Mechanisms of Cutaneous irAEs Induced by ICIs: Comparison
Please note this is a comparison between Version 2 by Sirius Huang and Version 1 by Sebastian Yu.

Immune checkpoint inhibitors (ICIs) have emerged as promising therapeutic options for the treatment of various cancers. These novel treatments effectively target key mediators of immune checkpoint pathways. ICIs primarily consist of monoclonal antibodies that specifically block cytotoxic T-lymphocyte antigen 4 (CTLA-4), programmed cell death 1 (PD-1), programmed cell death-ligand 1 (PD-L1), and lymphocyte activation gene 3 protein (LAG-3). Despite the notable efficacy of ICIs in cancer treatment, they can also trigger immune-related adverse events (irAEs), which present as autoimmune-like or inflammatory conditions.

  • immune checkpoint inhibitor
  • immune-related adverse event
  • cutaneous immune-related adverse event
  • anti-CTLA-4 inhibitor
  • anti-PD-1 inhibitor
  • anti-PD-L1 inhibitor
  • anti-LAG-3 inhibitor

1. Introduction

Immune-checkpoint inhibitors (ICIs) have revolutionized the management of advanced malignancies over the past decade by offering groundbreaking therapeutic options [1,2][1][2]. Current biologic agents target natural immune checkpoint molecules, including cytotoxic T-lymphocyte antigen 4 (CTLA-4) [3[3][4],4], programmed cell death 1 (PD-1), programmed cell death-ligand 1 (PD-L1) [5[5][6],6], and lymphocyte activation gene 3 protein (LAG-3) [7], to enhance their antitumoral activity. While immune-checkpoint inhibitors hold great promise, their non-specific immunologic activations can give rise to various autoimmune-like or inflammatory diseases known as immune-related adverse events (irAEs) [8,9][8][9]. These adverse events predominantly affect the skin, gastrointestinal tract, liver, and endocrine glands, but they have the potential to involve any organ system [10,11][10][11].
Cutaneous immune-related adverse events (irAEs) are the most common complications associated with ICIs and often present as the initial manifestation. These events usually develop within the first few weeks to months after initiating immunotherapy, but they can occur at any time, even after treatment discontinuation [12]. A wide range of clinical presentations, including morbilliform eruptions, pruritus, lichenoid eruptions, psoriasiform dermatitis, vitiligo, bullous disorders, alopecia, and severe cutaneous adverse reactions (SCARs), have been reported [8,10,11,13,14][8][10][11][13][14]. These adverse events can significantly impact patients’ quality of life and may require the discontinuation of treatment. Therefore, early recognition and prompt management of cutaneous irAEs is important to minimize the immunotherapy-related morbidity and to achieve favorable outcomes in cancer patients.

2. Cutaneous Immune-Related Adverse Events

Despite the remarkable therapeutic efficacy of immune checkpoint inhibitors, their usage can give rise to a wide array of autoimmune and autoinflammatory reactions referred to as irAEs, due to their non-specific activation of the immune system. Among these irAEs, cutaneous irAEs are the most prevalent and often present as the earliest symptoms in patients undergoing immunotherapy. Generally, cutaneous irAEs emerge within weeks to months after initiating treatment with immune checkpoint inhibitors, although they can occur at any time, even after discontinuation of treatment [12]. Most cutaneous toxicities are mild to moderate in severity (CTCAE grades 1–2) and typically resolve spontaneously. In rare cases, severe cutaneous adverse reactions (SCARs) can occur, including conditions like Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), drug reaction with eosinophilia and systemic symptoms (DRESS), and acute generalized exanthematous pustulosis (AGEP) [41,42,43][15][16][17]. The occurrence of cutaneous irAEs has been reported in 30% to 60% of patients receiving treatment. Among various ICIs, anti-CTLA-4 monotherapy has a significantly higher rate of cutaneous irAEs (44–59%) compared to anti-PD-1 (34–42%) and anti-PD-L1 monotherapy (20%). Furthermore, the combination of CTLA-4 and PD-1 inhibition generally leads to an increased incidence (59–72%) and severity of skin toxicities [43,44,45][17][18][19]. It is believed that cutaneous irAEs are not dependent on the dosage of ICIs and can occur regardless of the underlying malignancy. However, recent research suggests that melanoma and renal cell carcinoma may carry a higher risk compared to other types of cancer [45][19]. Additionally, patients with pre-existing autoimmune diseases or pre-existing skin damage are more prone to experiencing cutaneous irAEs [11,46][11][20]

3. Subtypes and Possible Mechanisms of Cutaneous Immune-Related Adverse Events

The precise mechanisms responsible for ICI-induced cutaneous irAEs are not fully understood. However, several potential pathogeneses have been proposed. These include the involvement of type IV hypersensitivity reactions, genetic variations in certain human leukocyte antigen (HLA) variants, activation of self-reactive T cells and B cells that target shared antigens found in both tumor cells and normal tissues, stimulation of B cells and the humoral immune response, increased production of proinflammatory cytokines with immune-related consequences, potential exposure of host antigens from tumor cells due to cytotoxic attacks, and potential exacerbation of drug eruptions due to concurrent medication usage. The possible mechanisms of cutaneous irAEs are summarized in Table 21.
