You're using an outdated browser. Please upgrade to a modern browser for the best experience.
New Efficient Hybrid Technique for Human Action Recognition: Comparison
Please note this is a comparison between Version 2 by Catherine Yang and Version 1 by Mehdi Imani.

This research paper presents a hybrid 2D Conv-RBM & LSTM model for efficient human action recognition. Achieving 97.3% accuracy with optimized frame selection, it surpasses traditional 2D RBM and 3D CNN techniques. Recognizing human actions through video analysis has gained significant attention in applications like surveillance, sports analytics, and human–computer interaction. While deep learning models such as 3D convolutional neural networks (CNNs) and recurrent neural networks (RNNs) deliver promising results, they often struggle with computational inefficiencies and inadequate spatial–temporal feature extraction, hindering scalability to larger datasets or high-resolution videos. To address these limitations, we propose a novel model combining a two-dimensional convolutional restricted Boltzmann machine (2D Conv-RBM) with a long short-term memory (LSTM) network. The 2D Conv-RBM efficiently extracts spatial features such as edges, textures, and motion patterns while preserving spatial relationships and reducing parameters via weight sharing. These features are subsequently processed by the LSTM to capture temporal dependencies across frames, enabling effective recognition of both short- and long-term action patterns. Additionally, a smart frame selection mechanism minimizes frame redundancy, significantly lowering computational costs without compromising accuracy. Evaluation on the KTH, UCF Sports, and HMDB51 datasets demonstrated superior performance, achieving accuracies of 97.3%, 94.8%, and 81.5%, respectively. Compared to traditional approaches like 2D RBM and 3D CNN, our method offers notable improvements in both accuracy and computational efficiency, presenting a scalable solution for real-time applications in surveillance, video security, and sports analytics.

  • action recognition
  • convolutional restricted Boltzmann machine
  • long short-term memory
  • spatial–temporal feature extraction
  • video processing
Please wait, diff process is still running!

References

  1. References1. Mihanpour, A.; Rashti, M.J.; Alavi, S.E. Human Action Recognition in Video Using DB-LSTM and ResNet. In Proceedings of the 2020 IEEE International Conference on Wireless Research (ICWR), Tehran, Iran, 22 April 2020. https://doi.org/10.1109/ICWR49608.2020.9122304.2. Ma, M.; Marturi, N.; Li, Y.; Leonardis, A.; Stolkin, R. Region-Sequence Based Six-Stream CNN Features for General and Fi-ne-Grained Human Action Recognition in Videos. Pattern Recognit. 2018, 76, 545–558. https://doi.org/10.1016/j.patcog.2017.11.026.3. Dai, C.; Liu, X.; Zhong, L.; Yu, T. Video-Based Action Recognition Using Spatial and Temporal Features. In Proceedings of the 2018 IEEE Cybermatics Congress, Halifax, NS, Canada, 30 July 2018. https://doi.org/10.1109/Cybermatics_2018.2018.00129.4. Johnson, D.R.; Uthariaraj, V.R. A Novel Parameter Initialization Technique Using RBM-NN for Human Action Recognition. Comput. Intell. Neurosci. 2020, 1, 30. https://doi.org/10.1155/2020/8852404.5. Cob-Parro, A.C.; Losada-Gutiérrez, C.; Marrón Romera, M.; Gardel Vicente, A.; Muñoz, I.B. A New Framework for Deep Learning Video-Based Human Action Recognition on the Edge. Expert Syst. Appl. 2023, 238, 122220. https://doi.org/10.1016/j.eswa.2023.122220.6. Silva, D.; Manzo-Martinez, A.; Gaxiola, F.; Gonzales-Gurrola, L.C.; Alonso, G.R. Analysis of CNN Architectures for Human Action Recognition in Video. Comput. Sist. 2022, 26, 67–80. https://doi.org/10.13053/cys-26-2-4245.7. Manakitsa, N.; Maraslidis, G.S.; Moysis, L.; Fragulis, G.F. A