Deep Cryogenic Treatment of Metallic Materials: Comparison
Please note this is a comparison between Version 3 by Rita Xu and Version 2 by Patricia Jovičević-Klug.

Deep cryogenic treatment (DCT) is a type of cryogenic treatment, where a metallic material is subjected to temperatures below -150°C, normally to temperatures of liquid nitrogen (-196 °C). When a material is exposed to DCT as a part of heat treatment, changes in microstructure are induced due to new grain formation, changes in grain size, change in the solubility of atoms, movement of dislocations, alteration of crystal structure, and finally new phase formation. The metallic material's performance and later performance of manufactured components and tools from this specific material are dependent on the selection of proper design, proper material, accuracy with which the tool is made and application of proper heat treatment, including any eventual DCT. Metallic materials are ferrous and non-ferrous metals. In the last years ferrous metals (different grades of steel) and non-ferrous alloys (aluminum, magnesium, titanium, nickel etc.) have been increasingly treated with DCT to alter their properties. DCT treatment has shown to reduce density of defects in crystal structure, increase wear resistance of material, increase hardness, improve toughness, and reduce tensile strength and corrosion resistance. However, some researchers also reported results showing no change in properties (toughness, hardness, corrosion resistance, etc.) or even deterioration when subjected to DCT treatment. This leads to a lack of consistency and reliability of the treatment process, which is needed for successful application in industry. This review provides a synopsis of DCT usage and resulting effects on treated materials used in automotive industry.

  • deep cryogenic treatment, metal, material
Please wait, diff process is still running!

References

  1. Akshansh Mishra; A Review on the Effect of Cryogenic Treatment on the Mechanical Properties of Friction Stir Welded Joints. SSRN Electronic Journal 2018, null, , 10.2139/ssrn.3291049.
  2. Keyvan Seyedi Niaki; Seyed Ebrahim Vahdat; Fatigue Scatter of 1.2542 Tool Steel after Deep Cryogenic Treatment. Materials Today: Proceedings 2015, 2, 1210-1215, 10.1016/j.matpr.2015.07.033.
  3. C. L. Gogte; Ajay Likhite; Dilip Peshwe; Aniruddha Bhokarikar; Rahul Shetty; Effect of Cryogenic Processing on Surface Roughness of Age Hardenable AA6061 Alloy. Materials and Manufacturing Processes 2014, 29, 710-714, 10.1080/10426914.2014.901526.
  4. J Indumathi; J Bijwe; A.K Ghosh; M Fahim; N Krishnaraj; Wear of cryo-treated engineering polymers and composites. Wear 1999, 225, 343-353, 10.1016/s0043-1648(99)00063-0.
  5. A. Bensely; A. Prabhakaran; D. Mohan Lal; G. Nagarajan; Enhancing the wear resistance of case carburized steel (En 353) by cryogenic treatment. Cryogenics 2005, 45, 747-754, 10.1016/j.cryogenics.2005.10.004.
  6. Wayne Reitz; John Pendray; CRYOPROCESSING OF MATERIALS: A REVIEW OF CURRENT STATUS. Materials and Manufacturing Processes 2001, 16, 829-840, 10.1081/amp-100108702.
  7. Simranpreet Singh Gill; Harpreet Singh; Rupinder Singh; Jagdev Singh; Cryoprocessing of cutting tool materials—a review. The International Journal of Advanced Manufacturing Technology 2009, 48, 175-192, 10.1007/s00170-009-2263-9.
  8. Adem ÇİÇek; Turgay Kıvak; İlyas Uygur; Ergün Ekici; Yakup Turgut; Performance of cryogenically treated M35 HSS drills in drilling of austenitic stainless steels. The International Journal of Advanced Manufacturing Technology 2011, 60, 65-73, 10.1007/s00170-011-3616-8.