Table 21.
Possible pathogenesis, onset time, and frequency of cutaneous irAEs.

References

  1. Abdel-Wahab, N.; Shah, M.; Lopez-Olivo, M.A.; Suarez-Almazor, M.E. Use of Immune Checkpoint Inhibitors in the Treatment of Patients with Cancer and Preexisting Autoimmune Disease: A Systematic Review. Ann. Intern. Med. 2018, 168, 121–130.
  2. Barrios, D.M.; Do, M.H.; Phillips, G.S.; Postow, M.A.; Akaike, T.; Nghiem, P.; Lacouture, M.E. Immune checkpoint inhibitors to treat cutaneous malignancies. J. Am. Acad. Dermatol. 2020, 83, 1239–1253.
  3. Tivol, E.A.; Borriello, F.; Schweitzer, A.N.; Lynch, W.P.; Bluestone, J.A.; Sharpe, A.H. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 1995, 3, 541–547.
  4. Huang, C.; Zhu, H.X.; Yao, Y.; Bian, Z.H.; Zheng, Y.J.; Li, L.; Moutsopoulos, H.M.; Gershwin, M.E.; Lian, Z.X. Immune checkpoint molecules. Possible future therapeutic implications in autoimmune diseases. J. Autoimmun. 2019, 104, 102333.
  5. Alsaab, H.O.; Sau, S.; Alzhrani, R.; Tatiparti, K.; Bhise, K.; Kashaw, S.K.; Iyer, A.K. PD-1 and PD-L1 Checkpoint Signaling Inhibition for Cancer Immunotherapy: Mechanism, Combinations, and Clinical Outcome. Front. Pharmacol. 2017, 8, 561.
  6. Chinai, J.M.; Janakiram, M.; Chen, F.; Chen, W.; Kaplan, M.; Zang, X. New immunotherapies targeting the PD-1 pathway. Trends Pharmacol. Sci. 2015, 36, 587–595.
  7. Tawbi, H.A.; Schadendorf, D.; Lipson, E.J.; Ascierto, P.A.; Matamala, L.; Castillo Gutierrez, E.; Rutkowski, P.; Gogas, H.J.; Lao, C.D.; De Menezes, J.J.; et al. Relatlimab and Nivolumab versus Nivolumab in Untreated Advanced Melanoma. N. Engl. J. Med. 2022, 386, 24–34.
  8. Postow, M.A.; Sidlow, R.; Hellmann, M.D. Immune-Related Adverse Events Associated with Immune Checkpoint Blockade. N. Engl. J. Med. 2018, 378, 158–168.
  9. Johnson, D.B.; Chandra, S.; Sosman, J.A. Immune Checkpoint Inhibitor Toxicity in 2018. JAMA 2018, 320, 1702–1703.
  10. Geisler, A.N.; Phillips, G.S.; Barrios, D.M.; Wu, J.; Leung, D.Y.M.; Moy, A.P.; Kern, J.A.; Lacouture, M.E. Immune checkpoint inhibitor-related dermatologic adverse events. J. Am. Acad. Dermatol. 2020, 83, 1255–1268.
  11. Quach, H.T.; Johnson, D.B.; LeBoeuf, N.R.; Zwerner, J.P.; Dewan, A.K. Cutaneous adverse events caused by immune checkpoint inhibitors. J. Am. Acad. Dermatol. 2021, 85, 956–966.
  12. Watanabe, T.; Yamaguchi, Y. Cutaneous manifestations associated with immune checkpoint inhibitors. Front. Immunol. 2023, 14, 1071983.