Review of Machine Learning and Deep Learning for Object Detec-tion, Semantic Segmentation, and Human Action Recognition in Machine and Robotic Vision. Technologies 2024, 12, 15. https://doi.org/10.3390/technologies12020015.8. Soentanto, P.N.; Hendryli, J.; Herwindiati, D. Object and Human Action Recognition from Video Using Deep Learning Models. In Proceedings of the 6th International Conference on Signal and Image Processing Systems (ICSIGSYS), Bandung, Indonesia, 16 July 2019; pp. 88–93. https://doi.org/10.1109/ICSIGSYS.2019.8811081.9. Begampure, S.; Jadhav, P.M. Intelligent Video Analytics for Human Action Detection: A Deep Learning Approach with Trans-fer Learning. Int. J. Comput. Dig. Syst. 2022, 11, 57–72. https://doi.org/10.12785/ijcds/110105.10. Li, C.; Huang, Q.; Li, X.; Wu, Q. Human Action Recognition Based on Multi-Scale Feature Maps from Depth Video Sequences. Multimed. Tools Appl. 2021, 80, 32111–32130. https://doi.org/10.1007/s11042-021-11193-4.11. Liu, X.; Yang, X. Multi-Stream with Deep Convolutional Neural Networks for Human Action Recognition in Videos. In Pro-ceedings of the Neural Information Processing: 25th International Conference, ICONIP 2018, Siem Reap, Cambodia, 13 De-cember 2018; Proceedings, Part I 25 (pp. 251–262); Springer International Publishing. https://doi.org/10.1007/978-3-030-04167-0_23.12. Ulhaq, A.; Akhtar, N.; Pogrebna, G.; Mian, A. Vision Transformers for Action Recognition: A Survey. arXiv 2022, arXiv:2209.05700.13. Dosovitskiy, A. An Image Is Worth 16×16 Words: Transformers for Image Recognition at Scale. arXiv 2020, arXiv:2010.11929.14. Arnab, A.; Dehghani, M.; Heigold, G.; Sun, C.; Lučić, M.; Schmid, C. ViViT: A Video Vision Transformer. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 11 October 2021; pp. 6836–6846.15. Bertasius, G.; Wang, H.; Torresani, L. Is Space-Time Attention All You Need for Video Understanding? In Proceedings of the 38th International Conference on Machine Learning (ICML), Virtual, 18 July 2021; Volume 2, p. 4.16. Khan, S.; Naseer, M.; Hayat, M.; Zamir, S.W.; Khan, F.S.; Shah, M. Transformers in Vision: A Survey. ACM Comput. Surv. 2022, 54, 1–41.17. Schüldt, C.; Laptev, I.; Caputo, B. Recognizing Human Actions: A Local SVM Approach. In Proceedings of the 17th Internation-al Conference on Pattern Recognition (ICPR), Cambridge, UK, 23 August 2004; pp. 32–36. https://doi.org/10.1109/ICPR.2004.747.18. Rodriguez, M.D.; Ahmed, J.; Shah, M. Action mach a spatio-temporal maximum average correlation height filter for action recognition. In Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 23 June 2008. 19. Kuehne, H.; Jhuang, H.; Garrote, E.; Poggio, T.; Serre, T. HMDB: A Large Video Database for Human Motion Recognition. In Proceedings of the 2011 International Conference on Computer Vision (ICCV), Barcelona, Spain, 6 November 2011. https://doi.org/10.1109/ICCV.2011.6126543.20. Raza, A.; Al Nasar, M.R.; Hanandeh, E.S.; Zitar, R.A.; Nasereddin, A.Y.; Abualigah, L. A Novel Methodology for Human Kin-ematics Motion Detection Based on Smartphones Sensor Data Using Artificial Intelligence. Technologies 2023, 11, 55. https://doi.org/10.3390/technologies11020055.21. Simonyan, K.; Zisserman, A. Two-Stream Convolutional Networks for Action Recognition in Videos. In Advances in Neural Information Processing Systems (NeurIPS); 2014; Volume 27, pp. 568–576.22. Zhu, J.; Zou, W.; Zhu, Z.; Xu, L.; Huang, G. Action Machine: Toward Person-Centric Action Recognition in Videos. IEEE Signal Process. Lett. 2019, 11, 1633–1637. https://doi.org/10.1109/LSP.2019.2942739.23. Carreira, J.; Zisserman, A. Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21 July 2017. https://doi.org/10.1109/CVPR.2017.502.24. Kulkarni, S.S.; Jadhav, S. Insight on Human Activity Recognition Using the Deep Learning Approach. In Proceedings of the International Conference on Emerging Smart Computing and Informatics (ESCI), Pune, India, 1 March 2023. https://doi.org/10.1109/ESCI56872.2023.10099759.25. Yang, C.; Mei, F.; Zang, T.; Tu, J.; Jiang, N.; Liu, L. Human Action Recognition Using Key-Frame Attention-Based LSTM Net-works. Electronics 2023, 12, 2622. https://doi.org/10.3390/electronics12122622.26. Abdelbaky, A.; Aly, S. Two-Stream Spatiotemporal Feature Fusion for Human Action Recognition. Vis. Comput. 2021, 37, 1821–1835. https://doi.org/10.1007/s00371-020-01913-y.27. Liu, T.; Ma, Y.; Yang, W.; Ji, W.; Wang, R.; Jiang, P. Spatial-Temporal Interaction Learning Based Two-Stream Network for Action Recognition. Inf. Sci. 2022, 606, 864–876. https://doi.org/10.1016/j.ins.2021.12.065.28. Donahue, J.; Anne Hendricks, L.; Guadarrama, S.; Rohrbach, M.; Venugopalan, S.; Saenko, K.; Darrell, T. Long-Term Recurrent Convolutional Networks for Visual Recognition and Description. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7 June 2015; pp. 2625–2634. https://doi.org/10.1109/CVPR.2015.7298878.29. Zheng, T.; Liu, C.; Liu, B.; Wang, M.; Li, Y.; Wang, P.; Qin, X.; Guo, Y. Scene Recognition Model in Underground Mines Based on CNN-LSTM and Spatial-Temporal Attention Mechanism. In Proceedings of the 2020 International Symposium on Computer, Consumer, and Control (IS3C), Taichung City, Taiwan, 13 November 2020; pp. 513–516. https://doi.org/10.1109/IS3C50286.2020.00139.30. Saoudi, E.M.; Jaafari, J.; Andaloussi, S.J. Advancing Human Action Recognition: A Hybrid Approach Using Attention-Based LSTM and 3D CNN. Sci. Afr. 2023, 21, e01796. https://doi.org/10.1016/j.sciaf.2023.e01796.31. Liu, D.; Yan, Y.; Shyu, M.; Zhao, G.; Chen, M. Spatio-Temporal Analysis for Human Action Detection and Recognition in Un-controlled Environments. Int. J. Multimed. Data Eng. Manag. (IJMDEM) 2015, 1, 1–18. https://doi.org/10.4018/ijmdem.2015010101.32. Su, Y. Implementation and Rehabilitation Application of Sports Medical Deep Learning Model Driven by Big Data. IEEE Ac-cess 2019, 7, 156338–156348. https://doi.org/10.1109/ACCESS.2019.2949643.33. Hossen, M.A.; Naim, A.G.; Abbas, P.E. Deep Learning for Skeleton-Based Human Activity Segmentation: An Autoencoder Ap-proach. Technologies 2024, 12, 96. https://doi.org/10.3390/technologies12070096.34. Lee, H.; Grosse, R.; Ranganath, R.; Ng, A.Y. Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hier-archical Representations. In Proceedings of the 26th Annual International Conference on Machine Learning, Montreal, QC, Canada, 14 June 2009; pp. 609–616.35. Osadchy, M.; Miller, M.; Cun, Y. Synergistic Face Detection and Pose Estimation with Energy-Based Models. In Advances in Neural Information Processing Systems 17; MIT Press: Cambridge, MA, USA, 2005.36. LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. https://doi.org/10.1038/nature14539.37. Salakhutdinov, R.; Hinton, G. Deep Boltzmann Machines. In Proceedings of the 12th International Conference on Artificial In-telligence and Statistics (AISTATS), Clearwater Beach, FL, USA, 16 April 2009; pp. 448–455.38. Gowda, S.N.; Rohrbach, M.; Sevilla-Lara, L. Smart Frame Selection for Action Recognition. In Proceedings of the AAAI Con-ference on Artificial Intelligence, Virtual, 2 February 2021; Volume 35, pp. 1451–1459. https://doi.org/10.1609/aaai.v35i2.16235.39. Zhang, X.; Liu, T.; Lo, K.; Feng, J. Dynamic Selection and Effective Compression of Key Frames for Video Abstraction. Pattern Recognit. Lett. 2003, 24, 1523–1532. https://doi.org/10.1016/S0167-8655(02)00391-4.40. Hasebe, S.; Nagumo, M.; Muramatsu, S.; Kikuchi, H. Video Key Frame Selection by Clustering Wavelet Coefficients. In Pro-ceedings of the 12th European Signal Processing Conference (EUSIPCO), Vienna, Austria, 6 