The Gut Microbiome and Colorectal Cancer: Comparison
Please note this is a comparison between Version 1 by Nikolay K Shakhpazyan and Version 2 by Camila Xu.

Colorectal cancer (CRC) represents a significant global health burden, ranking as the third most common cancer and the second leading cause of cancer-related deaths worldwide. The gut microbiome, composed of trillions of commensal microorganisms, plays a vital role in maintaining homeostasis and overall health. Mounting evidence suggests that alterations in the gut microbiome, referred to as dysbiosis, may contribute to the initiation and progression of CRC by modulating the tumor microenvironment (TME), including the tumor stroma.

  • colorectal cancer
  • Gut Microbiome
  • Tumor Stroma

1. Introduction

Colorectal cancer (CRC) represents a significant global health burden, ranking as the third most common cancer and the second leading cause of cancer-related deaths worldwide. According to the World Health Organization, approximately 1.8 million new cases of CRC were diagnosed, and nearly 900,000 deaths were reported, in 2020 [1]. The high morbidity and mortality associated with CRC can be attributed to several factors, including late-stage diagnosis, limited treatment options, and therapy resistance.
The early detection and diagnosis of CRC are crucial for improving patient outcomes, as the 5-year survival rate for patients diagnosed at an early stage is significantly higher than for those diagnosed at advanced stages [2]. Current screening methods for CRC include fecal occult blood tests (FOBT), fecal immunochemical tests (FIT), flexible sigmoidoscopy, and colonoscopies [3]. While these methods have been effective in reducing CRC incidence and mortality, they are not without limitations. Barriers to CRC screening include patient discomfort, invasiveness, financial constraints, and a low adherence to screening guidelines [4].
Treatment options for CRC primarily depend on the stage of the disease and may include surgery, chemotherapy, radiotherapy, targeted therapy, and immunotherapy. Despite advances in surgical techniques and the development of novel therapeutic agents, the prognosis for patients with advanced or metastatic CRC remains poor, with a 5-year survival rate of less than 20% [5]. Furthermore, the emergence of therapy resistance and the occurrence of tumor recurrence after initial treatment contribute to the challenges associated with CRC management.
Shared characteristics with the stroma of other solid tumors, including cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), extracellular matrix (ECM) components, and immune cells, mark the tumor stroma in CRC [6]. Despite these commonalities, specific features distinguish the colorectal tumor stroma from other cancer types.
One of the key distinguishing factors is the influence of the microbiome, where bacteria can modulate the tumor stroma by influencing immune cell recruitment and activation, and promote a pro-inflammatory environment [7]. In addition to this, the colorectal mucosa harbors a unique immune system known as the gut-associated lymphoid tissue (GALT) [8]. Disruptions to the balance between immune tolerance and anti-tumor immune responses can lead to alterations in the composition and function of immune cells within the tumor stroma.
A crucial feature that sets CRC apart is the aberrant activation of the Wnt signaling pathway, a hallmark of this disease, especially with mutations in the adenomatous polyposis coli (APC) gene [9]. This pathway can also influence the tumor stroma by promoting the activation of CAFs and the secretion of factors that support cancer cell growth and invasion.
Furthermore, CRC is characterized by tumor budding, identified by the presence of small clusters or single cancer cells at the invasive front of the tumor. This distinctive feature has been associated with a more aggressive phenotype and a worse prognosis [10]. Budding cancer cells can interact with stromal cells, such as CAFs and immune cells, to promote invasion and metastasis [11].
Finally, the CRC stroma displays unique gene expression signatures known as Conserved Oncogenic Signatures (COS). These are specific to the stromal compartment of colorectal tumors and include signatures that reflect an immunosuppressive environment, thereby contributing to the complexity of the tumor’s immune landscape [12][13][12,13].
The complexity and heterogeneity of CRC, underscored by the dynamic interplay between cancer cells and the TME, highlight the necessity for a more profound understanding of the disease’s underlying mechanisms. An important aspect, indicative of the tumor stroma’s relevance in CRC evaluation, is the tumor–stroma ratio (TSR). This straightforward marker has emerged as a significant factor in determining CRC prognosis, with a high TSR correlating with an increased risk of cancer recurrence and potential resistance to chemotherapy [14]. The TSR is established by analyzing histological slides, typically from the tumor’s most invasive part, and is categorized into stroma-high (>50% stromal area) and stroma-low (≤50% stromal area) [15]. Recent technological advances, specifically in artificial intelligence, have facilitated automated TSR quantification. This development has proven to be prognostically valid, assisting in clinical decision-making by offering a more objective, standardized analysis, and reducing the workload of pathologists [16].
Nevertheless, the TSR’s exclusive use for patient prognosis remains a matter of de-bate. Various studies suggest that other markers, such as tumor budding, tumor infiltrating pattern, and lymphocyte-to-monocyte ratio—the latter being an independent factor influencing both relapse-free survival and overall survival outcomes—are equally, if not more, critical [17]. Moreover, the reliability of TSR assessment has been questioned due to the poor-to-moderate inter-pathologist agreement [18]. The inclusion of additional markers, such as CAFs or tumor-infiltrating lymphocytes, may result in a more comprehensive patient stratification tool [19][20][19,20]. Thus, it is evident that more comprehensive studies are needed to enhance biomarker assessment consistency and validate these findings [18][21][18,21]. This intricate scenario involving even a seemingly straightforward and universally accessible marker like the TSR hints at the extreme complexity of the stroma’s cellular and molecular organization when examined at the histological level.

2. The Gut Microbiome and CRC: Dysbiosis, Tumor Stroma Modulation, and Emerging Therapeutic Strategies

The gut microbiome, composed of trillions of commensal microorganisms, plays a vital role in maintaining homeostasis and overall health. Mounting evidence suggests that alterations in the gut microbiome, referred to as dysbiosis, may contribute to the initiation and progression of CRC by modulating the tumor microenvironment (TME), including the tumor stroma [22]. One crucial aspect of this modulation is the direct interaction of specific bacterial species with the tumor stroma. For instance, Fusobacterium nucleatum, Bacteroides fragilis, and Escherichia coli have been closely associated with CRC development, while some species exhibit antitumor activity (Table 1) [23][24][25][26][27][23,24,25,26,27]. These bacteria directly interact with stromal cells, including CAFs and immune cells, influencing their activation and function. F. nucleatum, for example, adheres to and invades CAFs, leading to the production of pro-inflammatory cytokines like IL-6 and IL-8, which in turn promote cancer cell proliferation, survival, and migration [28][29][30][28,29,30] (Figure 1).
Figure 1.
Unique Features and Complexity of the Colorectal Tumor Microenvironment (TME).
Table 1.
Bacteria of gut microbiome with pro- and anticancer activities.
Video Production Service