British Sheep Breed Diversity: Comparison
Please note this is a comparison between Version 8 by Michael N. Romanov and Version 24 by Michael N. Romanov.

The UK can be proud of the fact that numerous native breeds of sheep have been developed here that possess unique phenotypic features and excellent productivity and are utilized throughout the world. Their remarkable popularity and further sustainable breeding on grass pastures of British Isles and elsewhere can benefit from genomic applications. At present, there is a rich arsenal of genetic and genomic resources, tools and applications used for livestock assessment, breeding and production including, first of all, genetic profiling of diverse breeds, and search for quantitative trait loci (QTLs) and candidate genes in farm animals. These genomic advances facilitate breed improvement and understanding of the genetic processes in the course of domestication and breed evolution.

The UK can be proud of the fact that numerous native breeds of sheep have been developed here that possess unique phenotypic features and excellent productivity and are utilized throughout the world. Their remarkable popularity and further sustainable breeding on grass pastures of British Isles and elsewhere can benefit from genomic applications.
 
At present, there is a rich arsenal of genetic and genomic resources, tools and applications used for livestock assessment, breeding and production including, first of all, genetic profiling of diverse breeds, and search for quantitative trait loci (QTLs) and candidate genes in farm animals. These genomic advances facilitate breed improvement and understanding of the genetic processes in the course of domestication and breed evolution. For example, the Dorset breed was found to be a carrier of a single polymorphism mutation at the callipyge (CLPG) locus causing the muscle hypertrophy phenotype .
  • British sheep breeds
  • diversity
  • genetics
  • genomics
  • conservation
  • adaptation
Please wait, diff process is still running!

References

  1. Youatt, W. Sheep: Their Breeds, Management, and Diseases: To Which Is Added the Mountain Shepherd’s Manual; Baldwin and Cradock: London, UK, 1837.Zamorano, M.J.; Ruiter, J.; Townsend, S.; Cruickshank, R.; Bruford, M.; Byrne, K.; Rodero, A.; Vega-Pla, J.L. Polimorfismos de DNA en las razas ovinas Merino y Churra lebrijana: DNA polymorphisms in Merino and Churra lebrijana Sheep breeds. Arch. Zoot. 1998, 47, 267–272.
  2. Yurchenko, A.; Yudin, N.; Aitnazarov, R.; Plyusnina, A.; Brukhin, V.; Soloshenko, V.; Lhasaranov, B.; Popov, R.; Paronyan, I.A.; Plemyashov, K.V.; et al. Genome-wide genotyping uncovers genetic profiles and history of the Russian cattle breeds. Heredity 2018, 120, 125–137.Peter, C.; Bruford, M.; Perez, T.; Dalamitra, S.; Hewitt, G.; Erhardt, G.; Econogene Consortium. Genetic diversity and subdivision of 57 European and Middle-Eastern sheep breeds. Anim. Genet. 2007, 38, 37–44.
  3. Mucha, S.; Bunger, L.; Conington, J. Genome-wide association study of footrot in Texel sheep. Genet. Sel. Evol. 2015, 47, 35.Lawson Handley, L.J.; Byrne, K.; Santucci, F.; Townsend, S.; Taylor, M.; Bruford, M.W.; Hewitt, G.M. Genetic structure of European sheep breeds. Heredity 2007, 99, 620–631.
  4. Beynon, S.E.; Slavov, G.T.; Farré, M.; Sunduimijid, B.; Waddams, K.; Davies, B.; Haresign, W.; Kijas, J.; MacLeod, I.M.; Newbold, C.J.; et al. Population structure and history of the Welsh sheep breeds determined by whole genome genotyping. BMC Genet. 2015, 16, 65.Russo-Almeida, P.A. Diversidade Genética e Diferenciação das Raças Portuguesas de Ovinos com Base em Marcadores de DNA–Microssatélites: Uma Perspectiva de Conservação. Tese de Doutorado em Ciência Animal, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal, 2007.
  5. Weigend, S.; Romanov, M.N. The World Watch List for Domestic Animal Diversity in the context of conservation and utilisation of poultry biodiversity. Worlds Poult. Sci. J. 2002, 58, 519–538.Bowles, D.; Carson, A.; Isaac, P. Genetic distinctiveness of the Herdwick sheep breed and two other locally adapted hill breeds of the UK. PLoS ONE 2014, 9, e87823.
  6. Green, K. Shaggy sheep stories. Ctry. Life 2017, 121 (13), 68–72.Bowles, D. Recent advances in understanding the genetic resources of sheep breeds locally-adapted to the UK uplands: Opportunities they offer for sustainable productivity. Front. Genet. 2015, 6, 24.
  7. The Natural Fibre Company. Meet the Animals. Available online: https://www.thenaturalfibre.co.uk/meet-the-animals (accessed on 3 February 2021).Bruford, M.; Townsend, S.J. Mitochondrial DNA diversity in modern sheep: Implications for domestication. In Documenting Domestication: New Genetic and Archaeological Paradigms; Zeder, M.A., Bradley, D.G., Emshwiller, E., Smith, B.D., Eds.; University of California Press: Berkeley, CA, USA, 2006; pp. 307–317.
  8. Carson, A.; Elliott, M.; Groom, J.; Winter, A.; Bowles, D. Geographical isolation of native sheep breeds in the UK-Evidence of endemism as a risk factor to genetic resources. Livest. Sci. 2009, 123, 288–299.Pariset, L.; Mariotti, M.; Gargani, M.; Joost, S.; Negrini, R.; Perez, T.; Bruford, M.; Ajmone Marsan, P.; Valentini, A. Genetic diversity of sheep breeds from Albania, Greece, and Italy assessed by mitochondrial DNA and nuclear polymorphisms (SNPs). Sci. World J. 2011, 11, 1641–1659.
