Ontology-Based Parkinson’s Disease Monitoring and Alerting with PHKG-GNNs: Comparison
Please note this is a comparison between Version 1 by Nikolaos Zafeiropoulos and Version 3 by Fanny Huang.

In the realm of Parkinson’s Disease (PD) research, the integration of wearable sensor data with personal health records (PHR) has emerged as a pivotal avenue for patient alerting and monitoring. This study delves into the complex domain of PD patient care was delved into, with a specific emphasis on harnessing the potential of wearable sensors to capture, represent and semantically analyze crucial movement data and knowledge. The primary objective is to enhance the assessment of PD patients by establishing a robust foundation for personalized health insights through the development of Personal Health Knowledge Graphs (PHKGs) and the employment of personal health Graph Neural Networks (PHGNNs) that utilize PHKGs. The objective is to formalize the representation of related integrated data, unified sensor and PHR data in higher levels of abstraction, i.e., in a PHKG, to facilitate interoperability and support rule-based high-level event recognition such as patient’s missing dose or falling. This is anpaper, extension of researchers'ding our previous related work, presents the Wear4PDmove ontology in detail and evaluates the ontology within the development of an experimental PHKG. Furthermore, the is paper focuses on the integration and evaluation of PHKG within the implementation of a Graph Neural Network (GNN) are focused on. T. This work emphasizes the importance of integrating PD-related data for monitoring and alerting patients with appropriate notifications are emphasized. These notifications offer health experts precise and timely information for the continuous evaluation of personal health-related events, ultimately contributing to enhanced patient care and well-informed medical decision-making. Finally, a nothe paper concludes by proposing a novel approach for integrating personal health KGs and GNNs for PD monitoring and alerting solutions is proposed.

  • ontology
  • knowledge graphs
  • Graph Neural Networks
  • Parkinson’s Disease
Please wait, diff process is still running!

References

  1. Younesi, E.; Malhotra, A.; Gündel, M.; Scordis, P.; Kodamullil, A.T.; Page, M.; Müller, B.; Springstubbe, S.; Wüllner, U.; Scheller, D.; et al. PDON: Parkinson’s disease ontology for representation and modeling of the Parkinson’s disease knowledge domain. Theor. Biol. Med. Model. 2015, 12, 20.
  2. Gyrard, A.; Gaur, M.; Shekarpour, S.; Thirunarayan, K.; Sheth, A. Personalized Health Knowledge Graph. CEUR Workshop Proc. 2018, 2317, 5.
  3. Shirai, S.; Seneviratne, O.; McGuinness, D.L. Applying Personal Knowledge Graphs to Health (Version 1). arXiv 2021, arXiv:2104.07587.
  4. Zafeiropoulos, N.; Bitilis, P.; Tsekouras, G.E.; Kotis, K. Graph Neural Networks for Parkinson’s Disease Monitoring and Alerting. Sensors 2023, 23, 8936.
  5. Zafeiropoulos, N.; Bitilis, P.; Kotis, K. Wear4pdmove: An Ontology for Knowledge-Based Personalized Health Monitoring of PD Patients. In Proceedings of the 22nd International Semantic Web Conference (ISWC 2023), Athens, Greece, 6–10 November 2023.
  6. Bitilis, P.; Zafeiropoulos, N.; Koletis, A.; Kotis, K. Uncovering the semantics of PD patients’ movement data collected via off-the-shelf wearables. In Proceedings of the 14th International Conference on Information, Intelligence, Systems and Applications (IISA 2023), Volos, Greece, 10–12 July 2023.
  7. Gupta, A.; Ludäscher, B.; Grethe, J.S.; Martone, M.E. Towards a formalization of disease-specific ontologies for neuroinformatics. Neural Netw. 2003, 16, 1277–1292.
  8. heth, A.; Roy, K.; Gaur, M. Neurosymbolic ai-why, what, and how. arXiv 2023, arXiv:2305.00813.Sheth, A.; Roy, K.; Gaur, M. Neurosymbolic ai-why, what, and how. arXiv 2023, arXiv:2305.00813.
  9. Alghamdi, S.M. Ontology Design Patterns and Methods for Integrating Phenotype Ontologies. Ph.D. Thesis, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia, 2023.Allocca, C.; Jilali, S.; Ail, R.; Lee, J.; Kim, B.; Antonini, A.; Motta, E.; Schellong, J.; Stieler, L.; Haleem, M.S.; et al. Toward a Symbolic AI Approach to the WHO/ACSM Physical Activity & Sedentary Behavior Guidelines. Appl. Sci. 2022, 12, 1776.