  13. Chen, C.H.; Yu, H.S.; Yu, S. Cutaneous Adverse Events Associated with Immune Checkpoint Inhibitors: A Review Article. Curr. Oncol. 2022, 29, 2871–2886.
  14. Muhaj, F.; Karri, P.V.; Moody, W.; Brown, A.; Patel, A.B. Mucocutaneous adverse events to immune checkpoint inhibitors. Front. Allergy. 2023, 4, 1147513.
  15. Inno, A.; Metro, G.; Bironzo, P.; Grimaldi, A.M.; Grego, E.; Di Nunno, V.; Picasso, V.; Massari, F.; Gori, S. Pathogenesis, clinical manifestations and management of immune checkpoint inhibitors toxicity. Tumori 2017, 103, 405–421.
  16. Wang, D.Y.; Salem, J.E.; Cohen, J.V.; Chandra, S.; Menzer, C.; Ye, F.; Zhao, S.; Das, S.; Beckermann, K.E.; Ha, L.; et al. Fatal Toxic Effects Associated With Immune Checkpoint Inhibitors: A Systematic Review and Meta-analysis. JAMA Oncol. 2018, 4, 1721–1728.
  17. Sibaud, V. Dermatologic Reactions to Immune Checkpoint Inhibitors: Skin Toxicities and Immunotherapy. Am. J. Clin. Dermatol. 2018, 19, 345–361.
  18. Collins, L.K.; Chapman, M.S.; Carter, J.B.; Samie, F.H. Cutaneous adverse effects of the immune checkpoint inhibitors. Curr. Probl. Cancer. 2017, 41, 125–128.
  19. Wongvibulsin, S.; Pahalyants, V.; Kalinich, M.; Murphy, W.; Yu, K.H.; Wang, F.; Chen, S.T.; Reynolds, K.; Kwatra, S.G.; Semenov, Y.R. Epidemiology and risk factors for the development of cutaneous toxicities in patients treated with immune-checkpoint inhibitors: A United States population-level analysis. J. Am. Acad. Dermatol. 2022, 86, 563–572.
  20. Brahmer, J.R.; Lacchetti, C.; Schneider, B.J.; Atkins, M.B.; Brassil, K.J.; Caterino, J.M.; Chau, I.; Ernstoff, M.S.; Gardner, J.M.; Ginex, P.; et al. Management of Immune-Related Adverse Events in Patients Treated with Immune Checkpoint Inhibitor Therapy: American Society of Clinical Oncology Clinical Practice Guideline. J. Clin. Oncol. 2018, 36, 1714–1768.
  21. Muntyanu, A.; Netchiporouk, E.; Gerstein, W.; Gniadecki, R.; Litvinov, I.V. Cutaneous Immune-Related Adverse Events (irAEs) to Immune Checkpoint Inhibitors: A Dermatology Perspective on Management . J. Cutan. Med. Surg. 2021, 25, 59–76.
  22. Curry, J.L.; Tetzlaff, M.T.; Nagarajan, P.; Drucker, C.; Diab, A.; Hymes, S.R.; Duvic, M.; Hwu, W.J.; Wargo, J.A.; Torres-Cabala, C.A.; et al. Diverse types of dermatologic toxicities from immune checkpoint blockade therapy. J. Cutan. Pathol. 2017, 44, 158–176.
  23. Bottlaender, L.; Amini-Adle, M.; Maucort-Boulch, D.; Robinson, P.; Thomas, L.; Dalle, S. Cutaneous adverse events: A predictor of tumour response under anti-PD-1 therapy for metastatic melanoma, a cohort analysis of 189 patients. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 2096–2105.
  24. Chu, M.T.; Chang, W.C.; Pao, S.C.; Hung, S.I. Delayed Drug Hypersensitivity Reactions: Molecular Recognition, Genetic Susceptibility, and Immune Mediators. Biomedicines 2023, 11, 177.
  25. Pichler, W.J.; Adam, J.; Daubner, B.; Gentinetta, T.; Keller, M.; Yerly, D. Drug hypersensitivity reactions: Pathomechanism and clinical symptoms. Med. Clin. N. Am. 2010, 94, 645–664.
  26. Phillips, G.S.; Freites-Martinez, A.; Wu, J.; Chan, D.; Fabbrocini, G.; Hellmann, M.D.; Lacouture, M.E. Clinical Characterization of Immunotherapy-Related Pruritus Among Patients Seen in 2 Oncodermatology Clinics. JAMA Dermatol. 2019, 155, 249–251.
