Also, the body’s growth factor, IGF-1, might activate a specific pathway (
RhoA/
ROCK) through a series of signals (PI3K/Akt/mTOR). This activation could aid in the increased growth of breast tumors
[39][45].
2.5. Unhealthy Dietary Pattern
An unhealthy DP is high in sugars, processed juices, soft drinks, French fries, potato chips, boiled potato, sweets, desserts, nuts, saturated and hydrogenated fats, solid oils, red and processed meat, mayonnaise, and salt intake as reported by two Iranian case-control studies
[48][49][54,55]. These dietary choices align with a pattern that is commonly associated with poor nutritional quality, excess calorie intake, and an imbalance of essential nutrients.
Two case-control studies done in hospitals found a significant correlation between unhealthy DP and an increased risk of BC among Iranian women (OR:7.78; 95%CI: 2.31–26.22; OR: 2.21; 95%CI: 1.04, 4.690;
p-trend = 0.5)
[48][49][54,55]. Furthermore, only among post-menopausal women, unhealthy DP had a significant association with the risk of BC (OR: 3.56; 95%CI: 1.16–10.95;
p-trend = 0.008)
[48][54].
The possible mechanism for the increased BC risk because of following the unhealthy DP could be attributed to the presence of oncogenic compounds. Carcinogens such as heterocyclic amines, polycyclic aromatic and N-nitroso are found in processed/cured meat and unprocessed meat cooked at high temperatures (
Figure 2). They have been confirmed to raise the risk of breast tumors in animal models
[48][49][54,55]. Foods high in sugar and fat increase blood glucose and insulin. Insulin is known to induce cell division and, hence, can cause cell proliferation and growth of tumors. It also inhibits the production of a protein that binds to sex hormones, known as sex hormone binding globulin, thereby increasing free estrogen levels
[48][54].
2.6. Healthy Dietary Pattern
A healthy DP is portrayed by the utilization of foods that are nutrient-dense and provide essential vitamins, minerals, and other beneficial compounds. According to two studies done in Iran, a healthy DP is considered to be high in fruits, vegetables, legumes, seeds and nuts, fish and seafood, whole grains, soya, olives, olive oils, vegetable oils, low fat dairy products, condiments, pickles, poultry, and organ meat along with low intake of salt
[48][49][54,55].
In a 2014 case-control study done by Karimi et al., it was found that BC risk decreased by 75% in the highest tertile compared to lowest tertile when following a healthy DP after adjusting for all confounders
[49][55]. Unfortunately, Heidari et al., found no correlation (95%CI: 0.36–1.89) between healthy DP and the risk of BC after adjusting for confounders
[48][54].
It is suggested that the cancer-protective effect of a healthy DP is correlated with the high intake of fiber and the diet being high in foods containing vitamins and antioxidants
[49][55]. Fibers bind to estrogen, reducing its absorption and preventing its binding to the nuclear receptor ERα. This, in turn, inhibits cell multiplication. Furthermore, it also binds with bile acids which are responsible for promoting cell proliferation and reducing the risk of mutations and cancers
[38][27].
2.7. Ketogenic Dietary Pattern
A well-known high-fat, low-carb diet first utilized as a treatment for diseases, including obesity and epilepsy, is the ketogenic diet (KD). KD affects the energy metabolism of cancer cells, as shown in multiple studies done in Middle East which revealed that a ketogenic diet might decrease the progression of tumors in people with BC
[50][51][52][53][56,57,58,59]. Studies support the effectiveness of the ketogenic diet and metabolically supported chemotherapy in treating aggressive cancer types like triple-negative breast cancer. Triple-negative breast cancer is characterized by the lack of receptors for progesterone, estrogen and human epidermal growth factor receptor 2 (HER2), contributing to 20% of breast cancers
[53][59].