  9. World Watch List for Domestic Animal Diversity, 3rd ed.; Scherf, B.D. (Ed.) FAO: Rome, Italy, 2000.Lv, F.H.; Peng, W.F.; Yang, J.; Zhao, Y.X.; Li, W.R.; Liu, M.J.; Ma, Y.H.; Zhao, Q.J.; Yang, G.L.; Wang, F.; et al. Mitogenomic meta-analysis identifies two phases of migration in the history of Eastern Eurasian sheep. Mol. Biol. Evol. 2015, 32, 2515–2533.
  10. FAO. Domestic Animal Diversity Information System (DAD-IS). Available online: http://www.fao.org/dad-is/en/ (accessed on 14 February 2021).Chessa, B.; Pereira, F.; Arnaud, F.; Amorim, A.; Goyache, F.; Mainland, I.; Kao, R.R.; Pemberton, J.M.; Beraldi, D.; Stear, M.J.; et al. Revealing the history of sheep domestication using retrovirus integrations. Science 2009, 324, 532–536.
  11. Deikhman, E.K. Organization of Work at a Sheep Farm; OGIZ–Selkhozgiz: Moscow, Russia, 1947; 120 p.Matika, O.; Sechi, S.; Pong-Wong, R.; Houston, R.D.; Clop, A.; Woolliams, J.A.; Bishop, S.C. Characterization of OAR1 and OAR18 QTL associated with muscle depth in British commercial terminal sire sheep. Anim. Genet. 2011, 42, 172–180.
  12. All-Union Agricultural Exhibition of 1954; Ministry of Agriculture of the USSR: Moscow, Russia, 1955; 118 p.Mullen, M.P.; Hanrahan, J.P.; Howard, D.J.; Powell, R. Investigation of prolific sheep from UK and Ireland for evidence on origin of the mutations in BMP15 (FecXG, FecXB) and GDF9 (FecGH) in Belclare and Cambridge sheep. PLoS ONE 2013, 8, e53172.
  13. Ivanov, M.F. Sheep Farming. In Complete Works, in 7 Volumes; Greben, L.K., Ed.; Selkhozgiz: Moscow, Russia, 1964; Volume 4, 779 p.Stear, A.; Ali, A.O.A.; Brujeni, G.N.; Buitkamp, J.; Donskow-Łysoniewska, K.; Fairlie-Clarke, K.; Groth, D.; Isa, N.M.M.; Stear, M.J. Identification of the amino acids in the Major Histocompatibility Complex class II region of Scottish Blackface sheep that are associated with resistance to nematode infection. Int. J. Parasitol. 2019, 49, 797–804.
  14. Semyonov, S.I.; Selkin, I.I. Sheep. In Animal Genetic Resources of the USSR; Dmitriev, N.G., Ernst, L.K., Eds.; Food and Agriculture Organization of the United Nations: Rome, Italy, 1989; Volume 65, Chapter 4; pp. 154–271.Wilkie, H.; Riggio, V.; Matika, O.; Nicol, L.; Watt, K.A.; Sinclair, R.; Sparks, A.M.; Nussey, D.H.; Pemberton, J.M.; Houston, R.D.; et al. A candidate gene approach to study nematode resistance traits in naturally infected sheep. Vet. Parasitol. 2017, 243, 71–74.
  15. Kaneva, L.A.; Zharikov, Y.A.; Matyukov, V.S. Zootechnical characteristics of Pechora meat-wool semi-fine-fleece wool sheep. Agrarnaya Nauka Evro-Severo-Vostoka 2014, 5 (42), 58–63.Cinar, M.U.; Mousel, M.R.; Herndon, M.K.; Taylor, J.B.; White, S.N. Association of TMEM8B and SPAG8 with mature weight in sheep. Animals 2020, 10, 2391.
  16. Yearbook on Breeding Work in Sheep and Goat Farming in the Farms of the Russian Federation (2019); All-Russian Research Institute of Animal Breeding: Moscow, Russia, 2020; 344 p.Kijas, J.W.; Townley, D.; Dalrymple, B.P.; Heaton, M.P.; Maddox, J.F.; McGrath, A.; Wilson, P.; Ingersoll, R.G.; McCulloch, R.; McWilliam, S.; et al. A genome wide survey of SNP variation reveals the genetic structure of sheep breeds. PLoS ONE 2009, 4, e4668.
  17. Kuleshov, P.N. Value of Merino and English Meat Breeds in Improving Sheep Farming in the USSR; Moscow Higher Zootechnical Institute: Moscow, Russia, 1926; 16 p.International Sheep Genomics Consortium; Archibald, A.L.; Cockett, N.E.; Dalrymple, B.P.; Faraut, T.; Kijas, J.W.; Maddox, J.F.; McEwan, J.C.; Hutton Oddy, V.; Raadsma, H.W.; et al. The sheep genome reference sequence: A work in progress. Anim. Genet. 2010, 41, 449–453.
  18. Kuleshov, P.N. Meat-and-Wool Sheep Breeding; Selkhozgiz: Moscow, Russia, 1933; 112 p.Jiang, Y.; Xie, M.; Chen, W.; Talbot, R.; Maddox, J.F.; Faraut, T.; Wu, C.; Muzny, D.M.; Li, Y.; Zhang, W.; et al. The sheep genome illuminates biology of the rumen and lipid metabolism. Science 2014, 344, 1168–1173.
