Plants with Antioxidant Potential from Mayan Region: Comparison
Please note this is a comparison between Version 2 by Alfred Zheng and Version 1 by Jonatan Jafet Uuh-Narvaez.

The screening of rare plants from the Yucatan region and the known native plants in Mexico, that have been successfully introduced worldwide, has been conducted. The preservation of traditional medicinal knowledge in Mayan culture, especially concerning pharmacologically significant plants, can be inferred from the recognition of useful plant species used in previous centuries. Focusing on the antioxidant properties of underutilized and rare plants is especially relevant in the context of Mayan-origin biodiversity. These plants are fundamental to the Mayan diet and traditional medicine and represent an invaluable genetic resource that could be at risk due to climate change and biodiversity loss. Moreover, identifying the specific secondary metabolites associated with the antioxidant potential of these plants could offer new avenues for drug and therapy development. 

  • antioxidant propertie
  • Mayan
  • plants

1. Introduction

In the field of plant biology, understanding the role of plant biodiversity in shaping the diverse composition of secondary metabolites across various plant species worldwide holds significant importance. Climate change poses a threat to some Mayan plant species, especially those with limited distribution areas, making them particularly vulnerable [2][1]. The preservation of traditional medicinal knowledge in Mayan culture, especially concerning pharmacologically significant plants, can be inferred from the recognition of useful plant species used in previous centuries. The existing data on the plants used as medicines indicate that various plants in traditional Mayan medicine may impact the neuroprotective pathways of the central nervous system, as well as the serotonin and acetylcholine levels [3][2]. Rodríguez-García et al. [4][3] studied the antioxidant, antimicrobial, anti-hyperglycemic, and antihypertensive potential of water extracts from plants originating from the Yucatan coast. However, the last literature review on rare or underutilized plants in the Mayan region did not provide detailed characteristics or information on the specific secondary metabolites that may be associated with the significant antioxidant potential of these plants. In contrast, there is extensive scientific knowledge available for pre-Columbian domesticated plants such as sunflower (Helianthus annuus L.) in Mexico, which has been well studied not only for its use as food, but also for its medicinal properties. While primarily grown for its seeds, which are a nutritious snack, sunflower extracts and oils are used in cosmetics and skincare products. Sunflower oil is rich in vitamin E and essential fatty acids, making it beneficial for skin and hair health [5][4]. Similarly, Echinacea purpurea L. is originally from North America, including parts of Mexico. It is now widespread worldwide, especially in Europe, and is renowned for its high antioxidant potential. Echinacea is widely used for its potential immune-boosting properties. It is believed to help reduce the severity and duration of common colds and upper respiratory infections [6][5]. Chili peppers (Capsicum annuum) are an integral part of Mexican cuisine and culture, used in dishes like salsa and mole. They have also influenced cuisines worldwide and are celebrated for their fiery flavor. Chili peppers are rich in capsaicin, a compound known for its medicinal properties [7][6]. Additionally, chili peppers are a good source of vitamins and antioxidants, contributing to their potential to boost metabolism and provide cardiovascular benefits. Cassava and sweet potato were among the most important plants in the Mayan region, along with mushrooms, peppers, and various herbs, all playing significant roles in human diets. Some trees were also utilized for construction purposes and herbal medicine. In the past year, there has been a screening of the antioxidant and anti-proliferative properties of underutilized Mexican plants; however, a limited description of the antioxidant compositions of these plant extracts was provided [8,9][7][8]. Interest in the antioxidant properties of plants has gained significant momentum in scientific research, owing to the growing awareness of the harmful effects of the free radicals and oxidative stress on human health. Free radicals are unstable molecules that can damage cells and contribute to inflammation, thereby underpinning the development of diseases such as cancer, diabetes, and cardiovascular disorders [8,9][7][8]. Focusing on the antioxidant properties of underutilized and rare plants is especially relevant in the context of Mayan-origin biodiversity. These plants are fundamental to the Mayan diet and traditional medicine and represent an invaluable genetic resource that could be at risk due to climate change and biodiversity loss. Moreover, identifying the specific secondary metabolites associated with the antioxidant potential of these plants could offer new avenues for drug and therapy development. Therefore, a multidisciplinary approach could reveal unexplored therapeutic applications and provide conservation strategies for these endangered species.