The metabolism of fatty acids and the production of ketone bodies are suggested to prevent the development and survival of cancer cells
[53][59]. KD may help prevent BC by reducing appetite, calories, and glycolytic activity. Additionally, KD has anti-inflammatory effects. This may inhibit the growth of tumors and control apoptosis via insulin- or IGF-I-dependent cell signaling pathways
[50][51][56,57]. KD being low in carbohydrates, lowers the glycolytic activity leading to decreased availability of lactate, thereby decreasing acidity of the tumor microenvironment, hence decreasing its biosynthesis. ALP, which is a negative marker in BC, is reduced in KD, suggesting potential benefit in impeding metastatic progression
[50][56].
In conclusion, KD may improve the quality of life of BC, but making conclusive results on the correlation between ketogenic diets and the occurrence of BC in the Middle East is difficult owing to the limited availability of studies in the Middle Eastern Region.
2.8. Pro-Inflammatory Dietary Pattern
Pro-inflammatory DP is categorized by the ingestion of processed/cured meat, red meats, butter, eggs, fries, dairy, refined grains, tubers, pizza, mayonnaise, snack, confections, desserts, trans fats and oils, and soft drinks as reported by Ghanbari et al.
[54][24]. Six studies have been done in the Middle East to assess the association between BC risk with pro-inflammatory DP using dietary inflammatory index scores for participants. The Iranian case-control study reported that a higher food-based empirical dietary inflammatory index score (FDII score) was significantly associated with increased BC risk (OR: 2.38; 95%CI: 1.23–4.59) where participants in the fourth quartile of FDII score had 2.8 times higher risk of breast cancer compared to the first quartile
[54][24]. Similar results were observed in three other Iranian case-control studies done by Vahid et al., Jalali et al., and Gholamalizadeh et al. who found that dietary inflammatory index (DII) was significantly high, and the risk of BC increased significantly when subjects followed a proinflammatory diet with odds ratio ranging from 2.64 to 7.24 with a positive trend
[55][56][57][60,61,62].
2.9. Paleolithic Dietary Pattern
The Paleolithic diet (PD) is a dietary approach that assumes our bodies are better adapted to the types of foods consumed during that Paleolithic period. Foods categorized under this DP are vegetables, fruits, lean meats, fish, nuts, and seeds, while eliminating or limiting dairy products, grains, legumes, refined sugar, and processed/cured foods with an emphasis on whole, unprocessed foods similar to a pre-agriculture period
[58][59][68,69].
A study done in Iran by Sohouli et al. found there was a 76% decreased risk of BC when the highest quartile was compared to the lowest quartile for PD score in all women (95%CI 0.13–0.53). Furthermore, a noteworthy reduction in the risk of this cancer was viewed in premenopausal by 71% and post-menopausal by 83%
[58][68]. Although a single study was done in the Middle East, studies done in other global countries had similar reductions in BC risk
[60][61][70,71].
2.10. Dietary Approaches to Stop Hypertension (DASH) Dietary Pattern
The DASH diet, short for Dietary Approaches to Stop Hypertension, a powerful tool to manage and prevent high blood pressure is now being found to be effective in preventing cancer
[62][72]. This balanced eating plan emphasizes on fruits, vegetables, low-fat dairy, legumes, nuts, wholegrain and foods low in saturated fat, sodium, red and processed/cured meat, and sweetened drinks
[62][63][72,73].
A case-control study conducted by Heidari et al. assessed the relationship between four DASH diet indices and the risk of BC in Iranian women. Dixon’s Index scored eight food groups and a nutrient whereas Mellen’s Index evaluated 9 nutrient intakes. Fung’s Index scored eight food groups and sodium and lastly Günther’s Index assessed ten food components. Gunther’s DASH index lowered the odds of BC by 52% in the highest quintile, compared to lowest quintile and Mellen’s lowered it by 50% indicating significant association (95%CI 0.25–0.93 and 0.62–0.97) of both these indices in lowering the risk of BC.