  27. Malviya, N.; Tattersall, I.W.; Leventhal, J.; Alloo, A. Cutaneous immune-related adverse events to checkpoint inhibitors. Clin. Dermatol. 2020, 38, 660–678.
  28. Sibaud, V.; Meyer, N.; Lamant, L.; Vigarios, E.; Mazieres, J.; Delord, J.P. Dermatologic complications of anti-PD-1/PD-L1 immune checkpoint antibodies. Curr. Opin. Oncol. 2016, 28, 254–263.
  29. Apalla, Z.; Papageorgiou, C.; Lallas, A.; Delli, F.; Fotiadou, C.; Kemanetzi, C.; Lazaridou, E. Cutaneous Adverse Events of Immune Checkpoint Inhibitors: A Literature Review. Dermatol. Pract. Concept. 2021, 11, e2021155.
  30. Sutaria, N.; Adawi, W.; Goldberg, R.; Roh, Y.S.; Choi, J.; Kwatra, S.G. Itch: Pathogenesis and treatment. J. Am. Acad. Dermatol. 2022, 86, 17–34.
  31. Yu, S.; Li, Y.; Zhou, Y.; Follansbee, T.; Hwang, S.T. Immune mediators and therapies for pruritus in atopic dermatitis and psoriasis. J. Cutan. Immunol. Allergy 2019, 2, 4–14.
  32. Goyette, P.; Boucher, G.; Mallon, D.; Ellinghaus, E.; Jostins, L.; Huang, H.; Ripke, S.; Gusareva, E.S.; Annese, V.; Hauser, S.L.; et al. High-density mapping of the MHC identifies a shared role for HLA-DRB1*01:03 in inflammatory bowel diseases and heterozygous advantage in ulcerative colitis. Nat. Genet. 2015, 47, 172–179.
  33. Hasan Ali, O.; Berner, F.; Bomze, D.; Fassler, M.; Diem, S.; Cozzio, A.; Jorger, M.; Fruh, M.; Driessen, C.; Lenz, T.L.; et al. Human leukocyte antigen variation is associated with adverse events of checkpoint inhibitors. Eur. J. Cancer 2019, 107, 8–14.
  34. Akturk, H.K.; Couts, K.L.; Baschal, E.E.; Karakus, K.E.; Van Gulick, R.J.; Turner, J.A.; Pyle, L.; Robinson, W.A.; Michels, A.W. Analysis of Human Leukocyte Antigen DR Alleles, Immune-Related Adverse Events, and Survival Associated with Immune Checkpoint Inhibitor Use Among Patients With Advanced Malignant Melanoma. JAMA Netw. Open 2022, 5, e2246400.
  35. Tison, A.; Garaud, S.; Chiche, L.; Cornec, D.; Kostine, M. Immune-checkpoint inhibitor use in patients with cancer and pre-existing autoimmune diseases. Nat. Rev. Rheumatol. 2022, 18, 641–656.
  36. Paternoster, L.; Standl, M.; Waage, J.; Baurecht, H.; Hotze, M.; Strachan, D.P.; Curtin, J.A.; Bonnelykke, K.; Tian, C.; Takahashi, A.; et al. Multi-ancestry genome-wide association study of 21,000 cases and 95,000 controls identifies new risk loci for atopic dermatitis. Nat. Genet. 2015, 47, 1449–1456.
  37. Ellis, S.R.; Vierra, A.T.; Millsop, J.W.; Lacouture, M.E.; Kiuru, M. Dermatologic toxicities to immune checkpoint inhibitor therapy: A review of histopathologic features. J. Am. Acad. Dermatol. 2020, 83, 1130–1143.
  38. Apalla, Z.; Rapoport, B.; Sibaud, V. Dermatologic immune-related adverse events: The toxicity spectrum and recommendations for management. Int. J. Womens Dermatol. 2021, 7, 625–635.
  39. Tetzlaff, M.T.; Nagarajan, P.; Chon, S.; Huen, A.; Diab, A.; Omar, P.; Aung, P.P.; Torres-Cabala, C.A.; Mays, S.R.; Prieto, V.G.; et al. Lichenoid Dermatologic Toxicity from Immune Checkpoint Blockade Therapy: A Detailed Examination of the Clinicopathologic Features. Am. J. Dermatopathol. 2017, 39, 121–129.
