren; Xiaodong Zhou; He Xu; Feng Xiao; Yuhui Cao; Yuanhui Zhao; et al. Oyster-Derived Zinc-Binding Peptide Modified by Plastein Reaction via Zinc Chelation Promotes the Intestinal Absorption of Zinc. Marine Drugs 2019, 17, 341, 10.3390/md17060341.
  52. Weilin Shen; Toshiro Matsui; Intestinal absorption of small peptides: a review. International Journal of Food Science & Technology 2018, 54, 1942-1948, 10.1111/ijfs.14048.
  53. Uttra Jamikorn; Thanisara Preedapattarapong; Comparative effects of zinc methionylglycinate and zinc sulfate on hair coat characteristics and zinc concentration in plasma, hair, and stool of dogs. Thai Journal of Veterinary Medicine 2008, 38, 9-16.
  54. M. Chinonye Udechukwu; Stephanie A. Collins; Chibuike C. Udenigwe; Prospects of enhancing dietary zinc bioavailability with food-derived zinc-chelating peptides. Food & Function 2016, 7, 4137-4144, 10.1039/c6fo00706f.
  55. Partha S. Swain; Somu B.N. Rao; Duraisamy Rajendran; George Dominic; Sellappan Selvaraju; Nano zinc, an alternative to conventional zinc as animal feed supplement: A review. Animal Nutrition 2016, 2, 134-141, 10.1016/j.aninu.2016.06.003.
  56. Damian Konkol; Konrad Wojnarowski; The Use of Nanominerals in Animal Nutrition as a Way to Improve the Composition and Quality of Animal Products. Journal of Chemistry 2018, 2018, 1-7, 10.1155/2018/5927058.
More
Video Production Service