  19. Glembotsky, Y.L.; Deikhman, E.K.; Esaulov, P.A. Breeding in Sheep Farming: Achievements in Developing New Sheep Breeds and Improving Existing Ones; Selhozgiz: Moscow, Russia, 1946; 151 p.Worley, K.C.; English, A.C.; Richards, S.; Ross-Ibarra, J.; Han, Y.; Hughes, D.; Deiros, D.R.; Vee, V.; Wang, M.; Boerwinkle, E. Improving Genomes Using Long Reads and PBJelly 2, Proceedings of the International Plant and Animal Genome XXII Conference, San Diego, CA, USA, 10–15 January 2014; Scherago International: San Diego, CA, USA, 2014; Abstract P1033.
  20. Ostrovsky, A.V. Universal Reference Book on the History of Russia: With Tables, Diagrams and Dictionaries; Paritet: St. Petersburg, Russia, 2000; 384 p.National Center for Biotechnology Information, US National Library of Medicine. Genome Assembly: Oar_rambouillet_v1.0. Date: 2 November 2017. Available online: (accessed on 3 February 2021).
  21. Luschihina, E.M. Sheep breed resources of Kyrgyzstan. In Collection of Scientific Papers Based on the International Coordination Congress of Scientists Sheep Breeders 2013; Collection of Proceedings of SNIIZHK; Stavropol Research Institute of Animal Husbandry and Food Production: Stavropol, Russia, 2013; No. 6–1, pp. 67–80.National Center for Biotechnology Information, US National Library of Medicine. Genome Assembly: ASM1117029v1. Date: 11 March 2020. Available online: (accessed on 3 February 2021).
  22. Bowles, D. Recent advances in understanding the genetic resources of sheep breeds locally-adapted to the UK uplands: Opportunities they offer for sustainable productivity. Front. Genet. 2015, 6, 24.Mucha, S.; Bunger, L.; Conington, J. Genome-wide association study of footrot in Texel sheep. Genet. Sel. Evol. 2015, 47, 35.
  23. National Sheep Association. Sheep Breeds. Available online: https://www.nationalsheep.org.uk/uk-sheep-industry/sheep-inthe-uk/sheep-breeds/ (accessed on 3 February 2021).McEwan, J.; Dodds, K.; Rowe, S.; Brauning, R.; Clarke, S. Genomic Selection in Sheep: Where to Now? In Proceedings of the Book of Abstracts of the 67th Annual Meeting of the European Federation of Animal Science, Belfast, UK, 29 August–1 September 2016; Wageningen Academic Publishers: Wageningen, The Netherlands, 2016; Volume 22, p. 161.
  24. Boettcher, P.; Haile, A.; Hall, K.; Miller, J.L.; Mirkena, T.; Scherf, B.; Wurzinger, M. Animal genetic resources and adaptation. In The Second Report on the State of the World’s Animal Genetic Resources for Food and Agriculture; Scherf, B.D., Pilling, D., Eds.; FAO Commission on Genetic Resources for Food and Agriculture Assessments: Rome, Italy, 2015; p. 87.Beynon, S.E.; Slavov, G.T.; Farré, M.; Sunduimijid, B.; Waddams, K.; Davies, B.; Haresign, W.; Kijas, J.; MacLeod, I.M.; Newbold, C.J.; et al. Population structure and history of the Welsh sheep breeds determined by whole genome genotyping. BMC Genet. 2015, 16, 65.
  25. Baylis, M.; Chihota, C.; Stevenson, E.; Goldmann, W.; Smith, A.; Sivam, K.; Tongue, S.; Gravenor, M.B. Risk of scrapie in British sheep of different prion protein genotype. J. Gen. Virol. 2004, 85, 2735–2740.Daetwyler, H.D.; Brauning, R.; Chamberlain, A.J.; McWilliam, S.; McCulloch, A.; Vander Jagt, C.J.; Sunduimijid, B.; Hayes, B.J.; Kijas, J.W. 1000 Bull genomes and SheepGenomesDB projects: Enabling cost-effective sequence level analyses globally. In Proceedings of the 22nd Conference of the Association for the Advancement of Animal Breeding and Genetics (AAABG), Townsville, Australia, 2–5 July 2017; Association for the Advancement of Animal Breeding and Genetics: Armidale, Australia, 2017; Volume 22, pp. 201–204.
  26. Goldmann, W.; Baylis, M.; Chihota, C.; Stevenson, E.; Hunter, N. Frequencies of PrP gene haplotypes in British sheep flocks and the implications for breeding programmes. J. Appl. Microbiol. 2005, 98, 1294–1302.Clark, E.L.; Bush, S.J.; McCulloch, M.E.B.; Farquhar, I.L.; Young, R.; Lefevre, L.; Pridans, C.; Tsang, H.G.; Wu, C.; Afrasiabi, C.; et al. A high resolution atlas of gene expression in the domestic sheep (Ovis aries). PLoS Genet. 2017, 13, e1006997.
  27. Roden, J.A.; Nieuwhof, G.J.; Bishop, S.C.; Jones, D.A.; Haresign, W.; Gubbins, S. Breeding programmes for TSE resistance in British sheep. I. Assessing the impact on prion protein (PrP) genotype frequencies. Prev. Vet. Med. 2006, 73, 1–16.Dalrymple, B.P.; Oddy, V.H.; McEwan, J.C.; Kijas, J.W.; Xiang, R.; Bond, J.; Cockett, N.; Worley, K.; Smith, T.; Vercoe, P.E. From sheep SNP chips, genome sequences and transcriptomes via mechanisms to improved sheep breeding and management. In Proceedings of the 21st Conference of the Association for the Advancement of Animal Breeding and Genetics (AAABG), Lorne, Australia, 28–30 September 2015; Association for the Advancement of Animal Breeding and Genetics: Armidale, Australia, 2015; Volume 21, pp. 45–48.