2. Plants and Plant-Derived Compounds with Antioxidant Potential from Mayan Region

González et al. [10][9] have described the plant families with the largest number of species of medicinal plants in the Yucatan region. These families are Leguminosae, Euphobiaceae, Asteraceae, Verbenaceae, and Solanaceae. In contrast, Pinaceae, Rosaceae, Rhizophoraceae, Simaroubaceae, and Rhamnaceae are the families with a lower number of species containing medicinal plants. On the other hand, Pinaceae, Rosaceae, Rhizophoraceae, Simaroubaceae, and Rhamnaceae are the families characterized by a smaller variety of species housing medicinal plants. Currently, most botanical descriptions of rare plants from the Yucatan region focus on their antioxidant potential. However, the current work aims to also select the scientific data about the presence of specific biologically active compounds that are responsible for the beneficial effects of selected rare plant species [10][9].
People have attempted to present plants originally from the Yucatan region that are widespread all over the world, as well as rare Yucatan plants and their plant-derived metabolites with antioxidant potential. It is evident that flavonol quercetin and its isomers are present in all the described selected plant species originating from Yucatan. Furthermore, certain secondary metabolites are unique to specific plant species. For instance, bell pepper (Capsicum annuum) contains the terpenoid capsidiol, purple coneflower (Echinacea purpurea) possesses cyclic monoterpene α-phellandrene, and Helianthus annuus yields the sesquiterpene α-copaene. Notably, copaene has demonstrated antioxidant activity, as well as cytotoxic and genotoxic/antigenotoxic effects on human lymphocyte cultures, as observed in [12][10].
Among the chosen specific plant-derived compounds presented in the selected plant species of the Yucatan region, it would like to highlight the high presence of phenolic acids, terpenes, and terpenoids. β-eudesmol, a sesquiterpenoid found in Annona purpurea Moc. & Sessé ex Dunal, is of special scientific interest [13][11]. p-Hydroxybenzoic acid, a phenolic acid from Brosimum alicastrum, is known for its antioxidant and anti-inflammatory potential [14,15][12][13]. The selected specific metabolites, along with their formula specifications, are presented in Figure 1.
Table 1.
Plants and plant-derived compounds with antioxidant potential from East North America region origin.
Plant Species Family Plant Part Terpenes

Terpenoids
Phenolic Acids Alkaloids Flavonoids

Flavones
Coumarins References
Achras sapota

(Sapodilla)
Sapidaceae stem, leaves, fruit present (not specified) present (not specified) present (not specified) dihydromyricetin, quercitrin, myricitrin, catechin,

epicatechin, gallocatechin
present (not specified) [16,17,18,19][14][15][16][17]
Annona purpurea Moc. & Sessé ex Dunal (Sancoya) Annonaceae leaves, pulp, seeds β-eudesmol,

α-eudesmol
present (not specified) Norpurpureine

7-formyl-dehydrothalicsimidine

8-7-hydroxy-dehydrothalicsimidine N-methyllaurotetanine N-methylasimilobine

Lirinidine

Thalicsimidine

Purpureine

3-hydroxyglaucine

Annomontine

Annopurpuricins A-D
present (not specified) present (not specified) [20,21,22][18][19][20]
Astronium graveolens (Gateado) Anacardiaceae leaves lupeol 3-O-caffeoylquinic, 5-sinapoylquinic, 1,2,3,4,6-Penta-O-galloyl-D-glucopyranose   quercetin 3-O-glucoside, quercetin 3-O-rhamnoside - [23][21]
Brosimum alicastrum swartz (Ramon) Moraceae leaves, seeds,

bark
- Gallic, chloro genic, vanillic, sinapic, ferulic, t-cinnamic, coumaric, caffeic acid, p-hydroxibenzoic, m-hydroxybenzoic acids - Quercetin, catechin, epicatechin, catechin gallate, syringetin, Kaempferol−O−dihexoside, Isoquercetin Xanthyletin, luvangetin, 8-hydroxyxanthyletin [24,25,26][22][23][24]
Byrsonima bucidaefolia

(Sak Pah)
Malpighiaceae leaves - Methyl gallate, methyl-m-trigallate - - - [27][25]
Capsicum annuum