  9. Vojteh Leskovšek; B. Podgornik; Vacuum heat treatment, deep cryogenic treatment and simultaneous pulse plasma nitriding and tempering of P/M S390MC steel. Materials Science and Engineering: A 2012, 531, 119-129, 10.1016/j.msea.2011.10.044.
  10. Silvio José Gobbi; Vagner João Gobbi; Gustavo Reinke; Palloma Vieira Muterlle; Daniel Rosa; Ultra-low-temperature process effects on microscale abrasion of tool steel AISI D2. Materials Science and Technology 2019, 35, 1355-1364, 10.1080/02670836.2019.1624018.
  11. E. Bartolomé; B. Bozzo; P. Sevilla; O. Martínez-Pasarell; Teresa Puig; X. Granados; ABS 3D printed solutions for cryogenic applications. Cryogenics 2017, 82, 30-37, 10.1016/j.cryogenics.2017.01.005.
  12. Wu Zhisheng; Shan Ping; Lian Jinrui; Hu Shengsun; Effect of deep cryogenic treatment on electrode life and microstructure for spot welding hot dip galvanized steel. Materials & Design 2003, 24, 687-692, 10.1016/s0261-3069(03)00029-3.
  13. Lin, Y.T.; Wang, M.C.; Zhang, Y.; He, Y.Z.; Wang, D.P. Investigation of microstructure evolution after post-weld Heat Treat. ment and cryogenic fracture toughness of the weld metal of AA2219 VPTIG joints. Mater. Des. 2017, 113, 54–59.
  14. Soumitra Paul; A. B. Chattopadhyay; ENVIRONMENTALLY CONSCIOUS MACHINING AND GRINDING WITH CRYOGENIC COOLING. Machining Science and Technology 2006, 10, 87-131, 10.1080/10910340500534316.
  15. N. Govindaraju; L. Shakeel Ahmed; Pradeep Murugesan; Experimental Investigations on Cryogenic Cooling in the Drilling of AISI 1045 Steel. Materials and Manufacturing Processes 2014, 29, 1417-1421, 10.1080/10426914.2014.930952.
  16. Su, Y.; He, N.; Li, L.; Zhao, W. Effects of cryogenic nitrogen gas jet on machinability of Ti-alloy in high speed milling. China Mech. Eng. 2006, 17, 1183–1187.
  17. M. Perez; C. Rodriguez; F. Javier Belzunce; The Use of Cryogenic Thermal Treatments to Increase the Fracture Toughness of a Hot Work Tool Steel Used to Make Forging Dies. Procedia Materials Science 2014, 3, 604-609, 10.1016/j.mspro.2014.06.100.
  18. Antonino La Rocca; G. Di Liberto; Paul Shayler; Michael Fay; The nanostructure of soot-in-oil particles and agglomerates from an automotive diesel engine. Tribology International 2013, 61, 80-87, 10.1016/j.triboint.2012.12.002.
  19. Francesca Iacopi; Jai Hyuk Choi; Kazuo Terashima; Philip M. Rice; Geraud Dubois; Cryogenic plasmas for controlled processing of nanoporous materials. Phys. Chem. Chem. Phys. 2011, 13, 3634–3637, 10.1039/c0cp02660c.
  20. Prudhvi, K.; Lakshmi, V.V.; Cryogenic tool treatment. Imp. J. Interdiscip. Res. 2016, 2, 1204–1211, 10.1007/s00170-014-6755-x.
  21. Rush, H.F. Cryogenic Material Selection, Availability, and Cost Considerations; NASA: Washington, WA, USA, 1983.
  22. D. Senthilkumar; Thermophysical Behavior of Cryogenically Treated Silicon Carbide for Nanofluids. Materials and Manufacturing Processes 2014, 29, 819-825, 10.1080/10426914.2014.892976.
  23. D Mohan Lal; S Renganarayanan; A Kalanidhi; Cryogenic treatment to augment wear resistance of tool and die steels. Cryogenics 2001, 41, 149-155, 10.1016/s0011-2275(01)00065-0.