  28. Tongue, S.C.; Pfeiffer, D.U.; Shearn, P.D.; Wilesmith, J.W. PrP genotype: A flock-level risk factor for scrapie? Prev. Vet. Med. 2009, 92, 309–323.Murdoch, B.M.; White, S.N.; Mousel, M.R.; Massa, A.T.; Worley, K.C.; Archibald, A.L.; Clark, E.L.; Dalrymple, B.; Kijas, J.W.; Clarke, S.; et al. The Ovine FAANG Project. In Proceedings of the International Plant and Animal Genome XXVI Conference, San Diego, CA, USA, 13–17 January 2018; Scherago International: San Diego, CA, USA, 2018. Abstract W618.
  29. Saunders, G.C.; Cawthraw, S.; Mountjoy, S.J.; Hope, J.; Windl, O. PrP genotypes of atypical scrapie cases in Great Britain. J. Gen. Virol. 2006, 87, 3141–3149.Andersson, L.; Archibald, A.L.; Bottema, C.D.; Brauning, R.; Burgess, S.C.; Burt, D.W.; Casas, E.; Cheng, H.H.; Clarke, L.; Couldrey, C.; et al. Coordinated international action to accelerate genome-to-phenome with FAANG, the Functional Annotation of Animal Genomes project. Genome Biol. 2015, 16, 57.
  30. Freking, B.A.; Murphy, S.K.; Wylie, A.A.; Rhodes, S.J.; Keele, J.W.; Leymaster, K.A.; Jirtle, R.L.; Smith, T.P. Identification of the single base change causing the callipyge muscle hypertrophy phenotype, the only known example of polar overdominance in mammals. Genome Res. 2002, 12, 1496–1506.Naval-Sanchez, M.; Nguyen, Q.; McWilliam, S.; Porto-Neto, L.R.; Tellam, R.; Vuocolo, T.; Reverter, A.; Perez-Enciso, M.; Brauning, R.; Clarke, S.; et al. Sheep genome functional annotation reveals proximal regulatory elements contributed to the evolution of modern breeds. Nat. Commun. 2018, 9, 859.
  31. Zamorano, M.J.; Ruiter, J.; Townsend, S.; Cruickshank, R.; Bruford, M.; Byrne, K.; Rodero, A.; Vega-Pla, J.L. Polimorfismos de DNA en las razas ovinas Merino y Churra lebrijana: DNA polymorphisms in Merino and Churra lebrijana Sheep breeds. Arch. Zoot. 1998, 47, 267–272.Pariset, L.; Cappuccio, I.; Ajmone-Marsan, P.; Bruford, M.; Dunner, S.; Cortes, O.; Erhardt, G.; Prinzenberg, E.M.; Gutscher, K.; Joost, S.; et al. Characterization of 37 breed-specific single-nucleotide polymorphisms in sheep. J. Hered. 2006, 97, 531–534.
  32. Peter, C.; Bruford, M.; Perez, T.; Dalamitra, S.; Hewitt, G.; Erhardt, G.; Econogene Consortium. Genetic diversity and subdivision of 57 European and Middle-Eastern sheep breeds. Anim. Genet. 2007, 38, 37–44.Alberto, F.J.; Boyer, F.; Orozco-terWengel, P.; Streeter, I.; Servin, B.; de Villemereuil, P.; Benjelloun, B.; Librado, P.; Biscarini, F.; Colli, L.; et al. Convergent genomic signatures of domestication in sheep and goats. Nat. Commun. 2018, 9, 813.
  33. Lawson Handley, L.J.; Byrne, K.; Santucci, F.; Townsend, S.; Taylor, M.; Bruford, M.W.; Hewitt, G.M. Genetic structure of European sheep breeds. Heredity 2007, 99, 620–631.Deniskova, T.E.; Dotsev, A.V.; Selionova, M.I.; Kunz, E.; Medugorac, I.; Reyer, H.; Wimmers, K.; Barbato, M.; Traspov, A.A.; Brem, G.; et al. Population structure and genetic diversity of twenty-five Russian sheep breeds based on whole-genome genotyping. Genet. Sel. Evol. 2018, 50, 29.
  34. Russo-Almeida, P.A. Diversidade Genética e Diferenciação das Raças Portuguesas de Ovinos com Base em Marcadores de DNA–Microssatélites: Uma Perspectiva de Conservação. Tese de Doutorado em Ciência Animal, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal, 2007.Deniskova, T.; Dotsev, A.; Lushihina, E.; Shakhin, A.; Kunz, E.; Medugorac, I.; Reyer, H.; Wimmers, K.; Khayatzadeh, N.; Sölkner, J.; et al. Population structure and genetic diversity of sheep breeds in the Kyrgyzstan. Front. Genet. 2019, 10, 1311.
  35. Bowles, D.; Carson, A.; Isaac, P. Genetic distinctiveness of the Herdwick sheep breed and two other locally adapted hill breeds of the UK. PLoS ONE 2014, 9, e87823.Barbato, M.; Hailer, F.; Orozco-terWengel, P.; Kijas, J.; Mereu, P.; Cabras, P.; Mazza, R.; Pirastru, M.; Bruford, M.W. Genomic signatures of adaptive introgression from European mouflon into domestic sheep. Sci. Rep. 2017, 7, 7623.