(Bell pepper)
Solanaceae fruit capsidiol cinnamic acid capsaicinoids quercetin, luteolin, caffeoyl,

cinnamoyl glycosides,

apigenin
coumaric acid

coumaroyl
[28,29,30][26][27][28]
Cnidosfolus aconitifolius IM. Jonst

(Chaya)
  leaves α y β amyrin, borneol, hederaginin, oleanolic acid, squalene, lupeol acetate ellagic, ferulic, p-coumaric, caffeic, protocacheuic, vainillic, chlorogenic, caftaric, p-hidroxibenzoico, coutaric, syringic, synaptic acids choline, trigonelline, nicotinic acid, palmatine, sitsirikine, Dihydrositsirikine, vinblastine, vindoline, catharanthine, vinleurosine kaempferol, quercetin, rutin, catechin, hesperidin, narigenin, kaempferol, procuanidin B1, catechin, procyanidin B2, rutin, gallocatechin gallate, epigallocatechin gallate, epicatechin-3-O-gallate, quercetin-3-O-galactoside, quercetin-3-O-glycoside, quercetin-3-O-rhamnoside, trans-resveratrol - [31,32,33,34][29][30][31][32]
Cordia dodecandra DC. (Circote) Sapidaceae fruit - caffeic acid, rosmarinic acid, caffeoyl hexoside - Rutin, Quercetin 3-O-rutinoside, lutein - [35,36,37][33][34][35]
Diospyros digyna Jacq. (Black sapote) Ebenaceae fruit,

pulp, peel, seeds
- Cinnamic,

p-hydroxybenzoic, Caffeic,

Sinapic, Ferulic,

O-Coumaric,

Protocatechuic, Chlorogenic, Isochlorogenic
- Catechin

Epicatechin

Myricetin

Gallocatechol

Epigallocatechin, rutin, Myricetrin, Isohermetin, Kaempherol-4′-glucoside, Quercetin, Dihydromyricetin, Cynaroside
- [38,39][36][37]
Echinacea purpurea

(Purple coneflower)
Asteraceae whole plant α-phellandrene, camphene, limonene present (not specified) pyrrolizidine alkaloids tussilagine and isotussilagine quercetin, kaempferol, isorhamnetin Coumaric acid [40,42,43,44][41,38][39][40][41][42]
Helianthus annuus

(Common sunflower)
Asteraceae seeds α-copaene, bornyl acetate, β-elemene, β-selinene, germacrene-D present (not specified) present (not specified) kaempferol, apigenin, dihydroflavonol, daidzein, biochanin A, formononetin, luteolin, quercetin p-coumaroyl [45,46,47][43][44][45]
Parmentiera aculeata (H.B. & K.) Seeman

(Cucumber kat)
Bignoniaceae fruit Lactucin-8-O-methylacrylate present (not specified) present (not specified) - present (not specified) [48,49][46][47]
Pouteria campechiana (H.B. & K) Baehni

(Canisté)
Sapidaceae fruit, leaves, seeds, bark Corsolic acid, euscaphic acid, fatty acid ester of betulinic acid, fatty acid ester of oleanolic acid, maslinic acid, ursolic acid, lucumic acid A, lucimic acid B, 4(R),23-epoxy-2α,3α,19α-trihydroxy-24-norurs-12-en-

28-oic acid, 2α,3α,19α,23-tetrahydroxy-13α,27-cyclours-11-en-28-

oic acid, 2α, 3α, 19α, 23 tetrahydroxyursolic acid, 2α,3β,19α-trihydroxy-24-norursa-4(23),12-dien-28-O-ic

acid, 3β, 28- dihydroxy-olean-12-enyl fatty acid ester
Caffeic, ferulic, gallic, protocatechuic, vanillic, p-coumaric acid - Apigenin, catechin, epicatechin, gallocatechin, kaempferol, luteolon, myricetin, myricitin, myricetin-3-O-α-L-rhamnoside, myricetin-3-O-β-galactoside, quercetin, rutin, myricetin 3-O-α-rhamnopyranoside, quercetin 3-O-α-rhamnopyranoside, quercetin 3-O-β-rhamnopyranoside, quercetin 3-O-β-arabinopyranoside, taxifolin 3-O-arabinofuranoside, taxifolin 3-O-α, rhamnopyranoside - [50][48]
Pithecellobium dulce (Roxb) Benth