  24. Timmerhaus, K.D. Advances in Cryogenic Engineering; Springer: Berlin/Heidelberg, Germany, 1960; pp. 145–148.
  25. Timmerhaus, K.D.; Flynn, T.M. Cryogenic Process Engineering; Springer: Berlin/Heidelberg, Germany, 1989; pp. 13–38.
  26. Brown, W.L. The Development of Lubricants for Automotive A/C Systems; Purdue University: West Lafayette, IN, USA, 1998; pp. none.
  27. B. Podgornik; U. Borovšak; F. Megušar; K. Košir; Performance of low-friction coatings in helium environments. Surface and Coatings Technology 2012, 206, 4651-4658, 10.1016/j.surfcoat.2012.05.040.
  28. Pušavec, F.; Stoić, A.; Kopač, J.; The role of cryogenics in machining processes. Cryocoolers 10 2009, 16, 3–10.
  29. Volodymyr Kukharenko; Pulse Tube Modeling as a Means of Teaching the Design of Cryogenic Refrigerators. Cryocoolers 10 2002, null, 413-419, 10.1007/0-306-47090-x_49.
  30. A. Molinari; Massimo Pellizzari; S. Gialanella; G. Straffelini; K.H. Stiasny; Effect of deep cryogenic treatment on the mechanical properties of tool steels. Journal of Materials Processing Technology 2001, 118, 350-355, 10.1016/s0924-0136(01)00973-6.
  31. Anshuman Das; S. K. Patel; Bibhuti Bhusan Biswal; R. N. Mahapatra; Comparative Study of Some Machining Characteristics During Hard Turning of Alloy Steel with Untreated and Cryotreated Cermet Inserts. Recent Advances in Theoretical, Applied, Computational and Experimental Mechanics 2020, null, 217-225, 10.1007/978-981-15-0124-1_20.
  32. Barron, R.F. Do treatment at temperature below-120 F help increase the wear resistance of tool steels? Here are some research findings that indicate they do. Heat Treat. 1974, 5, 14–17.
  33. R.F. Barron; Cryogenic treatment of metals to improve wear resistance. Cryogenics 1982, 22, 409-413, 10.1016/0011-2275(82)90085-6.
  34. Paolo Baldissera; C. Delprete; Deep Cryogenic Treatment: A Bibliographic Review. The Open Mechanical Engineering Journal 2008, 2, 1-11, 10.2174/1874155x00802010001.
  35. R Barron; W. Burt; R Byrns; M. Clapp; A. Clark; A. Daniels; T. Frederking; W. Hassenzahll; P. Kittell; C. Klipping; M. Nisenoff; K. Timmerhaus; Cryogenic engineering conference/international cryogenic materials conference. Cryogenics 1986, 26, 49-51, 10.1016/0011-2275(86)90198-0.
  36. Wilkins, C.. Cryogenic Processing: The Big Chill; EDM Today: Essex, CT, USA, 1999; pp. 36–44.
  37. Timmerhaus, K.D.; Flynn, T.M. Encyclopedia of Physical Science and Technology; Academic Press: Cambridge, MA, USA, 2003; pp. 13–36.
  38. Barron, R.F.; Thompson, R.H. Effect of cryogenic treatment of corrosion resistance. In Proceedings of the International Cryogenics Materials Conference, Garmisch-Partenkirchen, Germany, 9–11 May 1990; Volume 17, pp. 1–6.
  39. Rob Thornton; Tom Slatter; Alan Jones; R. Lewis; The effects of cryogenic processing on the wear resistance of grey cast iron brake discs. Wear 2011, 271, 2386-2395, 10.1016/j.wear.2010.12.014.
  40. Ming, C.J.E.R. Cryogenic Treatment of Music Wire. Master’s Thesis, Department of Mechanical Engineering, National University of Singapore, Singapore, 2004.