September 2004. https://doi.org/10.5281/ZENODO.38540.41. Xu, Q.; Wang, P.; Long, B.; Sbert, M.; Feixas, M.; Scopigno, R. Selection and 3D Visualization of Video Key Frames. In Proceed-ings of the IEEE International Conference on Systems, Man, and Cybernetics (ICSMC), Istanbul, Turkey, 10 October 2010. https://doi.org/10.1109/ICSMC.2010.5642204.42. Kulbacki, M.; Segen, J.; Chaczko, Z.; Rozenblit, J.; Klempous, R.; Wojciechowski, K. Intelligent Video Analytics for Human Ac-tion Recognition: The State of Knowledge. Sensors 2023, 9, 4258 https://doi.org/10.3390/s23094258.43. Feichtenhofer, C.; Pinz, A.; Wildes, R.P.; Zisserman, A. Deep Insights into Convolutional Networks for Video Recognition. Int. J. Comput. Vis. 2020, 128, 420–437. https://doi.org/10.1007/s11263-019-01244-w.44. Tsai, J.K.; Hsu, C.; Wang, W.Y.; Huang, S.K. Deep Learning-Based Real-Time Multiple-Person Action Recognition System. Sen-sors 2020, 17, 4857. https://doi.org/10.3390/s20174758.45. Fischer, A.; Igel, C. An Introduction to Restricted Boltzmann Machines. In Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, 17th Iberoamerican Congress, CIARP, Buenos Aires, Argentina, 2012; Springer: Ber-lin/Heidelberg, Germany, 2012; pp. 14–36. https://doi.org/10.1007/978-3-642-33275-3_2.46. Srivastava, N.; Salakhutdinov, R. Multimodal Learning with Deep Boltzmann Machines. J. Mach. Learn. Res. 2012, 15, 2949–2980. https://doi.org/10.5555/2627435.2697059.47. Taylor, G.W.; Fergus, R.; LeCun, Y.; Bregler, C. Convolutional Learning of Spatio-Temporal Features. In Proceedings of the 11th European Conference on Computer Vision, Heraklion, Greece, 5 September 2010. https://doi.org/10.1007/978-3-642-15567-3_11.48. Laptev, I.; Marszałek, M.; Schmid, C.; Rozenfeld, B. Learning Realistic Human Actions from Movies. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Anchorage, AK, USA, 23 June 2008. https://doi.org/10.1109/CVPR.2008.4587580.49. Nazir, S.; Yousaf, M.H.; Velastin, S.A. Evaluating a Bag-of-Visual Features Approach Using Spatio-Temporal Features for Action Recognition. Comput. Electr. Eng. 2018, 72, 660–669. https://doi.org/10.1016/j.compeleceng.2018.01.028.50. Niebles, J.C.; Wang, H.; Fei-Fei, L. Unsupervised Learning of Human Action Categories Using Spatial-Temporal Words. Int. J. Comput. Vis. 2008, 79, 299–318. https://doi.org/10.1007/s11263-007-0122-4.51. Jhuang, H.; Serre, T.; Wolf, L.; Poggio, T. A Biologically Inspired System for Action Recognition. In Proceedings of the IEEE 11th International Conference on Computer Vision (ICCV), Rio De Janeiro, Brazil, 14 October 2007. https://doi.org/10.1109/ICCV.2007.4408903.52. Le, Q.V.; Zou, W.Y.; Yeung, S.Y.; Ng, A.Y. Learning Hierarchical Invariant Spatio-Temporal Features for Action Recognition with Independent Subspace Analysis. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Colorado, CO, USA, 20 June 2011. https://doi.org/10.1109/CVPR.2011.5995513.53. Ji, S.; Xu, W.; Yang, M.; Yu, K. 3D Convolutional Neural Networks for Human Action Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 221–231. https://doi.org/10.1109/TPAMI.2012.59.54. Sun, L.; Jia, K.; Chan, T.H.; Fang, Y.; Wang, G.; Yan, S. DL-SFA: Deeply-Learned Slow Feature Analysis for Action Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23 June 2014. https://doi.org/10.1109/CVPR.2014.336.55. Zhang, K.; Zhang, L. Extracting Hierarchical Spatial and Temporal Features for Human Action Recognition. Multimed. Tools Appl. 2018, 77, 16053–16068. https://doi.org/10.1007/s11042-017-4944-4.56. Han, Y.; Zhang, P.; Zhuo, T.; Huang, W.; Zhang, Y. Going Deeper with Two-Stream ConvNets for Action Recognition in Video Surveillance. Pattern Recognit. Lett. 2018, 107, 83–90. https://doi.org/10.1016/j.patrec.2017.07.004.57. Chou, K.P.; Prasad, M.; Wu, D.; Sharma, N.; Li, D.L.; Lin, Y.F.; Blumenstein, M.; Lin, W.C.; Lin, C.T. Robust Feature-Based Auto-mated Multi-View Human Action Recognition System. IEEE Access 2018, 6, 15283–15296. https://doi.org/10.1109/ACCESS.2018.2805354.58. Liu, L.; Shao, L.; Zhen, X.; Li, X. Learning Discriminative Key Poses for Action Recognition. IEEE Trans. Cybern. 