(Dziuche)
Leguminosae seeds (−)-19β-D-glucopyranosyl-6,7-dihydroxykaurenoate Caffeic acid, chlorogenic

acid, ferulic acid, gallic acid, p-coumaric acid, protocatechuic

acid,
- apigenin, catechin, daidzein, kaemferol, luteolin,

quercetin, myricetin, naringin and rutin
- [51,52][49][50]
Spondias purpurea L. Anacardiaceae leaves spathulenol, linolenic acid, t-caryophyllene, α-muurolene caffeic acid - epigallocatechin - [53,54][51][52]
Figure 1.
Some specific secondary metabolites of the selected plant species of Yucatan region.
Figure 1 presents the secondary metabolites that were identified; however, there is a need for a more comprehensive investigation of the other known classes of natural products. Particularly noteworthy among the phenolic acids identified in the selected plant species from the Yucatan region is the significant content of sinapic acid found in Diospyros digyna Jacq. Sinapic acid is known for its various beneficial properties, including antioxidant, anti-inflammatory, anticancer, neuroprotective, antimutagenic, anti-glycemic, and antibacterial functions [55][53]. Another phenolic acid known for its antioxidant potential is echinacoside, derived from Echinacea purpurea. Additionally, a significant level of caffeic acid from Cordia dodecandra has been confirmed, which has demonstrated anticarcinogenic properties [56][54] and antioxidant potentials [37][35].
Among the flavonoids found in substantial levels in the selected plants of the Yucatan region, people have kaempferol from Cnidoscolus aconitifolius (Mill.) I.M. Johnst, quercitrin from Pouteria campechania, and luteolin from Pithecellobium dulce (Roxb) Benth. Notably, luteolin, a flavonoid, is of special interest due to its multiple cardioprotective effects [57][55], as well as its antioxidant, anticancer, and anti-inflammatory effects [58][56].