  40. Schaberg, K.B.; Novoa, R.A.; Wakelee, H.A.; Kim, J.; Cheung, C.; Srinivas, S.; Kwong, B.Y. Immunohistochemical analysis of lichenoid reactions in patients treated with anti-PD-L1 and anti-PD-1 therapy. J. Cutan. Pathol. 2016, 43, 339–346.
  41. Shi, V.J.; Rodic, N.; Gettinger, S.; Leventhal, J.S.; Neckman, J.P.; Girardi, M.; Bosenberg, M.; Choi, J.N. Clinical and Histologic Features of Lichenoid Mucocutaneous Eruptions Due to Anti-Programmed Cell Death 1 and Anti-Programmed Cell Death Ligand 1 Immunotherapy. JAMA Dermatol. 2016, 152, 1128–1136.
  42. Yamamoto, T. Skin Manifestation Induced by Immune Checkpoint Inhibitors. Clin. Cosmet. Investig. Dermatol. 2022, 15, 829–841.
  43. Lage, D.; Juliano, P.B.; Metze, K.; de Souza, E.M.; Cintra, M.L. Lichen planus and lichenoid drug-induced eruption: A histological and immunohistochemical study. Int. J. Dermatol. 2012, 51, 1199–1205.
  44. Niesert, A.; Guertler, A.; Schutti, O.; Engels, L.; Flaig, M.; French, L.; Schlaak, M.; Reinholz, M. Ulcerated Lichen Planus after Adjuvant Use of Programmed Cell Death-1-Inhibitor: A Case Report and Systematic Review of the Literature. Acta Derm. Venereol. 2021, 101, adv00472.
  45. Maarouf, M.; Alexander, C.; Shi, V.Y. Nivolumab reactivation of hypertrophic lichen planus, a case report and review of published literature. Dermatol. Online J. 2018, 24, 9.
  46. Guggina, L.M.; Yanes, D.A.; Choi, J.N. Inverse lichenoid drug eruption associated with nivolumab. JAAD Case Rep. 2017, 3, 7–9.
  47. Wakade, D.V.; Carlos, G.; Hwang, S.J.; Chou, S.; Hui, R.; Fernandez-Penas, P. PD-1 inhibitors induced bullous lichen planus-like reactions: A rare presentation and report of three cases. Melanoma Res. 2016, 26, 421–424.
  48. Biolo, G.; Caroppo, F.; Salmaso, R.; Alaibac, M. Linear bullous lichen planus associated with nivolumab. Clin. Exp. Dermatol. 2019, 44, 67–68.
  49. Komatsu-Fujii, T.; Nakajima, S.; Iwata, M.; Kataoka, T.; Hirata, M.; Nomura, T.; Kabashima, K. Upregulated programmed death ligand 1 expression in nivolumab-induced lichen nitidus: A follow-up report with an immunohistochemical analysis. J. Dermatol. 2020, 47, e319–e320.
  50. Zhou, G.; Zhang, J.; Ren, X.W.; Hu, J.Y.; Du, G.F.; Xu, X.Y. Increased B7-H1 expression on peripheral blood T cells in oral lichen planus correlated with disease severity. J. Clin. Immunol. 2012, 32, 794–801.
  51. Anegawa, H.; Otsuka, A.; Kaku, Y.; Nonomura, Y.; Fujisawa, A.; Endo, Y.; Kabashima, K. Upregulation of granzyme B and interferon-gamma mRNA in responding lesions by treatment with nivolumab for metastatic melanoma: A case report. J. Eur. Acad. Dermatol. Venereol. 2016, 30, e231–e232.
  52. Yawalkar, N.; Pichler, W.J. Mechanisms of cutaneous drug reactions. J. Dtsch. Dermatol. Ges. 2004, 2, 1013–1023.
  53. Yawalkar, N.; Pichler, W.J. Immunohistology of drug-induced exanthema: Clues to pathogenesis. Curr. Opin. Allergy Clin. Immunol. 2001, 1, 299–303.
  54. Curry, J.L.; Reuben, A.; Szczepaniak-Sloane, R.; Ning, J.; Milton, D.R.; Lee, C.H.; Hudgens, C.; George, S.; Torres-Cabala, C.; Johnson, D.; et al. Gene expression profiling of lichenoid dermatitis immune-related adverse event from immune checkpoint inhibitors reveals increased CD14(+) and CD16(+) monocytes driving an innate immune response. J. Cutan. Pathol. 2019, 46, 627–636.