2013, 43, 1860–1870. https://doi.org/10.1109/TCYB.2013.2263374.59. Rodriguez, M.; Orrite, C.; Medrano, C.; Makris, D. One-Shot Learning of Human Activity with an MAP Adapted GMM and Simplex-HMM. IEEE Trans. Cybern. 2016, 47, 1769–1780. https://doi.org/10.1109/TCYB.2016.2555901.60. Shi, Y.; Tian, Y.; Wang, Y.; Huang, T. Sequential Deep Trajectory Descriptor for Action Recognition with Three-Stream CNN. IEEE Trans. Multimed. 2017, 19, 1510–1520. https://doi.org/10.1109/TMM.2017.2702071.61. Klaser, A.; Marszałek, M.; Schmid, C. A Spatio-Temporal Descriptor Based on 3D-Gradients. In Proceedings of the 19th Brit-ish Machine Vision Conference (BMVC), Leeds, UK, 7 September 2009;62. Rahmani, H.; Mian, A.; Shah, M. Learning a Deep Model for Human Action Recognition from Novel Viewpoints. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 667–681. https://doi.org/10.1109/TPAMI.2017.2657460.63. Yuan, C.; Li, X.; Hu, W.; Ling, H.; Maybank, S. 3D R-Transform on Spatio-Temporal Interest Points for Action Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Portland, OR, USA, 25 June 2013; pp. 724–730. https://doi.org/10.1109/CVPR.2013.101.64. Wang, L.; Xu, Y.; Cheng, J.; Xia, H.; Yin, J.; Wu, J. Human Action Recognition by Learning Spatio-Temporal Features with Deep Neural Networks. IEEE Access 2018, 6, 17913–17922. https://doi.org/10.1109/ACCESS.2018.2820079.65. Ahmed, A.; Aly, S. Human Action Recognition Using Short-Time Motion Energy Template Images and PCANet Features. Neural Comput. Appl. 2020, 16, 12561–12574. https://doi.org/10.1007/s00521-020-05189-8.66. Girdhar, R.; Deva, R. Attentional Pooling for Action Recognition. In Advances in Neural Information Processing Systems (Neu-rIPS); 2017; 30. 67. Meng, L.; Zhao, B.; Chang, B.; Huang, G.; Sun, W.; Tung, F.; Sigal, L. Interpretable Spatio-Temporal Attention for Video Action Recognition. In Proceedings of the IEEE International Conference on Computer Vision Workshops (ICCV), Seoul, Republic of Korea, 27 October 2019. https://doi.org/10.1109/ICCVW.2019.00368.68. Du, T.; Bourdev, L.; Fergus, R. Learning Spatiotemporal Features with 3D Convolutional Networks. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7 December 2015. https://doi.org/10.1109/ICCV.2015.510.69. Qiu, Z.; Yao, T.; Mei, T. Learning Spatio-Temporal Representation with Pseudo-3D Residual Networks. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22 October 2017. https://doi.org/10.1109/ICCV.2017.588.70. Wang, L.; Qiao, Y.; Tang, X. Action Recognition with Trajectory-Pooled Deep-Convolutional Descriptors. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7 June 2015. https://doi.org/10.1109/CVPR.2015.7299050.71. Feichtenhofer, C.; Pinz, A.; Zisserman, A. Convolutional Two-Stream Network Fusion for Video Action Recognition. In Pro-ceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27 June 2016. https://doi.org/10.1109/CVPR.2016.213.72. Wang, L.; Yuan, X.; Zhe, W.; Qiao, Y.; Lin, D.; Tang, X.; Van Gool, L. Temporal Segment Networks: Towards Good Practices for Deep Action Recognition. In Proceedings of the European Conference on Computer Vision (ECCV), Amsterdam, The Nether-lands, 11 October 2016. https://doi.org/10.1007/978-3-319-46484-8_2.73. Yudistira, N.; Kurita, T. Correlation Net: Spatiotemporal Multimodal Deep Learning for Action Recognition. Signal Process. Image Commun. 2020, 82, 115731. https://doi.org/10.1016/j.image.2019.115731.74. Zong, M.; Wang, R.; Chen, X. Motion Saliency Based Multi-Stream Multiplier ResNets for Action Recognition. Image Vis. Comput. 