References

  1. Goettsch, B.; Urquiza-Haas, T.; Koleff, P.; Acevedo Gasman, F.; Aguilar-Meléndez, A.; Alavez, V.; Alejandre-Iturbide, G.; Aragón Cuevas, F.; Azurdia Pérez, C.; Carr, J.A.; et al. Extinction Risk of Mesoamerican Crop Wild Relatives. Plants People Planet 2021, 3, 775–795.
  2. Castañeda, R.; Cáceres, A.; Velásquez, D.; Rodríguez, C.; Morales, D.; Castillo, A. Medicinal Plants Used in Traditional Mayan Medicine for the Treatment of Central Nervous System Disorders: An Overview. J. Ethnopharmacol. 2022, 283, 114746.
  3. Rodríguez-García, C.M.; Ruiz-Ruiz, J.C.; Peraza-Echeverría, L.; Peraza-Sánchez, S.R.; Torres-Tapia, L.W.; Pérez-Brito, D.; Tapia-Tussell, R.; Herrera-Chalé, F.G.; Segura-Campos, M.R.; Quijano-Ramayo, A.; et al. Antioxidant, Antihypertensive, Anti-Hyperglycemic, and Antimicrobial Activity of Aqueous Extracts from Twelve Native Plants of the Yucatan Coast. PLoS ONE 2019, 14, e0213493.
  4. Lentz, D.L.; Pohl, M.D.L.; Alvarado, J.L.; Tarighat, S.; Bye, R. Sunflower (Helianthus annuus L.) as a Pre-Columbian Domesticate in Mexico. Proc. Natl. Acad. Sci. USA 2008, 105, 6232–6237.
  5. Sytar, O.; Brestic, M.; Hajihashemi, S.; Skalicky, M.; Kubeš, J.; Lamilla-Tamayo, L.; Ibrahimova, U.; Ibadullayeva, S.; Landi, M. COVID-19 Prophylaxis Efforts Based on Natural Antiviral Plant Extracts and Their Compounds. Molecules 2021, 26, 727.
  6. Fattori, V.; Hohmann, M.S.; Rossaneis, A.C.; Pinho-Ribeiro, F.A.; Verri, W.A. Capsaicin: Current Understanding of Its Mechanisms and Therapy of Pain and Other Pre-Clinical and Clinical Uses. Molecules 2016, 21, 844.
  7. Martínez, E.M.M.; Sandate-Flores, L.; Rodríguez-Rodríguez, J.; Rostro-Alanis, M.; Parra-Arroyo, L.; Antunes-Ricardo, M.; Serna-Saldívar, S.O.; Iqbal, H.M.N.; Parra-Saldívar, R. Underutilized Mexican Plants: Screening of Antioxidant and Antiproliferative Properties of Mexican Cactus Fruit Juices. Plants 2021, 10, 368.
  8. Soto, K.M.; Pérez Bueno, J.d.J.; Mendoza López, M.L.; Apátiga-Castro, M.; López-Romero, J.M.; Mendoza, S.; Manzano-Ramírez, A. Antioxidants in Traditional Mexican Medicine and Their Applications as Antitumor Treatments. Pharmaceuticals 2023, 16, 482.
  9. Mendez, M.; Durán, R.; Campos, S.; Dorantes, A. Flora Medicinal. Biodivers. Y Desarro. Hum. En Yucatán 2010, 349–352.
  10. Türkez, H.; Çelik, K.; Toğar, B. Effects of Copaene, a Tricyclic Sesquiterpene, on Human Lymphocytes Cells in Vitro. Cytotechnology 2014, 66, 597–603.
  11. Leite, D.O.D.; de F. A. Nonato, C.; Camilo, C.J.; de Carvalho, N.K.G.; da Nobrega, M.G.L.A.; Pereira, R.C.; da Costa, J.G.M. Annona Genus: Traditional Uses, Phytochemistry and Biological Activities. Curr. Pharm. Des. 2020, 26, 4056–4091.
  12. Farhoosh, R.; Johnny, S.; Asnaashari, M.; Molaahmadibahraseman, N.; Sharif, A. Structure–Antioxidant Activity Relationships of o-Hydroxyl, o-Methoxy, and Alkyl Ester Derivatives of p-Hydroxybenzoic Acid. Food Chem. 2016, 194, 128–134.
  13. Xu, X.; Luo, A.; Lu, X.; Liu, M.; Wang, H.; Song, H.; Wei, C.; Wang, Y.; Duan, X. P-Hydroxybenzoic Acid Alleviates Inflammatory Responses and Intestinal Mucosal Damage in DSS-Induced Colitis by Activating ERβ Signaling. J. Funct. Foods 2021, 87, 104835.
  14. Punia Bangar, S.; Sharma, N.; Kaur, H.; Kaur, M.; Sandhu, K.S.; Maqsood, S.; Ozogul, F. A Review of Sapodilla (Manilkara zapota) in Human Nutrition, Health, and Industrial Applications. Trends Food Sci. Technol. 2022, 127, 319–334.