  55. Bonigen, J.; Raynaud-Donzel, C.; Hureaux, J.; Kramkimel, N.; Blom, A.; Jeudy, G.; Breton, A.L.; Hubiche, T.; Bedane, C.; Legoupil, D.; et al. Anti-PD1-induced psoriasis: A study of 21 patients. J. Eur. Acad. Dermatol. Venereol. 2017, 31, e254–e257.
  56. De Bock, M.; Hulstaert, E.; Kruse, V.; Brochez, L. Psoriasis Vulgaris Exacerbation during Treatment with a PD-1 Checkpoint Inhibitor: Case Report and Literature Review. Case Rep. Dermatol. 2018, 10, 190–197.
  57. Nikolaou, V.; Sibaud, V.; Fattore, D.; Sollena, P.; Ortiz-Brugues, A.; Giacchero, D.; Romano, M.C.; Riganti, J.; Lallas, K.; Peris, K.; et al. Immune checkpoint-mediated psoriasis: A multicenter European study of 115 patients from the European Network for Cutaneous Adverse Event to Oncologic Drugs (ENCADO) group. J. Am. Acad. Dermatol. 2021, 84, 1310–1320.
  58. Ruiz-Banobre, J.; Abdulkader, I.; Anido, U.; Leon, L.; Lopez-Lopez, R.; Garcia-Gonzalez, J. Development of de novo psoriasis during nivolumab therapy for metastatic renal cell carcinoma: Immunohistochemical analyses and clinical outcome. APMIS 2017, 125, 259–263.
  59. Balak, D.M.; Hajdarbegovic, E. Drug-induced psoriasis: Clinical perspectives. Psoriasis 2017, 7, 87–94.
  60. Lowes, M.A.; Russell, C.B.; Martin, D.A.; Towne, J.E.; Krueger, J.G. The IL-23/T17 pathogenic axis in psoriasis is amplified by keratinocyte responses. Trends Immunol. 2013, 34, 174–181.
  61. Barrea, L.; Macchia, P.E.; Tarantino, G.; Di Somma, C.; Pane, E.; Balato, N.; Napolitano, M.; Colao, A.; Savastano, S. Nutrition: A key environmental dietary factor in clinical severity and cardio-metabolic risk in psoriatic male patients evaluated by 7-day food-frequency questionnaire. J. Transl. Med. 2015, 13, 303.
  62. Yu, S.; Wu, X.; Zhou, Y.; Sheng, L.; Jena, P.K.; Han, D.; Wan, Y.J.Y.; Hwang, S.T. A Western Diet, but Not a High-Fat and Low-Sugar Diet, Predisposes Mice to Enhanced Susceptibility to Imiquimod-Induced Psoriasiform Dermatitis. J. Investig. Dermatol. 2019, 139, 1404–1407.
  63. Yu, S.; Wu, X.; Shi, Z.; Huynh, M.; Jena, P.K.; Sheng, L.; Zhou, Y.; Han, D.; Wan, Y.Y.; Hwang, S.T. Diet-induced obesity exacerbates imiquimod-mediated psoriasiform dermatitis in anti-PD-1 antibody-treated mice: Implications for patients being treated with checkpoint inhibitors for cancer. J. Dermatol. Sci. 2020, 97, 194–200.
  64. de Golian, E.; Kwong, B.Y.; Swetter, S.M.; Pugliese, S.B. Cutaneous Complications of Targeted Melanoma Therapy. Curr. Treat. Options Oncol. 2016, 17, 57.
  65. Hua, C.; Boussemart, L.; Mateus, C.; Routier, E.; Boutros, C.; Cazenave, H.; Viollet, R.; Thomas, M.; Roy, S.; Benannoune, N.; et al. Association of Vitiligo with Tumor Response in Patients With Metastatic Melanoma Treated with Pembrolizumab. JAMA Dermatol. 2016, 152, 45–51.
  66. Teulings, H.E.; Limpens, J.; Jansen, S.N.; Zwinderman, A.H.; Reitsma, J.B.; Spuls, P.I.; Luiten, R.M. Vitiligo-like depigmentation in patients with stage III-IV melanoma receiving immunotherapy and its association with survival: A systematic review and meta-analysis. J. Clin. Oncol. 2015, 33, 773–781.