  10. Gambarelli, G.; Gangemi, A. PRIVAFRAME: A Frame-Based Knowledge Graph for Sensitive Personal Data. Big Data Cogn. Comput. 2022, 6, 90.Alghamdi, S.M. Ontology Design Patterns and Methods for Integrating Phenotype Ontologies. Ph.D. Thesis, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia, 2023.
  11. Lu, R.; Xu, Y.; Li, X.; Fan, Y.; Zeng, W.; Tan, Y.; Ren, K.; Chen, W.; Cao, X. Evaluation of Wearable Sensor Devices in Parkinson’s Disease: A Review of Current Status and Future Prospects. Park. Dis. 2020, 2020, 4693019.Gambarelli, G.; Gangemi, A. PRIVAFRAME: A Frame-Based Knowledge Graph for Sensitive Personal Data. Big Data Cogn. Comput. 2022, 6, 90.
  12. Dsouza, N.S.; Nebel, M.B.; Crocetti, D.; Robinson, J.; Mostofsky, S.; Venkataraman, A. M-gcn: A multimodal graph convolutional network to integrate functional and structural connectomics data to predict multidimensional phenotypic characterizations. In Proceedings of the Third Conference on Medical Imaging with Deep Learning, Lübeck, Germany, 7–9 July 2021; pp. 119–130.SSN. Available online: https://www.w3.org/TR/vocab-ssn/ (accessed on 20 December 2023).
  13. Anicet Zanini, R.; Luna Colombini, E. PD EMG data augmentation and simulation with DCGANs and style transfer. Sensors 2020, 20, 2605.SOSA. Available online: https://www.w3.org/ns/sosa/ (accessed on 20 December 2023).
  14. Cai, R.; Chen, X.; Fang, Y.; Wu, M.; Hao, Y. Dual-dropout graph convolutional network for predicting synthetic lethality in human cancers. Bioinformatics 2020, 36, 4458–4465.SAREF. Available online: https://saref.etsi.org/ (accessed on 20 December 2023).
  15. Sheikhpour, R.; Berahmand, K.; Forouzandeh, S. Hessian-based semi-supervised feature selection using generalized uncorrelated constraint. Knowl.-Based Syst. 2023, 269, 110521.Steenwinckel, B.; De Brouwer, M.; Stojchevska, M.; Van Der Donckt, J.; Nelis, J.; Ruyssinck, J.; van der Herten, J.; Casier, K.; Van Ooteghem, J.; Crombez, P.; et al. Data Analytics For Health and Connected Care: Ontology, Knowledge Graph and Applications. In Proceedings of the Sixteenth EAI Pervasive Healthcare Conference; Springer: Cham, Switzerland, 2022; Available online: https://dahcc.idlab.ugent.be (accessed on 20 December 2023).
  16. Talo, M.; Baloglu, U.B.; Yıldırım, Ö.; Acharya, U.R. Application of deep transfer learning for automated brain abnormality classification using MR images. Cogn. Syst. Res. 2019, 54, 176–188.PMDO. Available online: https://bioportal.bioontology.org/ontologies/PMDO (accessed on 20 December 2023).
  17. Stember, J.; Shalu, H. Deep reinforcement learning to detect brain lesions on MRI: A proof-of-concept application of reinforcement learning to medical images. arXiv 2020, arXiv:2008.02708.Koletis, A.; Bitilis, P.; Zafeiropoulos, N.; Kotis, K. Can Semantics Uncover Hidden Relations between Neurodegenerative Diseases and Artistic Behaviors? Appl. Sci. 2023, 13, 4287.
  18. achila, K.; Kotis, K.; Paparidis, E.; Ladikou, S.; Spiliotopoulos, D. Facilitating Se-mantic Interoperability of Trustworthy IoT Entities in Cultural Spaces: The Smart Museum Ontology. IoT 2021, 2, 741–760.Lu, R.; Xu, Y.; Li, X.; Fan, Y.; Zeng, W.; Tan, Y.; Ren, K.; Chen, W.; Cao, X. Evaluation of Wearable Sensor Devices in Parkinson’s Disease: A Review of Current Status and Future Prospects. Park. Dis. 2020, 2020, 4693019.
  19. Chen, J.; Hu, P.; Jimenez-Ruiz, E.; Holter, O.M.; Antonyrajah, D.; Horrocks, I. OWL2Vec*: Embedding of OWL ontologies. Mach. Learn. 2021, 110, 1813–1845.