  41. Peter Jurči; Jana Ptačinová; Martin Sahul; Mária Dománková; Ivo Dlouhy; Metallurgical principles of microstructure formation in sub-zero treated cold-work tool steels – a review. Matériaux & Techniques 2018, 106, 104, 10.1051/mattech/2018022.
  42. Debdulal Das; Apurba Dutta; K.K. Ray; Influence of varied cryotreatment on the wear behavior of AISI D2 steel. Wear 2009, 266, 297-309, 10.1016/j.wear.2008.07.001.
  43. Debdulal Das; Apurba Dutta; Kalyan Kumar Ray; Sub-zero treatments of AISI D2 steel: Part I. Microstructure and hardness. Materials Science and Engineering: A 2010, 527, 2182-2193, 10.1016/j.msea.2009.10.070.
  44. Debdulal Das; Apurba Dutta; Kalyan Kumar Ray; Sub-zero treatments of AISI D2 steel: Part II. Wear behavior. Materials Science and Engineering: A 2010, 527, 2194-2206, 10.1016/j.msea.2009.10.071.
  45. Senthilkumar, D. Encyclopedia of Iron, Steel, and Their Alloys; CRC: Boca Raton, FL, USA, 2016; pp. 995–1007.
  46. F. Niessen; Matteo Villa; Matteo Villa; Martensite Formation from Reverted Austenite at Sub-zero Celsius Temperature. Metallurgical and Materials Transactions B 2018, 49, 5241-5245, 10.1007/s11661-018-4887-6.
  47. C.H. Surberg; Paul Stratton; K. Lingenhöle; Effect of deep cold treatment on two case hardening steels. Acta Metallurgica Sinica (English Letters) 2008, 21, 1-7, 10.1016/s1006-7191(08)60012-5.
  48. D. N. Collins; Classic contributions: cryogenic treatment Deep cryogenic treatment of tool steels: a review. International Heat Treatment and Surface Engineering 2008, 2, 147-149, 10.1179/174951508x446367.
  49. Diekman, F. Steel Heat Treating Fundamentals and Processes-ASM Handbook; ASM International: Cleveland, OH, USA, 2013; pp. 382–386.
  50. Jesse Jones; Chris Rogers; The acoustic effect of cryogenically treating trumpets. The Journal of the Acoustical Society of America 2003, 114, 2349, 10.1121/1.4809222.
  51. Sonar, T.; Lomte, S.; Gogte, C. Materials Today; Elsevier Ltd: Amsterdam, The Netherlands, 2018; pp. 25219–25228.
  52. Dhokey, N.B.; Hake, A.R.; Thavale, V.T.; Gite, R.; Batheja, R. Microstructure and mechanical properties of cryotreated SAE8620 and D3 steels. Curr. Adv. Mater. Sci. Res. CAMSR Microstruct. 2014, 1, 23–27.
  53. N. B. Dhokey; J. V. Dandawate; R. Rawat; Effect of Cryosoaking Time on Transition in Wear Mechanism of M2 Tool Steel. ISRN Tribology 2013, 2013, 1-6, 10.5402/2013/408016.
  54. Kazuhiko Horioka; Hitoki Yoneda; Kazuyoshi Ohbayashi; Katsuhiko Mitobe; Koichi Kasuya; A Study on the Fornation Process of Cryogenic Flashover Ion Sources. A New All-Solid-State Bipolar High-Voltage Multilevel Generator for Dielectric Barrier Discharge 1987, 15, 578-582, 10.1109/TPS.1987.4316756.
  55. Joshi, P.; Singh, J.; Dhiman, P.; Shekhar, H.; Kumar, V. Effect of cryogenic treatment on various materials: A review. Open Int. J. Technol. Innov. Res. 2015, 14, 1–11.
  56. J.D. Darwin; D. Mohan Lal; G. Nagarajan; Optimization of cryogenic treatment to maximize the wear resistance of 18% Cr martensitic stainless steel by Taguchi method. Journal of Materials Processing Technology 2008, 195, 241-247, 10.1016/j.jmatprotec.2007.05.005.