2021, 107, 104108. https://doi.org/10.1016/j.imavis.2020.104108.75. Soomro, K.; Zamir, A.R.; Shah, M. UCF101: A Dataset of 101 Human Actions Classes from Videos in the Wild. arXiv 2012, arXiv:1212.0402.76. Liu, S.; Ma, X. Attention-Driven Appearance-Motion Fusion Network for Action Recognition. IEEE Trans. Multimed. 2022, 25, 2573–2584. https://doi.org/10.1109/TMM.2022.3148588.77. Du, W.; Wang, Y.; Qiao, Y. Recurrent Spatial-Temporal Attention Network for Action Recognition in Videos. IEEE Trans. Image Process. 2018, 27, 1347–1360. https://doi.org/10.1109/TIP.2017.2779836.78. Chen, S.; Ge, C.; Tong, Z.; Wang, J.; Song, Y.; Wang, J.; Luo, P. AdaptFormer: Adapting Vision Transformers for Scalable Visual Recognition. In Advances in Neural Information Processing Systems (NeurIPS); 2022; Volume 35, pp. 16664–16678.79. Ranasinghe, K.; Naseer, M.; Khan, S.; Khan, F.S.; Ryoo, M.S. Self-Supervised Video Transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18 June 2022. https://doi.org/10.1109/CVPR52688.2022.00369.80. Xing, Z.; Dai, Q.; Hu, H.; Chen, J.; Wu, Z.; Jiang, Y.G. SvFormer: Semi-Supervised Video Transformer for Action Recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, British Columbia, Canada, 18 June 2023; pp. 18816–18826.81. Khowaja, S.A.; Lee, S.L. Semantic Image Networks for Human Action Recognition. Int. J. Comput. Vis. 2020, 128, 393–419. https://doi.org/10.1007/s11263-019-01241-z.82. Cong, G.; Domeniconi, G.; Yang, C.C.; Shapiro, J.; Zhou, F.; Chen, B. Fast Neural Network Training on a Cluster of GPUs for Action Recognition with High Accuracy. J. Parallel Distrib. Comput. 2019, 134, 153–165. https://doi.org/10.1016/j.jpdc.2019.05.009.83. Kalfaoglu, M.E.; Kalkan, S.; Alatan, A.A. Late Temporal Modeling in 3D CNN Architectures with BERT for Action Recogni-tion. In Proceedings of the Computer Vision–ECCV 2020 Workshops; Springer International Publishing. Glasgow, UK, 23 Au-gust 2020; pp. 731–747. https://doi.org/10.1007/978-3-030-68821-9_43.84. Wang, L.; Huang, B.; Zhao, Z.; Tong, Z.; He, Y.; Wang, Y.; Wang, Y.; Qia, Y. Videomae v2: Scaling video masked autoencoders with dual masking. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Brit-ish Columbia, Canada, 18 June 2023; pp. 14549–14560.85. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780.Mihanpour, A.; Rashti, M.J.; Alavi, S.E. Human Action Recognition in Video Using DB-LSTM and ResNet. In Proceedings of the 2020 IEEE International Conference on Wireless Research (ICWR), Tehran, Iran, 22 April 2020.
  2. Ma, M.; Marturi, N.; Li, Y.; Leonardis, A.; Stolkin, R. Region-Sequence Based Six-Stream CNN Features for General and Fine-Grained Human Action Recognition in Videos. Pattern Recognit. 2018, 76, 545–558.
  3. Dai, C.; Liu, X.; Zhong, L.; Yu, T. Video-Based Action Recognition Using Spatial and Temporal Features. In Proceedings of the 2018 IEEE Cybermatics Congress, Halifax, NS, Canada, 30 July 2018.
  4. Johnson, D.R.; Uthariaraj, V.R. A Novel Parameter Initialization Technique Using RBM-NN for Human Action Recognition. Comput. Intell. Neurosci. 2020, 1, 30.
  5. Cob-Parro, A.C.; Losada-Gutiérrez, C.; Marrón Romera, M.; Gardel Vicente, A.; Muñoz, I.B. A New Framework for Deep Learning Video-Based Human Action Recognition on the Edge. Expert Syst. Appl. 2023, 238, 122220.
  6. Silva, D.; Manzo-Martinez, A.; Gaxiola, F.; Gonzales-Gurrola, L.C.; Alonso, G.R. Analysis of CNN Architectures for Human Action Recognition in Video. Comput. Sist. 2022, 26, 67–80.
  7. Manakitsa, N.; Maraslidis, G.S.; Moysis, L.; Fragulis, G.F. A Review of Machine Learning and Deep Learning for Object Detection, Semantic Segmentation, and Human Action Recognition in Machine and Robotic Vision. Technologies 2024, 12, 15.