  20. Altamirano Di Luca, M.A.; González Benítez, N. Comparative Study of RDF and OWL Ontology Languages as Support for the Semantic Web. In Applied Technologies. ICAT 2019. Communications in Computer and Information Science; Botto-Tobar, M., Zambrano Vizuete, M., Torres-Carrión, P., Montes León, S., Pizarro Vásquez, G., Durakovic, B., Eds.; Springer: Cham, Switzerland, 2020; Volume 1193.
  21. Zhang, X.; Che, C. Drug Repurposing for Parkinson’s Disease by Integrating Knowledge Graph Completion Model and Knowledge Fusion of Medical Literature. Future Internet 2021, 13, 14.
  22. Zhu, Y.; Jung, W.; Wang, F.; Che, C. Drug repurposing against Parkinson’s disease by text mining the scientific literature. Library Hi Tech. 2020, 38, 741–750.
  23. Ali, W.; Saleem, M.; Yao, B.; Hogan, A.; Ngomo, A.-C.N. A survey of RDF stores & SPARQL engines for querying knowledge graphs. VLDB J. 2022, 31, 1–26.
  24. Nahab, F.; Abu-Hussain, H.; Moreno, L. Evaluation of Clinical Utility of the Personal KinetiGraph® in the Management of Parkinson Disease. Adv. Park. Dis. 2019, 8, 42–61.
  25. Reichmann, H.; Klingelhoefer, L.; Bendig, J. The use of wearables for the diagnosis and treatment of Parkinson’s disease. J. Neural Transm. 2023, 130, 783–791.
  26. Rajabi, E.; Kafaie, S. Knowledge Graphs and Explainable AI in Healthcare. Information 2022, 13, 459.
  27. Ganguly, N.; Fazlija, D.; Badar, M.; Fisichella, M.; Sikdar, S.; Schrader, J.; Wallat, J.; Rudra, K.; Koubarakis, M.; Patro, G.; et al. A Review of the Role of Causality in Developing Trustworthy AI Systems. arXiv 2023, arXiv:2302.06975.
  28. Agibetov, A.; Samwald, M. Fast and scalable learning of neuro-symbolic representations of biomedical knowledge. arXiv 2018, arXiv:1804.11105.
  29. Gupta, D.K.; Marano, M.; Aurora, R.; Boyd, J.; Sahoo, S.S. Movement Disorders Ontology for Clinically Oriented and Clinicians-Driven Data Mining of Multi-Center Cohorts in Parkinson’s Disease; Cold Spring Harbor Laboratory: Cold Spring Harbor, NY, USA, 2020.
  30. National Centre for Biomedical Ontology (NCBO). Available online: https://ncbo.bioontology.org/ (accessed on 15 December 2023).
  31. Sejdiu, B.; Ismaili, F.; Ahmedi, L. IoTSAS: An Integrated System for Real-Time Semantic Annotation and Interpretation of IoT Sensor Stream Data. Computers 2021, 10, 127.
  32. Reda, R.; Piccinini, F.; Martinelli, G.; Carbonaro, A. Heterogeneous self-tracked health and fitness data integration and sharing according to a linked open data approach. Computing 2021, 104, 835–857.
  33. Malburg, L.; Gruger, J.; Bergmann, R. An IoT-Enriched Event Log for Process Mining in Smart Factories. arXiv 2022, arXiv:2209.02702.
  34. Yan, S.; Xiong, Y.; Lin, D. Spatial temporal graph convolutional networks for skeleton-based action recognition. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018.
  35. Wu, C.; Wu, X.J.; Kittler, J. Spatial residual layer and dense connection block enhanced spatial temporal graph convolutional network for skeleton-based action recognition. In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, Seoul, Republic of Korea, 27–28 October 2019.
  36. Wen, Y.H.; Gao, L.; Fu, H.; Zhang, F.L.; Xia, S. Graph CNNs with motif and variable temporal block for skeleton-based action recognition. In Proceedings of the AAAI Conference on Artificial Intelligence, Palo Alto, CA, USA, 27 January–1 February 2019; Volume 33, pp. 8989–8996.
  37. Megalooikonomou, V.; Ford, J.; Shen, L.; Makedon, F.; Saykin, A. Data mining in brain imaging. Stat. Methods Med. Res. 2000, 9, 359–394.
  38. Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; Sánchez, C.I. A survey on DL in medical image analysis. Med. Image Anal. 2017, 42, 60–88.
  39. Ktena, S.I.; Parisot, S.; Ferrante, E.; Rajchl, M.; Lee, M.; Glocker, B.; Rueckert, D. Distance metric learning using graph convolutional networks: Application to functional brain networks. In Proceedings of the 20th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2017), Quebec City, QC, Canada, 11–13 September 2017; pp. 469–477.