  57. T. Vignesh Kumar; Rama Thirumurugan; B. Viswanath; Influence of cryogenic treatment on the metallurgy of ferrous alloys: A review. Materials and Manufacturing Processes 2017, 32, 1789-1805, 10.1080/10426914.2017.1317790.
  58. Jovičević-Klug, P.; Podgornik, B. Deep cryogenic treatment of metallic materials in automotive applications: A review. In Proceedings of the ECHT 2019, Bardolino, Italy, 5–7 June 2019; pp. 1–10.
  59. C. H. Surberg; Paul Stratton; K. Lingenhöle; The Effect of Cryogenic Treatment on the Properties of AISI D2. Materials and Manufacturing Processes 2009, 24, 863-867, 10.1080/10426910902917421.
  60. Villa, M.; Somers, M.A.J. Cryogenic treatment of steel: From concept to metallurgical understanding. In Proceedings of the 24th International Feration for Heat Treatment and Surface Engineering Congress, Nice, France, 26–29 June 2017.
  61. Zurecki, Z. Cryogenic Quenching of Steel Revisited; Air Products and Chemicals, Inc: Allentown, PA, USA, 2005; pp. 1–9.
  62. Pellizzari, M. Influence of deep cryogenic treatment on the properties of conventional and PM high speed steels. Metall. Ital. 2008, 100, 17–22.
  63. D. N. Collins; J. Dormer; Classic contributions: cryogenic treatment Deep cryogenic treatment of a D2 cold work tool steel. International Heat Treatment and Surface Engineering 2008, 2, 150-154, 10.1179/174951508x446376.
  64. X.G. Yan; D.Y. Li; Effects of the sub-zero treatment condition on microstructure, mechanical behavior and wear resistance of W9Mo3Cr4V high speed steel. Wear 2013, 302, 854-862, 10.1016/j.wear.2012.12.037.
  65. Chaudhari, S.N.; Vikhe, G.J. Deep cryogenic processing after heat treatment: A new approach. IJES 2013, 2, 246–249. [Google Scholar]
  66. Ciski, A.; Nawrocki, P.; Babul, T.; Hradil, D. Multistage cryogenic treatment of X153CrMoV12 cold work steel. In Proceedings of the International Conference Recent Trends in Structural Materials IOP, Pilsen, Czech Republic, 14–16 November 2018; Volume 461, pp. 1–6.
  67. Luis Angel Alava; Garikoitz Artola; Iñaki Guinea; Maider Muro; On the Influence of Cryogenic Steps on Heat Treatment Processes. Materials Performance and Characterization 2017, 6, 20170017, 10.1520/mpc20170017.
  68. Jaswin, A.; Dhasan, M.L. Effect of cryogenic treatment on corrosion resistance and thermal expansion of valve steels. Int. J. Eng. Technol. Manag. Appl. Sci. 2015, 3, 2349–4476.
  69. Feng Hu; Kaiming Wu; Peter Damian Hodgson; Amir A. Shirzadi; Refinement of Retained Austenite in Super-bainitic Steel by a Deep Cryogenic Treatment. ISIJ International 2014, 54, 222-226, 10.2355/isijinternational.54.222.
  70. Sıtkı Akincioğlu; Hasan Gökkaya; İlyas Uygur; A review of cryogenic treatment on cutting tools. The International Journal of Advanced Manufacturing Technology 2015, 78, 1609-1627, 10.1007/s00170-014-6755-x.
  71. P.D Bilmes; M Solari; C.L Llorente; Characteristics and effects of austenite resulting from tempering of 13Cr–NiMo martensitic steel weld metals. Materials Characterization 2001, 46, 285-296, 10.1016/s1044-5803(00)00099-1.
  72. D. Carrouge; H.K.D.H. Bhadeshia; P. Woollin; Effect of δ -ferrite on impact properties of supermartensitic stainless steel heat affected zones. Science and Technology of Welding and Joining 2004, 9, 377-389, 10.1179/136217104225021823.