  36. Bruford, M.; Townsend, S.J. Mitochondrial DNA diversity in modern sheep: Implications for domestication. In Documenting Domestication: New Genetic and Archaeological Paradigms; Zeder, M.A., Bradley, D.G., Emshwiller, E., Smith, B.D., Eds.; University of California Press: Berkeley, CA, USA, 2006; pp. 307–317.Kijas, J.W.; Lenstra, J.A.; Hayes, B.; Boitard, S.; Porto Neto, L.R.; San Cristobal, M.; Servin, B.; McCulloch, R.; Whan, V.; Gietzen, K.; et al. Genome-wide analysis of the world’s sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biol. 2012, 10, e1001258.
  37. Pariset, L.; Mariotti, M.; Gargani, M.; Joost, S.; Negrini, R.; Perez, T.; Bruford, M.; Ajmone Marsan, P.; Valentini, A. Genetic diversity of sheep breeds from Albania, Greece, and Italy assessed by mitochondrial DNA and nuclear polymorphisms (SNPs). Sci. World J. 2011, 11, 1641–1659.Kijas, J. ISGC SNP50 HapMap and Sheep Breed Diversity Genotypes. v1. CSIRO. Data Collection. Published 6 May 2013. Available online: (accessed on 3 February 2021).
  38. Lv, F.H.; Peng, W.F.; Yang, J.; Zhao, Y.X.; Li, W.R.; Liu, M.J.; Ma, Y.H.; Zhao, Q.J.; Yang, G.L.; Wang, F.; et al. Mitogenomic meta-analysis identifies two phases of migration in the history of Eastern Eurasian sheep. Mol. Biol. Evol. 2015, 32, 2515–2533.Chen, Z.H.; Zhang, M.; Lv, F.H.; Ren, X.; Li, W.R.; Liu, M.J.; Nam, K.; Bruford, M.W.; Li, M.H. Contrasting patterns of genomic diversity reveal accelerated genetic drift but reduced directional selection on X-chromosome in wild and domestic sheep species. Genome Biol. Evol. 2018, 10, 1282–1297.
  39. Chessa, B.; Pereira, F.; Arnaud, F.; Amorim, A.; Goyache, F.; Mainland, I.; Kao, R.R.; Pemberton, J.M.; Beraldi, D.; Stear, M.J.; et al. Revealing the history of sheep domestication using retrovirus integrations. Science 2009, 324, 532–536.Davenport, K.M.; Hiemke, C.; McKay, S.D.; Thorne, J.W.; Lewis, R.M.; Taylor, T.; Murdoch, B.M. Genetic structure and admixture in sheep from terminal breeds in the United States. Anim. Genet. 2020, 51, 284–291.
  40. Matika, O.; Sechi, S.; Pong-Wong, R.; Houston, R.D.; Clop, A.; Woolliams, J.A.; Bishop, S.C. Characterization of OAR1 and OAR18 QTL associated with muscle depth in British commercial terminal sire sheep. Anim. Genet. 2011, 42, 172–180.Zhang, L.; Mousel, M.R.; Wu, X.; Michal, J.J.; Zhou, X.; Ding, B.; Dodson, M.V.; El-Halawany, N.K.; Lewis, G.S.; Jiang, Z. Genome-wide genetic diversity and differentially selected regions among Suffolk, Rambouillet, Columbia, Polypay, and Targhee sheep. PLoS ONE 2013, 8, e65942.
  41. Mullen, M.P.; Hanrahan, J.P.; Howard, D.J.; Powell, R. Investigation of prolific sheep from UK and Ireland for evidence on origin of the mutations in BMP15 (FecXG, FecXB) and GDF9 (FecGH) in Belclare and Cambridge sheep. PLoS ONE 2013, 8, e53172.Gutiérrez-Gil, B.; Arranz, J.J.; Pong-Wong, R.; García-Gámez, E.; Kijas, J.; Wiener, P. Application of selection mapping to identify genomic regions associated with dairy production in sheep. PLoS ONE 2014, 9, e94623.
  42. Stear, A.; Ali, A.O.A.; Brujeni, G.N.; Buitkamp, J.; Donskow-Łysoniewska, K.; Fairlie-Clarke, K.; Groth, D.; Isa, N.M.M.; Stear, M.J. Identification of the amino acids in the Major Histocompatibility Complex class II region of Scottish Blackface sheep that are associated with resistance to nematode infection. Int. J. Parasitol. 2019, 49, 797–804.Gutiérrez-Gil, B.; Esteban-Blanco, C.; Suarez-Vega, A.; Arranz, J.J. Detection of quantitative trait loci and putative causal variants affecting somatic cell score in dairy sheep by using a 50K SNP-Chip and whole genome sequencing. J. Dairy Sci. 2018, 101, 9072–9088.
  43. Wilkie, H.; Riggio, V.; Matika, O.; Nicol, L.; Watt, K.A.; Sinclair, R.; Sparks, A.M.; Nussey, D.H.; Pemberton, J.M.; Houston, R.D.; et al. A candidate gene approach to study nematode resistance traits in naturally infected sheep. Vet. Parasitol. 2017, 243, 71–74.Atlija, M.; Arranz, J.J.; Martinez-Valladares, M.; Gutiérrez-Gil, B. Detection and replication of QTL underlying resistance to gastrointestinal nematodes in adult sheep using the ovine 50K SNP array. Genet. Sel. Evol. 2016, 48, 4.
  44. Cinar, M.U.; Mousel, M.R.; Herndon, M.K.; Taylor, J.B.; White, S.N. Association of TMEM8B and SPAG8 with mature weight in sheep. Animals 2020, 10, 2391.Banos, G.; Bramis, G.; Bush, S.J.; Clark, E.L.; McCulloch, M.E.B.; Smith, J.; Schulze, G.; Arsenos, G.; Hume, D.A.; Psifidi, A. The genomic architecture of mastitis resistance in dairy sheep. BMC Genom. 2017, 18, 624.