  40. Dsouza, N.S.; Nebel, M.B.; Crocetti, D.; Robinson, J.; Mostofsky, S.; Venkataraman, A. M-gcn: A multimodal graph convolutional network to integrate functional and structural connectomics data to predict multidimensional phenotypic characterizations. In Proceedings of the Third Conference on Medical Imaging with Deep Learning, Lübeck, Germany, 7–9 July 2021; pp. 119–130.
  41. Yang, H.; Li, X.; Wu, Y.; Li, S.; Lu, S.; Duncan, J.S.; Gu, S. Interpretable multimodality embedding of cerebral cortex using attention graph network for identifying bipolar disorder. In Proceedings of the 22nd International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2019), Shenzhen, China, 13–17 October 2019; pp. 799–807.
  42. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks. arXiv 2017, arXiv:1710.10903.
  43. Alharbi, F.; Vakanski, A. ML Methods for Cancer Classification Using Gene Expression Data: A Review. Bioengineering 2023, 10, 173.
  44. Anicet Zanini, R.; Luna Colombini, E. PD EMG data augmentation and simulation with DCGANs and style transfer. Sensors 2020, 20, 2605.
  45. Cai, R.; Chen, X.; Fang, Y.; Wu, M.; Hao, Y. Dual-dropout graph convolutional network for predicting synthetic lethality in human cancers. Bioinformatics 2020, 36, 4458–4465.
  46. Wang, D.; Lu, Z.; Xu, Y.; Wang, Z.; Santella, A.; Bao, Z. Cellular Structure Image Classification with Small Targeted Training Samples. IEEE Access 2019, 7, 148967–148974.
  47. Wu, K.; Zhang, D.; Lu, G.; Guo, Z. Learning acoustic features to detect PD. Neurocomputing 2018, 318, 102–108.
  48. Sheikhpour, R.; Berahmand, K.; Forouzandeh, S. Hessian-based semi-supervised feature selection using generalized uncorrelated constraint. Knowl.-Based Syst. 2023, 269, 110521.
  49. Talo, M.; Baloglu, U.B.; Yıldırım, Ö.; Acharya, U.R. Application of deep transfer learning for automated brain abnormality classification using MR images. Cogn. Syst. Res. 2019, 54, 176–188.
  50. Stember, J.; Shalu, H. Deep reinforcement learning to detect brain lesions on MRI: A proof-of-concept application of reinforcement learning to medical images. arXiv 2020, arXiv:2008.02708.
  51. Zachila, K.; Kotis, K.; Paparidis, E.; Ladikou, S.; Spiliotopoulos, D. Facilitating Se-mantic Interoperability of Trustworthy IoT Entities in Cultural Spaces: The Smart Museum Ontology. IoT 2021, 2, 741–760.
  52. Kotis, K.; Vouros, G.; Spiliotopoulos, D. Ontology engineering methodologies for the evolution of living and reused ontologies: Status, trends, findings and recommendations. Knowl. Eng. Rev. 2020, 35, E4.
  53. Poveda-Villalón, M.; Gómez-Pérez, A.; Suárez-Figueroa, M.C. OOPS!(Ontology Pitfall Scanner!): An on-line tool for ontology evaluation. Int. J. Semant. Web Inf. Syst. (IJSWIS) 2014, 10, 7–34.
  54. Garijo, D. WIDOCO: A wizard for documenting ontologies. Int. Semant. Web Conf. 2017, 10, 94–102.
  55. Musen, M.A. The Protégé project: A look back and a look forward. AI Matters 2015, 1, 4–12.
  56. RDFlib. Available online: https://rdflib.readthedocs.io/en/stable/ (accessed on 20 December 2023).
  57. Python. Available online: https://www.python.org/ (accessed on 20 December 2023).
  58. Mockaroo. Available online: https://www.mockaroo.com/ (accessed on 20 December 2023).
  59. Sirin, E.; Parsia, B.; Grau, B.C.; Kalyanpur, A.; Katz, Y. Pellet: A practical owl-dl reasoner. J. Web Semant. 2007, 5, 51–53.
  60. Horridge, M.; Musen, M. Snap-SPARQL: A java framework for working with SPARQL and OWL. In Proceedings of the Ontology Engineering: 12th International Experiences and Directions Workshop on OWL, OWLED 2015, Co-Located with ISWC 2015, Bethlehem, PA, USA, 9–10 October 2015; Revised Selected Papers 12. Springer International Publishing: Cham, Switzerland, 2016; pp. 154–165.
  61. Owlready2. Available online: https://owlready2.readthedocs.io/en/v0.42/ (accessed on 20 December 2023).
More