  15. Ma, J.; Luo, X.D.; Protiva, P.; Yang, H.; Ma, C.; Basile, M.J.; Weinstein, I.B.; Kennelly, E.J. Bioactive Novel Polyphenols from the Fruit of Manilkara zapota (Sapodilla). J. Nat. Prod. 2003, 66, 983–986.
  16. Jadhav, S.S.; Swami, S.B.; Pujari, K.H. Study the physico-chemical properties of Sapota (Achras sapota L.). Trends Technol. Sci. Res. 2018, 3, 555605.
  17. Shanmugapriya, K.; Saravana, P.; Payal, H.; Mohammed, S.P.; Binnie, W. Antioxidant Activity, Total Phenolic and Flavonoid Contents of Artocarpus Heterophyllus and Manilkara zapota Seeds and Its Reduction Potential. Int. J. Pharm. Pharm. Sci. 2011, 3, 256–260.
  18. Muñoz-Acevedo, A.; Aristizábal-Córdoba, S.; Rodríguez, J.D.; Torres, E.A.; Molina, A.M.; Gutiérrez, R.G.; Kouznetsov, V.V. Citotoxicidad/Capacidad Antiradicalaria in-Vitro y Caracterización Estructural Por GC-MS/1H-13C-RMN de Los Aceites Esenciales de Hojas de Árboles Joven/Adulto de Annona purpurea Moc. & Sessé Ex Dunal de Repelón (Atlántico, Colombia). Boletín Latinoam. Y Del Caribe Plantas Med. Y Aromáticas 2016, 15, 99–111.
  19. Anaya-Esparza, L.M.; de Lourdes Garcia-Magana, M.; Domínguez-Ávila, J.A.; Yahia, E.M.; Salazar-Lopez, N.J.; Gonzalez-Aguilar, G.A.; Montalvo-González, E. Annonas: Underutilized Species as a Potential Source of Bioactive Compounds. Food Res. Int. 2020, 138, 963–9969.
  20. Toledo-González, K.A.; Riley-Saldaña, C.A.; Salas-Lizana, R.; De-la-Cruz-Chacón, I.; González-Esquinca, A.R. Alkaloidal Variation in Seedlings of Annona purpurea Moc. & Sessé Ex Dunal Infected with Colletotrichum gloeosporioides (Penz.) Penz. and Sacc. Biochem. Syst. Ecol. 2023, 107, 104611.
  21. Hernández, V.; Malafronte, N.; Mora, F.; Pesca, M.S.; Aquino, R.P.; Mencherini, T. Antioxidant and Antiangiogenic Activity of Astronium graveolens Jacq. Leaves. Nat. Prod. Res. 2014, 28, 917–922.
  22. Barragán-Mendoza, L.; Sotelo-García, D.M.; Via, L.D.; Parra-Delgado, H. Biological Properties of Aqueous Extract and Pyranocoumarins Obtained from the Bark of Brosimum alicastrum Tree. J. Ethnopharmacol. 2022, 290, 115128.
  23. Moo-Huchin, V.M.; Canto-Pinto, J.C.; Cuevas-Glory, L.F.; Sauri-Duch, E.; Pérez-Pacheco, E.; Betancur-Ancona, D. Effect of Extraction Solvent on the Phenolic Compounds Content and Antioxidant Activity of Ramon Nut (Brosimum alicastrum). Chem. Pap. 2019, 73, 1647–1657.
  24. Pech-Cohuo, S.C.; Martín-López, H.; Uribe-Calderón, J.; González-Canché, N.G.; Salgado-Tránsito, I.; May-Pat, A.; Cue-vas-Bernardino, J.C.; Ayora-Talavera, T.; Cervantes-Uc, J.M.; CPacheco, N. Physicochemical, Mechanical, and Structural Properties of Bio-Active Films Based on Biological-Chemical Chitosan, a Novel Ramon (Brosimum alicastrum) Starch, and Quercetin. Polymers 2022, 14, 1346.
  25. Castillo-Avila, G.M.; García-Sosa, K.; Peña-Rodríguez, L.M. Antioxidants from the Leaf Extract of Byrsonima Bucidaefolia. Nat. Prod. Commun. 2009, 4, 83–86.
  26. Howard, L.R.; Wildman, R. Antioxidant Vitamin and Phytochemical Content of Fresh and Processed Pepper Fruit (Capsicum annuum). In Handbook of Nutraceuticals and Functional Foods; CRC Press: Boca Ratón, FL, USA, 2007; pp. 165–191.
  27. Maldonado-Bonilla, L.D.; Betancourt-Jiménez, M.; Lozoya-Gloria, E. Local and Systemic Gene Expression of Sesquiterpene Phytoalexin Biosynthetic Enzymes in Plant Leaves. Eur. J. Plant Pathol. 2008, 121, 439–449.