  67. Yun, S.J.; Oh, I.J.; Park, C.K.; Kim, Y.C.; Kim, H.B.; Kim, H.K.; Hong, A.R.; Kim, I.Y.; Ahn, S.J.; Na, K.J.; et al. Vitiligo-like depigmentation after pembrolizumab treatment in patients with non-small cell lung cancer: A case report. Transl. Lung Cancer Res. 2020, 9, 1585–1590.
  68. Yin, E.S.; Totonchy, M.B.; Leventhal, J.S. Nivolumab-associated vitiligo-like depigmentation in a patient with acute myeloid leukemia: A novel finding. JAAD Case Rep. 2017, 3, 90–92.
  69. Liu, R.C.; Consuegra, G.; Chou, S.; Fernandez Penas, P. Vitiligo-like depigmentation in oncology patients treated with immunotherapies for nonmelanoma metastatic cancers. Clin. Exp. Dermatol. 2019, 44, 643–646.
  70. Guida, M.; Strippoli, S.; Maule, M.; Quaglino, P.; Ramondetta, A.; Chiaron Sileni, V.; Antonini Cappellini, G.; Queirolo, P.; Ridolfi, L.; Del Vecchio, M.; et al. Immune checkpoint inhibitor associated vitiligo and its impact on survival in patients with metastatic melanoma: An Italian Melanoma Intergroup study. ESMO Open 2021, 6, 100064.
  71. Lommerts, J.E.; Bekkenk, M.W.; Luiten, R.M. Vitiligo induced by immune checkpoint inhibitors in melanoma patients: An expert opinion. Expert Opin. Drug Saf. 2021, 20, 883–888.
  72. Larsabal, M.; Marti, A.; Jacquemin, C.; Rambert, J.; Thiolat, D.; Dousset, L.; Taieb, A.; Dutriaux, C.; Prey, S.; Boniface, K.; et al. Vitiligo-like lesions occurring in patients receiving anti-programmed cell death-1 therapies are clinically and biologically distinct from vitiligo. J. Am. Acad. Dermatol. 2017, 76, 863–870.
  73. Gault, A.; Anderson, A.E.; Plummer, R.; Stewart, C.; Pratt, A.G.; Rajan, N. Cutaneous immune-related adverse events in patients with melanoma treated with checkpoint inhibitors. Br. J. Dermatol. 2021, 185, 263–271.
  74. Weber, J.S.; Kahler, K.C.; Hauschild, A. Management of immune-related adverse events and kinetics of response with ipilimumab. J. Clin. Oncol. 2012, 30, 2691–2697.
  75. Siegel, J.; Totonchy, M.; Damsky, W.; Berk-Krauss, J.; Castiglione, F., Jr.; Sznol, M.; Petrylak, D.P.; Fischbach, N.; Goldberg, S.B.; Decker, R.H.; et al. Bullous disorders associated with anti-PD-1 and anti-PD-L1 therapy: A retrospective analysis evaluating the clinical and histopathologic features, frequency, and impact on cancer therapy. J. Am. Acad. Dermatol. 2018, 79, 1081–1088.
  76. Hanley, T.; Papa, S.; Saha, M. Bullous pemphigoid associated with ipilimumab therapy for advanced metastatic melanoma. JRSM Open 2018, 9, 2054270418793029.
  77. Kuwatsuka, Y.; Iwanaga, A.; Kuwatsuka, S.; Okubo, Y.; Murayama, N.; Ishii, N.; Hashimoto, T.; Utani, A. Bullous pemphigoid induced by ipilimumab in a patient with metastatic malignant melanoma after unsuccessful treatment with nivolumab. J. Dermatol. 2018, 45, e21–e22.
  78. Singer, S.; Nelson, C.A.; Lian, C.G.; Dewan, A.K.; LeBoeuf, N.R. Nonbullous pemphigoid secondary to PD-1 inhibition. JAAD Case Rep. 2019, 5, 898–903.
  79. Kuo, A.M.; Markova, A. High Grade Dermatologic Adverse Events Associated with Immune Checkpoint Blockade for Cancer. Front. Med. 2022, 9, 898790.
  80. Naidoo, J.; Schindler, K.; Querfeld, C.; Busam, K.; Cunningham, J.; Page, D.B.; Postow, M.A.; Weinstein, A.; Lucas, A.S.; Ciccolini, K.T.; et al. Autoimmune Bullous Skin Disorders with Immune Checkpoint Inhibitors Targeting PD-1 and PD-L1. Cancer Immunol. Res. 2016, 4, 383–389.
