Toxic Shock Syndrome: Comparison
Please note this is a comparison between Version 1 by Enora Atchade and Version 2 by Sirius Huang.

Toxic shock syndrome (TSS) is a rare, life-threatening, toxin-mediated infectious process linked, in the vast majority of cases, to toxin-producing strains of Staphylococcus aureus or Streptococcus pyogenes.

  • exotoxin
  • Staphylococcus aureus
  • Streptococcus pyogenes
  • toxic shock syndrome toxin 1

1. Introduction

Toxic shock syndrome (TSS) is a rare, life-threatening, toxin-mediated infectious process that leads to rapid and severe shock, multiple organ failure syndrome, and death. Its occurrence is linked to the toxin-producing strains of Staphylococcus aureus or Streptococcus pyogenes (group A streptococcus (GAS)) in a vast majority of cases [1]. However, clinical case reports of TSS involving other bacteria have also been reported [2][3][4][5][6][7][8][9][10][2,3,4,5,6,7,8,9,10].
Scientific literature on TSS mainly consists of observational studies, clinical cases, and in vitro data. The levels of evidence are low, especially when addressing TSS related to pathogens other than S. aureus or S. pyogenes.

2. Pathophysiology of Toxic Shock Syndrome

The occurrence of TSS is linked to the bacterial secretion of superantigenic exotoxins, which are bacterial virulence factors genetically encoded and secreted. Superantigenic exotoxins are able to induce unconventional activation of T cells by antigen-presenting cells (APCs). During conventional T-cell activation, the APC absorbs foreign particles, processes protease digestion, and presents them as partially degraded in a specific binding groove in the major histocompatibility complex class II (MHC II), which is expressed on its surface. The Ag-MHC II complex binds to the surface of the T-cell receptor (TCR). This results in monoclonal activation of T cells specific to the antigen (Ag). In the TSS, the superantigen binds the TCR and MHC II outside the Ag presentation site with high affinity. This results in nonspecific, polyclonal lymphocyte activation of 5 to 30% of the total population of T cells [11][12][13][11,12,13]. This simultaneous polyclonal activation results in a significant activation of NF kappa B, which plays a major role in the generation and expansion of the inflammatory response [1]. This results in a massive release of proinflammatory cytokines, with clinical signs, such as capillary leakage, arterial hypotension, organ failure, and coagulation activation, usually being reported in this setting [1]. Physiopathological specificities of staphylococcal and streptococcal TSS are detailed in the corresponding subparts.

3. Staphylococcal Toxic Shock Syndrome

3.1. Initial Reports

The first description of this syndrome was published by James Todd and colleagues in The Lancet in 1978 [14]. The authors described a pediatric case series of seven children, with clinical presentations including high fever, cephalalgia, confusion, cutaneous rash, conjunctival hyperhemia, and digestive signs. The children progressed to a state of prolonged severe shock associated with renal and hepatic failure and disseminated intravascular coagulation. Exotoxin-producing S. aureus was isolated from the foci of infection (empyema and abscess) in two patients and in mucosal swabs (nasopharyngeal, vaginal, and tracheal) in four patients but not from blood, cerebrospinal fluid (CSF), or urine. One patient died, while all the others survived and presented with desquamation of the palm of the hands or sole of the feet during recovery [14]. Staphylococcal TSS in adult patients was then described in the 1980s and predominantly involved menstruating women [15].

3.2. Diagnostic Criteria

The diagnostic criteria for staphylococcal TSS were proposed by the Centers for Disease Control and Prevention (CDC) in the 1980s and revised in 2011 [1][16][1,16]. These criteria, combining clinical and laboratory aspects, are presented in Table 1.
Table 1. Diagnostic criteria for staphylococcal and streptococcal TSS according to the CDC recommendations [1][17].
Diagnostic criteria for staphylococcal and streptococcal TSS according to the CDC recommendations [1,17].
Video Production Service