  8. Soentanto, P.N.; Hendryli, J.; Herwindiati, D. Object and Human Action Recognition from Video Using Deep Learning Models. In Proceedings of the 6th International Conference on Signal and Image Processing Systems (ICSIGSYS), Bandung, Indonesia, 16 July 2019; pp. 88–93.
  9. Begampure, S.; Jadhav, P.M. Intelligent Video Analytics for Human Action Detection: A Deep Learning Approach with Transfer Learning. Int. J. Comput. Dig. Syst. 2022, 11, 57–72.
  10. Li, C.; Huang, Q.; Li, X.; Wu, Q. Human Action Recognition Based on Multi-Scale Feature Maps from Depth Video Sequences. Multimed. Tools Appl. 2021, 80, 32111–32130.
  11. Liu, X.; Yang, X. Multi-Stream with Deep Convolutional Neural Networks for Human Action Recognition in Videos. In Neural Information Processing, Proceedings of the 25th International Conference, ICONIP 2018, Siem Reap, Cambodia, 13 December 2018; Proceedings, Part I 25; Springer International Publishing: Cham, Switzerland, 2018; pp. 251–262.
  12. Ulhaq, A.; Akhtar, N.; Pogrebna, G.; Mian, A. Vision Transformers for Action Recognition: A Survey. arXiv 2022, arXiv:2209.05700.
  13. Arnab, A.; Dehghani, M.; Heigold, G.; Sun, C.; Lučić, M.; Schmid, C. ViViT: A Video Vision Transformer. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 11 October 2021; pp. 6836–6846.
  14. Bertasius, G.; Wang, H.; Torresani, L. Is Space-Time Attention All You Need for Video Understanding? In Proceedings of the 38th International Conference on Machine Learning (ICML), Virtual, 18 July 2021; Volume 2, p. 4.
  15. Khan, S.; Naseer, M.; Hayat, M.; Zamir, S.W.; Khan, F.S.; Shah, M. Transformers in Vision: A Survey. ACM Comput. Surv. 2022, 54, 1–41.
  16. Khan, S.; Naseer, M.; Hayat, M.; Zamir, S.W.; Khan, F.S.; Shah, M. Transformers in Vision: A Survey. ACM Comput. Surv. 2022, 54, 1–41.
  17. Schüldt, C.; Laptev, I.; Caputo, B. Recognizing Human Actions: A Local SVM Approach. In Proceedings of the 17th International Conference on Pattern Recognition (ICPR), Cambridge, UK, 23 August 2004; pp. 32–36.
  18. Rodriguez, M.D.; Ahmed, J.; Shah, M. Action mach a spatio-temporal maximum average correlation height filter for action recognition. In Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 23 June 2008.
  19. Kuehne, H.; Jhuang, H.; Garrote, E.; Poggio, T.; Serre, T. HMDB: A Large Video Database for Human Motion Recognition. In Proceedings of the 2011 International Conference on Computer Vision (ICCV), Barcelona, Spain, 6 November 2011.
  20. Raza, A.; Al Nasar, M.R.; Hanandeh, E.S.; Zitar, R.A.; Nasereddin, A.Y.; Abualigah, L. A Novel Methodology for Human Kinematics Motion Detection Based on Smartphones Sensor Data Using Artificial Intelligence. Technologies 2023, 11, 55.
  21. Simonyan, K.; Zisserman, A. Two-Stream Convolutional Networks for Action Recognition in Videos. In Advances in Neural Information Processing Systems (NeurIPS); Curran Associates, Inc.: Newry, UK, 2014; Volume 27, pp. 568–576.
  22. Zhu, J.; Zou, W.; Zhu, Z.; Xu, L.; Huang, G. Action Machine: Toward Person-Centric Action Recognition in Videos. IEEE Signal Process. Lett. 2019, 11, 1633–1637.
  23. Carreira, J.; Zisserman, A. Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21 July 2017.
  24. Kulkarni, S.S.; Jadhav, S. Insight on Human Activity Recognition Using the Deep Learning Approach. In Proceedings of the International Conference on Emerging Smart Computing and Informatics (ESCI), Pune, India, 1 March 2023.
  25. Yang, C.; Mei, F.; Zang, T.; Tu, J.; Jiang, N.; Liu, L. Human Action Recognition Using Key-Frame Attention-Based LSTM Networks. Electronics 2023, 12, 2622.
  26. Abdelbaky, A.; Aly, S. Two-Stream Spatiotemporal Feature Fusion for Human Action Recognition. Vis. Comput. 2021, 37, 1821–1835.
  27. Liu, T.; Ma, Y.; Yang, W.; Ji, W.; Wang, R.; Jiang, P. Spatial-Temporal Interaction Learning Based Two-Stream Network for Action Recognition. Inf. Sci. 2022, 606, 864–876.