  45. Kijas, J.W.; Townley, D.; Dalrymple, B.P.; Heaton, M.P.; Maddox, J.F.; McGrath, A.; Wilson, P.; Ingersoll, R.G.; McCulloch, R.; McWilliam, S.; et al. A genome wide survey of SNP variation reveals the genetic structure of sheep breeds. PLoS ONE 2009, 4, e4668.Sheep QTLdb. Animal QTLdb, NAGRP—Bioinformatics Coordination Program. Available online: (accessed on 3 February 2021).
  46. International Sheep Genomics Consortium; Archibald, A.L.; Cockett, N.E.; Dalrymple, B.P.; Faraut, T.; Kijas, J.W.; Maddox, J.F.; McEwan, J.C.; Hutton Oddy, V.; Raadsma, H.W.; et al. The sheep genome reference sequence: A work in progress. Anim. Genet. 2010, 41, 449–453.Riggio, V.; Matika, O.; Pong-Wong, R.; Stear, M.J.; Bishop, S.C. Genome-wide association and regional heritability mapping to identify loci underlying variation in nematode resistance and body weight in Scottish Blackface lambs. Heredity 2013, 110, 420–429.
  47. Jiang, Y.; Xie, M.; Chen, W.; Talbot, R.; Maddox, J.F.; Faraut, T.; Wu, C.; Muzny, D.M.; Li, Y.; Zhang, W.; et al. The sheep genome illuminates biology of the rumen and lipid metabolism. Science 2014, 344, 1168–1173.Riggio, V.; Pong-Wong, R.; Sallé, G.; Usai, M.G.; Casu, S.; Moreno, C.R.; Matika, O.; Bishop, S.C. A joint analysis to identify loci underlying variation in nematode resistance in three European sheep populations. J. Anim. Breed. Genet. 2014, 131, 426–436.
  48. Worley, K.C.; English, A.C.; Richards, S.; Ross-Ibarra, J.; Han, Y.; Hughes, D.; Deiros, D.R.; Vee, V.; Wang, M.; Boerwinkle, E. Improving Genomes Using Long Reads and PBJelly 2, Proceedings of the International Plant and Animal Genome XXII Conference, San Diego, CA, USA, 10–15 January 2014; Scherago International: San Diego, CA, USA, 2014; Abstract P1033.Riggio, V.; Abdel-Aziz, M.; Matika, O.; Moreno, C.R.; Carta, A.; Bishop, S.C. Accuracy of genomic prediction within and across populations for nematode resistance and body weight traits in sheep. Animal 2014, 8, 520–528.
  49. National Center for Biotechnology Information, US National Library of Medicine. Genome Assembly: Oar_rambouillet_v1.0. Date: 2 November 2017. Available online: https://www.ncbi.nlm.nih.gov/assembly/GCA_002742125.1 (accessed on 3 February 2021).Keane, O.M.; Hanrahan, J.P.; McRae, K.M.; Good, B. An independent validation study of loci associated with nematode resistance in sheep. Anim. Genet. 2018, 49, 265–268.
  50. National Center for Biotechnology Information, US National Library of Medicine. Genome Assembly: ASM1117029v1. Date: 11 March 2020. Available online: https://www.ncbi.nlm.nih.gov/assembly/GCA_011170295.1/ (accessed on 3 February 2021).Purfield, D.C.; McParland, S.; Wall, E.; Berry, D.P. The distribution of runs of homozygosity and selection signatures in six commercial meat sheep breeds. PLoS ONE 2017, 12, e0176780.
  51. McEwan, J.; Dodds, K.; Rowe, S.; Brauning, R.; Clarke, S. Genomic Selection in Sheep: Where to Now? In Proceedings of the Book of Abstracts of the 67th Annual Meeting of the European Federation of Animal Science, Belfast, UK, 29 August–1 September 2016; Wageningen Academic Publishers: Wageningen, The Netherlands, 2016; Volume 22, p. 161.Yang, J.; Li, W.R.; Lv, F.H.; He, S.G.; Tian, S.L.; Peng, W.F.; Sun, Y.W.; Zhao, Y.X.; Tu, X.L.; Zhang, M.; et al. Whole-genome sequencing of native sheep provides insights into rapid adaptations to extreme environments. Mol. Biol. Evol. 2016, 33, 2576–2592.
  52. Daetwyler, H.D.; Brauning, R.; Chamberlain, A.J.; McWilliam, S.; McCulloch, A.; Vander Jagt, C.J.; Sunduimijid, B.; Hayes, B.J.; Kijas, J.W. 1000 Bull genomes and SheepGenomesDB projects: Enabling cost-effective sequence level analyses globally. In Proceedings of the 22nd Conference of the Association for the Advancement of Animal Breeding and Genetics (AAABG), Townsville, Australia, 2–5 July 2017; Association for the Advancement of Animal Breeding and Genetics: Armidale, Australia, 2017; Volume 22, pp. 201–204.Nosrati, M.; Asadollahpour Nanaei, H.; Amiri Ghanatsaman, Z.; Esmailizadeh, A. Whole genome sequence analysis to detect signatures of positive selection for high fecundity in sheep. Reprod. Domest. Anim. 2019, 54, 358–364.