  73. S. Zhirafar; A. Rezaeian; M. Pugh; Effect of cryogenic treatment on the mechanical properties of 4340 steel. Journal of Materials Processing Technology 2007, 186, 298-303, 10.1016/j.jmatprotec.2006.12.046.
  74. D. Senthilkumar; I. Rajendran; Massimo Pellizzari; Juha Siiriäinen; Influence of shallow and deep cryogenic treatment on the residual state of stress of 4140 steel. Journal of Materials Processing Technology 2011, 211, 396-401, 10.1016/j.jmatprotec.2010.10.018.
  75. A. Bensely; D. Senthilkumar; D. Mohan Lal; G. Nagarajan; A. Rajadurai; Effect of cryogenic treatment on tensile behavior of case carburized steel-815M17. Materials Characterization 2007, 58, 485-491, 10.1016/j.matchar.2006.06.019.
  76. Ramdan, R.D.; Jauhari, I.; Izman, S.; Kadir, M.R.A.; Prawara, B.; Hamzah, E.; Nur, H.; Gu, K.X.; Li, Z.Q.; Wang, J.J.; et al. Shear mechanisms during cryogenic treatment of Ti6Al4V. Metals 2011, 8, 1390–1396.
  77. Zhi-Qing Hu; Huihui Zheng; Guojun Liu; Hongwei Wu; Effects of Cryogenic Treatment after Annealing of Ti-6Al-4V Alloy Sheet on Its Formability at Room Temperature. Metals 2018, 8, 295, 10.3390/met8050295.
  78. Kai Xuan Gu; Zhi Qiang Li; Jun Jie Wang; Yuan Zhou; Hong Zhang; Bing Zhao; Wei Ji; The Effect of Cryogenic Treatment on the Microstructure and Properties of Ti-6Al-4V Titanium Alloy. Materials Science Forum 2013, 747, 899-903, 10.4028/www.scientific.net/msf.747-748.899.
  79. Doo-Hwan Park; Sung-Woong Choi; Jeong-Hyeon Kim; Jae Myung Lee; Cryogenic mechanical behavior of 5000- and 6000-series aluminum alloys: Issues on application to offshore plants. Cryogenics 2015, 68, 44-58, 10.1016/j.cryogenics.2015.02.001.
  80. Volker Franco Steier; Edgar Sobral Ashiuchi; Reiß Lutz Ig; Araú José Jo; Plyusnin Alexander; Effect of a Deep Cryogenic Treatment on Wear and Microstructure of a 6101 Aluminum Alloy. Advances in Materials Science and Engineering 2016, 2016, 1-12, 10.1155/2016/1582490.
  81. Kaveh Meshinchi Asl; Alireza Tari; Farzad Khomamizadeh; Effect of deep cryogenic treatment on microstructure, creep and wear behaviors of AZ91 magnesium alloy. Materials Science and Engineering: A 2009, 523, 27-31, 10.1016/j.msea.2009.06.003.
  82. Dellacorte, C. Nickel-titanium alloys: Corrosion proof alloys for space bearing components and mechanism applications. In Proceedings of the 40th Aerospace Mechanism Symposium, NASA, Merritt Island, FL, USA, 12–14 May 2010; pp. 293–300.
  83. DeCicco, J.M. Steel and Iron Technologies for Automotive Lightweighting, Environmental Defense; University of Michigan: Ann Arbor, MI, USA, 2005; pp. none.
  84. Available online: www.worldsteel.org (accessed on 25 March 2020).
  85. Łukasz Grabowski; Andrzej Baier; M Sobek; Molding of strength testing samples using modern PDCPD material for purpose of automotive industry. IOP Conference Series: Materials Science and Engineering 2017, 227, 12051, 10.1088/1757-899x/227/1/012051.