  28. Donahue, J.; Anne Hendricks, L.; Guadarrama, S.; Rohrbach, M.; Venugopalan, S.; Saenko, K.; Darrell, T. Long-Term Recurrent Convolutional Networks for Visual Recognition and Description. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7 June 2015; pp. 2625–2634.
  29. Zheng, T.; Liu, C.; Liu, B.; Wang, M.; Li, Y.; Wang, P.; Qin, X.; Guo, Y. Scene Recognition Model in Underground Mines Based on CNN-LSTM and Spatial-Temporal Attention Mechanism. In Proceedings of the 2020 International Symposium on Computer, Consumer, and Control (IS3C), Taichung City, Taiwan, 13 November 2020; pp. 513–516.
  30. Saoudi, E.M.; Jaafari, J.; Andaloussi, S.J. Advancing Human Action Recognition: A Hybrid Approach Using Attention-Based LSTM and 3D CNN. Sci. Afr. 2023, 21, e01796.
  31. Liu, D.; Yan, Y.; Shyu, M.; Zhao, G.; Chen, M. Spatio-Temporal Analysis for Human Action Detection and Recognition in Uncontrolled Environments. Int. J. Multimed. Data Eng. Manag. (IJMDEM) 2015, 1, 1–18.
  32. Su, Y. Implementation and Rehabilitation Application of Sports Medical Deep Learning Model Driven by Big Data. IEEE Access 2019, 7, 156338–156348.
  33. Hossen, M.A.; Naim, A.G.; Abbas, P.E. Deep Learning for Skeleton-Based Human Activity Segmentation: An Autoencoder Approach. Technologies 2024, 12, 96.
  34. Lee, H.; Grosse, R.; Ranganath, R.; Ng, A.Y. Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations. In Proceedings of the 26th Annual International Conference on Machine Learning, Montreal, QC, Canada, 14 June 2009; pp. 609–616.
  35. Osadchy, M.; Miller, M.; Cun, Y. Synergistic Face Detection and Pose Estimation with Energy-Based Models. In Advances in Neural Information Processing Systems 17; MIT Press: Cambridge, MA, USA, 2005.
  36. LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444.
  37. Salakhutdinov, R.; Hinton, G. Deep Boltzmann Machines. In Proceedings of the 12th International Conference on Artificial Intelligence and Statistics (AISTATS), Clearwater Beach, FL, USA, 16 April 2009; pp. 448–455.
  38. Gowda, S.N.; Rohrbach, M.; Sevilla-Lara, L. Smart Frame Selection for Action Recognition. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 2 February 2021; Volume 35, pp. 1451–1459.
  39. Zhang, X.; Liu, T.; Lo, K.; Feng, J. Dynamic Selection and Effective Compression of Key Frames for Video Abstraction. Pattern Recognit. Lett. 2003, 24, 1523–1532.
  40. Hasebe, S.; Nagumo, M.; Muramatsu, S.; Kikuchi, H. Video Key Frame Selection by Clustering Wavelet Coefficients. In Proceedings of the 12th European Signal Processing Conference (EUSIPCO), Vienna, Austria, 6 September 2004.
  41. Xu, Q.; Wang, P.; Long, B.; Sbert, M.; Feixas, M.; Scopigno, R. Selection and 3D Visualization of Video Key Frames. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (ICSMC), Istanbul, Turkey, 10 October 2010.
  42. Kulbacki, M.; Segen, J.; Chaczko, Z.; Rozenblit, J.; Klempous, R.; Wojciechowski, K. Intelligent Video Analytics for Human Action Recognition: The State of Knowledge. Sensors 2023, 9, 4258.
  43. Feichtenhofer, C.; Pinz, A.; Wildes, R.P.; Zisserman, A. Deep Insights into Convolutional Networks for Video Recognition. Int. J. Comput. Vis. 2020, 128, 420–437.
  44. Tsai, J.K.; Hsu, C.; Wang, W.Y.; Huang, S.K. Deep Learning-Based Real-Time Multiple-Person Action Recognition System. Sensors 2020, 17, 4857.
  45. Fischer, A.; Igel, C. An Introduction to Restricted Boltzmann Machines. In Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, Proceedings of the 17th Iberoamerican Congress, CIARP, Buenos Aires, Argentina, 3–6 September 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 14–36.
  46. Srivastava, N.; Salakhutdinov, R. Multimodal Learning with Deep Boltzmann Machines. J. Mach. Learn. Res. 2012, 15, 2949–2980.
More
Academic Video Service