  53. Clark, E.L.; Bush, S.J.; McCulloch, M.E.B.; Farquhar, I.L.; Young, R.; Lefevre, L.; Pridans, C.; Tsang, H.G.; Wu, C.; Afrasiabi, C.; et al. A high resolution atlas of gene expression in the domestic sheep (Ovis aries). PLoS Genet. 2017, 13, e1006997.Zhang, Y.; Xue, X.; Liu, Y.; Abied, A.; Ding, Y.; Zhao, S.; Wang, W.; Ma, L.; Guo, J.; Guan, W.; et al. Genome-wide comparative analyses reveal selection signatures underlying adaptation and production in Tibetan and Poll Dorset sheep. Sci. Rep. 2021, 11, 2466.
  54. Dalrymple, B.P.; Oddy, V.H.; McEwan, J.C.; Kijas, J.W.; Xiang, R.; Bond, J.; Cockett, N.; Worley, K.; Smith, T.; Vercoe, P.E. From sheep SNP chips, genome sequences and transcriptomes via mechanisms to improved sheep breeding and management. In Proceedings of the 21st Conference of the Association for the Advancement of Animal Breeding and Genetics (AAABG), Lorne, Australia, 28–30 September 2015; Association for the Advancement of Animal Breeding and Genetics: Armidale, Australia, 2015; Volume 21, pp. 45–48.National Center for Biotechnology Information, US National Library of Medicine. BioProject: Search Results. Available online: (accessed on 3 February 2021).
  55. Murdoch, B.M.; White, S.N.; Mousel, M.R.; Massa, A.T.; Worley, K.C.; Archibald, A.L.; Clark, E.L.; Dalrymple, B.; Kijas, J.W.; Clarke, S.; et al. The Ovine FAANG Project. In Proceedings of the International Plant and Animal Genome XXVI Conference, San Diego, CA, USA, 13–17 January 2018; Scherago International: San Diego, CA, USA, 2018. Abstract W618.EMBL-EBI. The European Nucleotide Archive (ENA) Browser. Project: PRJEB14685. Available online: (accessed on 3 February 2021).
  56. Andersson, L.; Archibald, A.L.; Bottema, C.D.; Brauning, R.; Burgess, S.C.; Burt, D.W.; Casas, E.; Cheng, H.H.; Clarke, L.; Couldrey, C.; et al. Coordinated international action to accelerate genome-to-phenome with FAANG, the Functional Annotation of Animal Genomes project. Genome Biol. 2015, 16, 57.Li, X.; Yang, J.; Shen, M.; Xie, X.L.; Liu, G.J.; Xu, Y.X.; Lv, F.H.; Yang, H.; Yang, Y.L.; Liu, C.B.; et al. Whole-genome resequencing of wild and domestic sheep identifies genes associated with morphological and agronomic traits. Nat. Commun. 2020, 11, 2815.
  57. Naval-Sanchez, M.; Nguyen, Q.; McWilliam, S.; Porto-Neto, L.R.; Tellam, R.; Vuocolo, T.; Reverter, A.; Perez-Enciso, M.; Brauning, R.; Clarke, S.; et al. Sheep genome functional annotation reveals proximal regulatory elements contributed to the evolution of modern breeds. Nat. Commun. 2018, 9, 859.
  58. Pariset, L.; Cappuccio, I.; Ajmone-Marsan, P.; Bruford, M.; Dunner, S.; Cortes, O.; Erhardt, G.; Prinzenberg, E.M.; Gutscher, K.; Joost, S.; et al. Characterization of 37 breed-specific single-nucleotide polymorphisms in sheep. J. Hered. 2006, 97, 531–534.
  59. Alberto, F.J.; Boyer, F.; Orozco-terWengel, P.; Streeter, I.; Servin, B.; de Villemereuil, P.; Benjelloun, B.; Librado, P.; Biscarini, F.; Colli, L.; et al. Convergent genomic signatures of domestication in sheep and goats. Nat. Commun. 2018, 9, 813.
  60. Deniskova, T.E.; Dotsev, A.V.; Selionova, M.I.; Kunz, E.; Medugorac, I.; Reyer, H.; Wimmers, K.; Barbato, M.; Traspov, A.A.; Brem, G.; et al. Population structure and genetic diversity of twenty-five Russian sheep breeds based on whole-genome genotyping. Genet. Sel. Evol. 2018, 50, 29.
  61. Deniskova, T.; Dotsev, A.; Lushihina, E.; Shakhin, A.; Kunz, E.; Medugorac, I.; Reyer, H.; Wimmers, K.; Khayatzadeh, N.; Sölkner, J.; et al. Population structure and genetic diversity of sheep breeds in the Kyrgyzstan. Front. Genet. 2019, 10, 1311.
  62. Barbato, M.; Hailer, F.; Orozco-terWengel, P.; Kijas, J.; Mereu, P.; Cabras, P.; Mazza, R.; Pirastru, M.; Bruford, M.W. Genomic signatures of adaptive introgression from European mouflon into domestic sheep. Sci. Rep. 2017, 7, 7623.
  63. Kijas, J.W.; Lenstra, J.A.; Hayes, B.; Boitard, S.; Porto Neto, L.R.; San Cristobal, M.; Servin, B.; McCulloch, R.; Whan, V.; Gietzen, K.; et al. Genome-wide analysis of the world’s sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biol. 2012, 10, e1001258.
  64. Kijas, J. ISGC SNP50 HapMap and Sheep Breed Diversity Genotypes. v1. CSIRO. Data Collection. Published 6 May 2013. Available online: https://data.csiro.au/collections/collection/CIcsiro:6494v1 (accessed on 3 February 2021).