  28. Lim, J.H.; Park, C.J.; Huh, S.U.; Choi, L.M.; Lee, G.J.; Kim, Y.J.; Paek, K.H. Capsicum annuum WRKYb Transcription Factor That Binds to the CaPR-10 Promoter Functions as a Positive Regulator in Innate Immunity upon TMV Infection. Biochem. Biophys. Res. Commun. 2011, 411, 613–619.
  29. Hutasingh, N.; Chuntakaruk, H.; Tubtimrattana, A.; Ketngamkum, Y.; Pewlong, P.; Phaonakrop, N.; Roytrakul, S.; Rungrotmongkol, T.; Paemanee, A.; Tansrisawad, N.; et al. Metabolite profiling and identification of novel umami compounds in the chaya leaves of two species using multiplatform metabolomics. Food Chem. 2023, 404, 134564.
  30. Ramos-Gomez, M.; Figueroa-Pérez, M.G.; Guzman-Maldonado, H.; Loarca-Piña, G.; Mendoza, S.; Quezada-Tristán, T.; Reynoso-Camacho, R. Phytochemical Profile, Antioxidant Properties and Hypoglycemic Effect of Chaya (Cnidoscolus chayamansa) in STZ-Induced Diabetic Rats. J. Food Biochem. 2017, 41, e12281.
  31. Rodrigues, L.G.G.; Mazzutti, S.; Siddique, I.; da Silva, M.; Vitali, L.; Ferreira, S.R.S. Subcritical Water Extraction and Microwave-Assisted Extraction Applied for the Recovery of Bioactive Components from Chaya (Cnidoscolus aconitifolius Mill.). J. Supercrit. Fluids 2020, 165, 104976.
  32. Quintal Martínez, J.P.; Segura Campos, M.R. Cnidoscolus aconitifolius (Mill.) I.M. Johnst.: A Food Proposal Against Thromboembolic Diseases. Food Rev. Int. 2021, 39, 1377–1410.
  33. Sánchez-Recillas, A.; Rivero-Medina, L.; Ortiz-Andrade, R.; Araujo-León, J.A.; Flores-Guido, J.S. Airway Smooth Muscle Relaxant Activity of Cordia dodecandra A. DC. Mainly by CAMP Increase and Calcium Channel Blockade. J. Ethnopharmacol. 2019, 229, 280–287.
  34. Jiménez-Morales, K.; Castañeda-Pérez, E.; Herrera-Pool, E.; Ayora-Talavera, T.; Cuevas-Bernardino, J.C.; García-Cruz, U.; Pech-Cohuo, S.C.; Pacheco, N. Ultrasound-Assisted Extraction of Phenolic Compounds from Different Maturity Stages and Fruit Parts of Cordia dodecandra A. DC.: Quantification and Identification by UPLC-DAD-ESI-MS/MS. Agriculture 2022, 12, 2127.
  35. Pacheco, N.; Méndez-Campos, G.K.; Herrera-Pool, I.E.; Alvarado-López, C.J.; Ramos-Díaz, A.; Ayora-Talavera, T.; Talcott, S.U.; Cuevas-Bernardino, J.C. Physicochemical Composition, Phytochemical Analysis and Biological Activity of Ciricote (Cordia dodecandra A. D.C.) Fruit from Yucatán. Nat. Prod. Res. 2022, 36, 440–444.
  36. Mannino, G.; Serio, G.; Bertea, C.M.; Chiarelli, R.; Lauria, A.; Gentile, C. Phytochemical Profile and Antioxidant Properties of the Edible and Non-Edible Portions of Black Sapote (Diospyros Digyna Jacq.). Food Chem. 2022, 380, 132137.
  37. Yahia, E.M.; Gutierrez-Orozco, F.; de Leon, C.A. Phytochemical and Antioxidant Characterization of the Fruit of Black Sapote (Diospyros Digyna Jacq.). Food Res. Int. 2011, 44, 2210–2216.
  38. Coeugniet, E.G.; Elek, E. Immunomodulation with Viscum Album and Echinacea purpurea Extracts. Onkologie 1987, 10, 27–33.
  39. Lim, T.K. Echinacea purpurea. In Edible Medicinal and Non-Medicinal Plants; Springer: Dordrecht, The Netherlands, 2014; pp. 340–371.
  40. Manayi, A.; Vazirian, M.; Saeidnia, S. Echinacea purpurea: Pharmacology, Phytochemistry and Analysis Methods. Pharmacogn. Rev. 2015, 9, 63–72.
  41. Classen, B.; Thude, S.; Blaschek, W.; Wack, M.; Bodinet, C. Immunomodulatory Effects of Arabinogalactan-Proteins from Baptisia and Echinacea. Phytomedicine 2006, 13, 688–694.
  42. Mazza, G.; Cottrell, T. Volatile Components of Roots, Stems, Leaves, and Flowers of Echinacea Species. J. Agric. Food Chem. 1999, 47, 3081–3085.