  86. V. V. Berezovskaya; M. S. Khadyev; E. A. Merkushkin; Yu. A. Sokolovskaya; Influence of deformation on the structure and mechanical and corrosion properties of high-nitrogen austenitic 07Kh16AG13M3 steel. Russian Metallurgy (Metally) 2013, 2013, 855-862, 10.1134/s0036029513110049.
  87. Fentahun, M.A. Materials used in automotive manufacture and material selection using ashby charts. Int. J. Mater. Eng. 2018, 8, 40–54.
  88. Antoni Orłowicz; M. Mróz; Miroslaw Tupaj; A. Trytek; Materials Used in the Automotive Industry. Archives of Foundry Engineering 2015, 15, 75-78, 10.1515/afe-2015-0042.
  89. Ramdan, R.D.; Jauhari, I.; Izman, S.; Kadir, M.R.A.; Prawara, B.; Hamzah, E.; Nur, H. Shear mechanisms during cryogenic treatment of Ti6Al4V. In Proceedings of the 12th International Conference on QiR (Quality in Research), Bali, Indonesia, 4–7 July 2011; pp. 1390–1396.
  90. Anil Kumar, B.K.; Ananthaprasad, M.G.; Gopalakrishna, K. Action of cryogenic chill on mechanical properties of nickel alloy metal matrix composites. In Proceedings of the International Conference on Advances in Materials and Manufacturing Applications, Bangalore, India, 14–16 July 2016; pp. 1–11.
  91. Chen, P.; Malone, T.; Torres, P.; Bond, R. Effects of cryogenic treatment on the residual stress, NASA. In Proceeding of the 4th Conference on Aerospace Materials, Processes and Environmental Technology, Huntsville, AL, USA, 18–20 September 2000; pp. 1–4.
  92. Volker Franco Steier; Edgar Sobral Ashiuchi; Reiß Lutz Ig; Araú José Jo; Plyusnin Alexander; Effect of a Deep Cryogenic Treatment on Wear and Microstructure of a 6101 Aluminum Alloy. Advances in Materials Science and Engineering 2016, 2016, 1-12, 10.1155/2016/1582490.
  93. T.H. Myeong; Y. Yamabayashi; M. Shimojo; Y. Higo; A new life extension method for high cycle fatigue using micro-martensitic transformation in an austenitic stainless steel 1This work was carried out as a part of the Ph.D. thesis of one of the authors (T.H.M.). 1. International Journal of Fatigue 1997, 19, 69-73, 10.1016/s0142-1123(97)00060-1.
  94. Fanju Meng; Kohsuke Tagashira; Hideaki Sohma; Wear resistance and microstructure of cryogenic treated Fe-1.4Cr-1C bearing steel. Scripta Metallurgica et Materialia 1994, 31, 865-868, 10.1016/0956-716x(94)90493-6.
  95. D. Senthilkumar; Effect of deep cryogenic treatment on residual stress and mechanical behaviour of induction hardened En 8 steel. Advances in Materials and Processing Technologies 2016, 2, 427-436, 10.1080/2374068X.2016.1244326.
  96. E. Demir; I. Toktaş; Effects of cryogenic treatment on residual stresses of AISI D2 tool steel. Metallic Materials 2018, 56, 153-161, 10.4149/km_2018_3_153.
  97. Francisca G. Caballero; M.K. Miller; Carlos Garcia-Mateo; Carbon supersaturation of ferrite in a nanocrystalline bainitic steel. Acta Materialia 2010, 58, 2338-2343, 10.1016/j.actamat.2009.12.020.
  98. Koneshlou, M.; Meshinchi, A.K.; Khomamizadeh, F. Effect of cryogenic tratment on microstucture, mechanical and wear behaviors of AISI H13 hot work tool steel. Cryogenics 2011, 51, 55–61.
  99. V. A. Landa; The secondary martensitic transformation resulting from tempering tool steels. Metal Science and Heat Treatment 1963, 5, 125-129, 10.1007/bf00655394.
More
ScholarVision Creations