  65. Chen, Z.H.; Zhang, M.; Lv, F.H.; Ren, X.; Li, W.R.; Liu, M.J.; Nam, K.; Bruford, M.W.; Li, M.H. Contrasting patterns of genomic diversity reveal accelerated genetic drift but reduced directional selection on X-chromosome in wild and domestic sheep species. Genome Biol. Evol. 2018, 10, 1282–1297.
  66. Davenport, K.M.; Hiemke, C.; McKay, S.D.; Thorne, J.W.; Lewis, R.M.; Taylor, T.; Murdoch, B.M. Genetic structure and admixture in sheep from terminal breeds in the United States. Anim. Genet. 2020, 51, 284–291.
  67. Zhang, L.; Mousel, M.R.; Wu, X.; Michal, J.J.; Zhou, X.; Ding, B.; Dodson, M.V.; El-Halawany, N.K.; Lewis, G.S.; Jiang, Z. Genome-wide genetic diversity and differentially selected regions among Suffolk, Rambouillet, Columbia, Polypay, and Targhee sheep. PLoS ONE 2013, 8, e65942.
  68. Gutiérrez-Gil, B.; Arranz, J.J.; Pong-Wong, R.; García-Gámez, E.; Kijas, J.; Wiener, P. Application of selection mapping to identify genomic regions associated with dairy production in sheep. PLoS ONE 2014, 9, e94623.
  69. Gutiérrez-Gil, B.; Esteban-Blanco, C.; Suarez-Vega, A.; Arranz, J.J. Detection of quantitative trait loci and putative causal variants affecting somatic cell score in dairy sheep by using a 50K SNP-Chip and whole genome sequencing. J. Dairy Sci. 2018, 101, 9072–9088.
  70. Atlija, M.; Arranz, J.J.; Martinez-Valladares, M.; Gutiérrez-Gil, B. Detection and replication of QTL underlying resistance to gastrointestinal nematodes in adult sheep using the ovine 50K SNP array. Genet. Sel. Evol. 2016, 48, 4.
  71. Banos, G.; Bramis, G.; Bush, S.J.; Clark, E.L.; McCulloch, M.E.B.; Smith, J.; Schulze, G.; Arsenos, G.; Hume, D.A.; Psifidi, A. The genomic architecture of mastitis resistance in dairy sheep. BMC Genom. 2017, 18, 624.
  72. Sheep QTLdb. Animal QTLdb, NAGRP—Bioinformatics Coordination Program. Available online: https://www.animalgenome.org/cgi-bin/QTLdb/OA/index (accessed on 3 February 2021).
  73. Riggio, V.; Matika, O.; Pong-Wong, R.; Stear, M.J.; Bishop, S.C. Genome-wide association and regional heritability mapping to identify loci underlying variation in nematode resistance and body weight in Scottish Blackface lambs. Heredity 2013, 110, 420–429.
  74. Riggio, V.; Pong-Wong, R.; Sallé, G.; Usai, M.G.; Casu, S.; Moreno, C.R.; Matika, O.; Bishop, S.C. A joint analysis to identify loci underlying variation in nematode resistance in three European sheep populations. J. Anim. Breed. Genet. 2014, 131, 426–436.
  75. Riggio, V.; Abdel-Aziz, M.; Matika, O.; Moreno, C.R.; Carta, A.; Bishop, S.C. Accuracy of genomic prediction within and across populations for nematode resistance and body weight traits in sheep. Animal 2014, 8, 520–528.
  76. Keane, O.M.; Hanrahan, J.P.; McRae, K.M.; Good, B. An independent validation study of loci associated with nematode resistance in sheep. Anim. Genet. 2018, 49, 265–268.
  77. Purfield, D.C.; McParland, S.; Wall, E.; Berry, D.P. The distribution of runs of homozygosity and selection signatures in six commercial meat sheep breeds. PLoS ONE 2017, 12, e0176780.
  78. Yang, J.; Li, W.R.; Lv, F.H.; He, S.G.; Tian, S.L.; Peng, W.F.; Sun, Y.W.; Zhao, Y.X.; Tu, X.L.; Zhang, M.; et al. Whole-genome sequencing of native sheep provides insights into rapid adaptations to extreme environments. Mol. Biol. Evol. 2016, 33, 2576–2592.
  79. Nosrati, M.; Asadollahpour Nanaei, H.; Amiri Ghanatsaman, Z.; Esmailizadeh, A. Whole genome sequence analysis to detect signatures of positive selection for high fecundity in sheep. Reprod. Domest. Anim. 2019, 54, 358–364.
  80. Zhang, Y.; Xue, X.; Liu, Y.; Abied, A.; Ding, Y.; Zhao, S.; Wang, W.; Ma, L.; Guo, J.; Guan, W.; et al. Genome-wide comparative analyses reveal selection signatures underlying adaptation and production in Tibetan and Poll Dorset sheep. Sci. Rep. 2021, 11, 2466.
  81. National Center for Biotechnology Information, US National Library of Medicine. BioProject: Search Results. Available online: https://www.ncbi.nlm.nih.gov/bioproject?term=10709[top+bioproject]+NOT+160933[uid] (accessed on 3 February 2021).
  82. EMBL-EBI. The European Nucleotide Archive (ENA) Browser. Project: PRJEB14685. Available online: https://www.ebi.ac.uk/ena/data/view/PRJEB14685 (accessed on 3 February 2021).
  83. Li, X.; Yang, J.; Shen, M.; Xie, X.L.; Liu, G.J.; Xu, Y.X.; Lv, F.H.; Yang, H.; Yang, Y.L.; Liu, C.B.; et al. Whole-genome resequencing of wild and domestic sheep identifies genes associated with morphological and agronomic traits. Nat. Commun. 2020, 11, 2815.
More
Video Production Service