  43. Guan, Y.; Zhang, Z.; Yu, X.; Yan, J.; Zhou, Y.; Cheng, H.; Tai, G. Components of Heat-Treated Helianthus annuus L. Pectin Inhibit Tumor Growth and Promote Immunity in a Mouse CT26 Tumor Model. J. Funct. Foods 2018, 48, 190–199.
  44. Guo, S.; Ge, Y.; Na Jom, K. A Review of Phytochemistry, Metabolite Changes, and Medicinal Uses of the Common Sunflower Seed and Sprouts (Helianthus annuus L.). Chem. Cent. J. 2017, 11, 95.
  45. Lokumana, C.R. Collection and Analysis of Volatiles of Various Cultivated Sunflower, Helianthus annuus, (Asteraceae) Germplasm and Investigation of Some Aspects of Host Selection in Adult Red Sunflower Seed Weevil, Smicronyx fulvus L., (Coleoptera Curculionidae); North Dakota State University: Fargo, ND, USA, 2017.
  46. Gómez, C.C.E.; Ordaz, C.P.; San Martín, E.M.; Pérez, N.H.; Pérez, G.I.; Gómez, M.d.C.G. Cytotoxic Effect and Apoptotic Activity of Parmentiera Edulis DC. Hexane Extract on the Breast Cancer Cell Line MDA-MB-231. J. Appl. Pharm. Sci. 2016, 6, 15–22.
  47. Perez, R.M.; Perez, C.; Zavala, M.A.; Perez, S.; Hernandez, H.; Lagunes, F. Hypoglycemic Effects of Lactucin-8-O-Methylacrylate of Parmentiera Edulis Fruit. J. Ethnopharmacol. 2000, 71, 391–394.
  48. Do, T.V.T.; Suhartini, W.; Phan, C.U.; Zhang, Z.; Goksen, G.; Lorenzo, J.M. Nutritional Value, Phytochemistry, Health Benefits, and Potential Food Applications of Pouteria campechiana (Kunth) Baehni: A Comprehensive Review. J. Funct. Foods 2023, 103, 105481.
  49. Mena-Rejón, G.J.; Sansores-Peraza, P.; Brito-Loeza, W.F.; Quijano, L. Chemical Constituents of Pithecellobium Albicans. Fitoterapia 2008, 79, 395–397.
  50. Vargas-Madriz, Á.F.; Kuri-García, A.; Vargas-Madriz, H.; Chávez-Servín, J.L.; Ferriz-Martínez, R.A.; Hernández-Sandoval, L.G.; Guzmán-Maldonado, S.H. Phenolic Profile and Antioxidant Capacity of Pithecellobium dulce (Roxb) Benth: A Review. J. Food Sci. Technol. 2020, 57, 4316–4336.
  51. De Almeida, C.L.F.; Brito, S.A.; De Santana, T.I.; Costa, H.B.A.; De Carvalho Júnior, C.H.R.; Da Silva, M.V.; De Almeida, L.L.; Rolim, L.A.; Dos Santos, V.L.; Wanderley, A.G.; et al. Spondias purpurea L. (Anacardiaceae): Antioxidant and Antiulcer Activities of the Leaf Hexane Extract. Oxid. Med. Cell. Longev. 2017, 2017, 6593073.
  52. Marisco, G.; Regineide, X.; Brendel, M.; Pungartnik, C. Antifungal Potential of Terpenes from Spondias purpurea L. Leaf Extract against Moniliophthora Perniciosa That Causes Witches Broom Disease of Theobroma Cacao. Int. J. Complement. Altern. Med. 2017, 7, 00215.
  53. Chen, C. Sinapic Acid and Its Derivatives as Medicine in Oxidative Stress-Induced Diseases and Aging. Oxid. Med. Cell. Longev. 2016, 2016, 3571614.
  54. Espíndola, K.M.M.; Ferreira, R.G.; Narvaez, L.E.M.; Silva Rosario, A.C.R.; da Silva, A.H.M.; Silva, A.G.B.; Vieira, A.P.O.; Monteiro, M.C. Chemical and Pharmacological Aspects of Caffeic Acid and Its Activity in Hepatocarcinoma. Front. Oncol. 2019, 9, 541.
  55. Luo, Y.; Shang, P.; Li, D. Luteolin: A Flavonoid That Has Multiple Cardio-Protective Effects and Its Molecular Mechanisms. Front. Pharmacol. 2017, 8, 692.
  56. Taheri, Y.; Sharifi-Rad, J.; Antika, G.; Yılmaz, Y.B.; Tumer, T.B.; Abuhamdah, S.; Chandra, S.; Saklani, S.; Kılıç, C.S.; Sestito, S.; et al. Paving Luteolin Therapeutic Potentialities and Agro-Food-Pharma Applications: Emphasis on In Vivo Pharmacological Effects and Bioavailability Traits. Oxid. Med. Cell. Longev. 2021, 2021, 1987588.
More
ScholarVision Creations