  81. Tsiogka, A.; Bauer, J.W.; Patsatsi, A. Bullous Pemphigoid Associated with Anti-programmed Cell Death Protein 1 and Anti-programmed Cell Death Ligand 1 Therapy: A Review of the Literature. Acta. Derm. Venereol. 2021, 101, adv00377.
  82. Hammers, C.M.; Stanley, J.R. Mechanisms of Disease: Pemphigus and Bullous Pemphigoid. Annu. Rev. Pathol. 2016, 11, 175–197.
  83. Abdel-Wahab, N.; Diab, A.; Yu, R.K.; Futreal, A.; Criswell, L.A.; Tayar, J.H.; Dadu, R.; Shannon, V.; Shete, S.S.; Suarez-Almazor, M.E. Genetic determinants of immune-related adverse events in patients with melanoma receiving immune checkpoint inhibitors. Cancer Immunol. Immunother. 2021, 70, 1939–1949.
  84. Muller, R.; Heber, B.; Hashimoto, T.; Messer, G.; Mullegger, R.; Niedermeier, A.; Hertl, M. Autoantibodies against desmocollins in European patients with pemphigus. Clin. Exp. Dermatol. 2009, 34, 898–903.
  85. Keerty, D.; Koverzhenko, V.; Belinc, D.; LaPorta, K.; Haynes, E. Immune-Mediated Toxic Epidermal Necrolysis. Cureus 2020, 12, e9587.
  86. Maloney, N.J.; Ravi, V.; Cheng, K.; Bach, D.Q.; Worswick, S. Stevens-Johnson syndrome and toxic epidermal necrolysis-like reactions to checkpoint inhibitors: A systematic review. Int. J. Dermatol. 2020, 59, e183–e188.
  87. Chirasuthat, P.; Chayavichitsilp, P. Atezolizumab-Induced Stevens-Johnson Syndrome in a Patient with Non-Small Cell Lung Carcinoma. Case Rep. Dermatol. 2018, 10, 198–202.
  88. Raschi, E.; Antonazzo, I.C.; La Placa, M.; Ardizzoni, A.; Poluzzi, E.; De Ponti, F. Serious Cutaneous Toxicities with Immune Checkpoint Inhibitors in the U.S. Food and Drug Administration Adverse Event Reporting System. Oncologist 2019, 24, e1228–e1231.
  89. Chen, C.B.; Wu, M.Y.; Ng, C.Y.; Lu, C.W.; Wu, J.; Kao, P.H.; Yang, C.K.; Peng, M.T.; Huang, C.Y.; Chang, W.C.; et al. Severe cutaneous adverse reactions induced by targeted anticancer therapies and immunotherapies. Cancer Manag. Res. 2018, 10, 1259–1273.
  90. Bhardwaj, M.; Chiu, M.N.; Pilkhwal Sah, S. Adverse cutaneous toxicities by PD-1/PD-L1 immune checkpoint inhibitors: Pathogenesis, treatment, and surveillance. Cutan. Ocul. Toxicol. 2022, 41, 73–90.
  91. Salati, M.; Pifferi, M.; Baldessari, C.; Bertolini, F.; Tomasello, C.; Cascinu, S.; Barbieri, F. Stevens-Johnson syndrome during nivolumab treatment of NSCLC. Ann. Oncol. 2018, 29, 283–284.
  92. Saw, S.; Lee, H.Y.; Ng, Q.S. Pembrolizumab-induced Stevens-Johnson syndrome in non-melanoma patients. Eur. J. Cancer 2017, 81, 237–239.
  93. Vivar, K.L.; Deschaine, M.; Messina, J.; Divine, J.M.; Rabionet, A.; Patel, N.; Harrington, M.A.; Seminario-Vidal, L. Epidermal programmed cell death-ligand 1 expression in TEN associated with nivolumab therapy. J. Cutan. Pathol. 2017, 44, 381–384.
  94. Goldinger, S.M.; Stieger, P.; Meier, B.; Micaletto, S.; Contassot, E.; French, L.E.; Dummer, R. Cytotoxic Cutaneous Adverse Drug Reactions during Anti-PD-1 Therapy. Clin. Cancer Res. 2016, 22, 4023–4029.
More
Video Production Service